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a b s t r a c t

Neurons in the primary visual cortex (V1) are often classified as simple or complex cells, but it is
debated whether they are discrete hierarchical classes of neurons or if they represent a continuum
of variation within a single class of cells. Herein, we show that simple and complex cells may arise
commonly from the feedforward projections from the retina. From analysis of the cortical receptive
fields in cats, we show evidence that simple and complex cells originate from the periodic variation
of ON–OFF segregation in the feedforward projection of retinal mosaics, by which they organize into
periodic clusters in V1. From data in cats, we observed that clusters of simple and complex receptive
fields correlate topographically with orientation maps, which supports our model prediction. Our
results suggest that simple and complex cells are not two distinct neural populations but arise from
common retinal afferents, simultaneous with orientation tuning.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Neurons in the primary visual cortex (V1) are often clas-
ified as simple or complex cells (Hubel & Wiesel, 1962) by
heir characteristic organization of spatial receptive fields and
he temporal dynamics of their response to stimuli. In traditional
lassifications, simple cells have segregated ON/OFF sub-regions
f receptive fields and generate highly modulated sinusoidal re-
ponse (F1/F0 > 1) to drifting gratings stimuli, while complex
cells have largely overlapping ON/OFF sub-regions and generate
weak modulation of response (F1/F0 < 1, Fig. 1a) (De Valois
t al., 1982; Dean & Tolhurst, 1983; DeAngelis et al., 1995; Mata
Ringach, 2005; Nowak et al., 2010; Skottun et al., 1991). As

uggested in the pioneering study of Hubel and Wiesel, simple
nd complex cells have often been considered to imply a hi-
rarchically distinct functional architecture for visual processing
Antolik & Bednar, 2011; Lehky et al., 2005; Martinez & Alonso,
003; Martinez et al., 2005), so that simple cells pool feedforward
nputs (Ferster & Lindström, 1983; Reid & Alonso, 1995), while
omplex cells then pool inputs from the simple cells (Fig. 1b)
Alonso & Martinez, 1998; Yu & Ferster, 2013).

However, subsequent studies have raised the possibility that
imple and complex neurons are not clearly distinct populations
ut might be variations within a continuous spectrum (Chance
t al., 1999; Crowder et al., 2007; Fournier et al., 2011; Mechler
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& Ringach, 2002; Priebe et al., 2004; Tao et al., 2004). Although
the conventional hierarchical model predicts that neurons in the
early layer are mostly simple cells (Antolik & Bednar, 2011; Hubel
& Wiesel, 1962) (Fig. 1c, top), it was reported that complex cells
coexist with simple cells in layer 4 of monkey, which receives
the majority of feedforward afferents from the thalamus (Fig. 1c,
bottom Ringach et al., 2002). Similarly, in layer 4 of cat, most
cells were classified as simple ones, but a significant portion of
complex cells were also observed (Martinez et al., 2005). Thus,
these results raise questions of the origin of simple and complex
cells: Simple and complex cells are not clearly distinct popula-
tions, and may arise from non-distinctive neural circuits. If so,
then what possible mechanism is there for the development of
such a functional variation?

Recent studies have suggested that ON/OFF feedforward affer-
ents play a crucial role in initiating diverse functional tuning of
neurons in V1. The orientation preference of a cortical column
can be predicted by the local arrangement of ON/OFF afferents
(Jin et al., 2011; Lee et al., 2016) and other functional tuning such
as direction selectivity (Lien & Scanziani, 2018), ON/OFF polarity,
and ocular dominance (Kremkow et al., 2016) are observed to
develop from the integration of thalamic feedforward inputs.
Considering that an LGN neuron is modulated by only a small
number of retinal ganglion cells (RGCs) in monkeys, cats, and
mice (Litvina & Chen, 2017; Schein & de Monasterio, 1987; Usrey
et al., 1999), and that local thalamic receptive fields preserve
those of RGCs, the spatial distribution of ON/OFF retinal mosaics
may induce the initial formation of functional tuning and their
topographic organization in V1 (Ringach, 2004, 2007; Soodak,

1987).
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Fig. 1. Development of simple and complex cells in the primary visual cortex.
a) Illustration of simple (left) and complex (right) cells. Receptive fields and
esponse profiles to a drifting sinusoidal grating stimulus are described. Red
rea (+): ON subregion. Blue area (−): OFF subregion. Purple area (+&−): both
N and OFF subregion. F1/F0: ratio of 1st harmonic amplitude to mean elevation
f firing rate. (b) Schematic of the classical hierarchical model. (c) Bimodal
istograms of F1/F0 in Layer 4 of adult monkeys (red bar, adapted from Fig.
1 of reference Ringach et al., 2002) and prediction of hierarchical model (gray
ar, adapted from reference Antolik & Bednar, 2011). (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version
f this article.)

Here, we propose that the simple and complex tuning of
1 neurons arises from a common retinal mosaics structure,
opographically correlated with the preferred orientation of un-
erlying neurons. From the analysis of data in cats and monkeys,
e show evidence that neuronal variation from simple to com-
lex cells can be predicted from the segregation between local
N and OFF feedforward projections from the retina. We show
hat clusters of simple and complex receptive fields are observed
cross V1, the spatial period of which is similar to that of underly-
ng orientation maps. Overall, our findings suggest that structured
nputs from the retina can initiate simple-to-complex variations
f the neural responses in V1, enabling a periodic organization of
he simple and complex tuning in V1.

. Results

.1. Simple and complex cells from the spatial arrangement of
N/OFF retinal afferents

Based on the theory that functional tuning in the visual cortex
riginates from the afferent of ON and OFF RGC mosaics (Paik &
ingach, 2011, 2012; Ringach, 2004, 2007; Soodak, 1987) (Fig. 2a),
e hypothesized that both simple and complex cells in V1 are

nitially seeded by the local projection of feedforward afferents
nd that the variation of the cell types depends on the spatial dis-
ribution of the ON and OFF receptive fields imprinted in the RGC
osaics (Fig. 2b). We introduced our model idea by investigating

he profile of retinal mosaics data of ON-center and OFF-center
eceptive fields (RFs, Fig. 2c) (Gauthier et al., 2009). As previously
eported (Gauthier et al., 2009; Wassle et al., 1981), the nearest
eighbor distance between different types of RF centers (d )
ON-OFF

149
ppeared smaller than that between the same type (average of
ON−ON = 116 µm and dOFF-OFF = 106 µm), thus the nearest
eighbor of an ON cell appears to be an OFF cell, and vice versa.
he profile of this ON–OFF distance (dON-OFF ) measured from RGC

mosaics data (Gauthier et al., 2009) showed a wide variation,
well fitted to a Gaussian distribution (mean = 56.4 µm, standard
deviation = 14.3 µm, R2

= 0.91) (Fig. 2c, bottom histogram).
Our main hypothesis is that this spatial organization of ON and

OFF RGCs can constrain the tuning of the connected V1 neurons
as either simple or complex cells, via statistical wiring from the
retina to V1 (Paik & Ringach, 2011, 2012; Ringach, 2004, 2007;
Soodak, 1987). When the distance between ON and OFF RGC is
large (Fig. 2d, green circle, dON-OFF = 87 µm, top 12%), a V1
neuron that receives retinal afferents from these local ON and
OFF RGCs has a receptive field of weakly overlapping ON and
OFF sub-regions. This results in a high simpleness index (SI, 0.42,
see Methods), representing simple cell-like segregation between
ON/OFF subregions. In contrast, when the distance between ON
and OFF RGCs is small (Fig. 2d, purple circle, dON-OFF = 23 µm,
bottom 5%), the inputs to V1 generate the receptive field of highly
overlapping ON and OFF sub-regions with low SI (0.15), like a
complex cell. In this scenario, the simple/complex tuning in V1 is
strongly biased by variation of the local arrangement of ON and
OFF RGC mosaics.

We show that the coexistence of simple and complex cells
in layer 4 of monkeys can be initiated from the structure of
measured RGC mosaics, from variation of the response modulated
by the distance between ON and OFF subregions of RF. We consid-
ered F1/F0, the ratio of the first harmonic component to the mean
elevation of the neuronal response to a drifting sinusoidal grating
stimulus, another indicator of simple (F1/F0 > 1) or complex
(F1/F0 < 1) cells. We modeled a simple condition that a V1 neuron
receives dominant inputs from ON and OFF afferents for two cases
in Fig. 2d. In both cases, ON and OFF RGCs produce sinusoidal
responses, but they can induce either constructive or destructive
summation of responses, depending on ON/OFF subregions dis-
tance (Fig. 2e, top). This will generate distinct level of modulation
of membrane voltage responses in V1 (Fig. 2e, middle), and thus
the instantaneous firing rate of the model V1 neuron is either
strongly modulated (F1/F0 > 1, simple cell) or weakly modulated
(F1/F0 < 1, complex cell) depending on the spatial arrangement of
ON and OFF feedforward afferents (Fig. 2e, bottom). Based on the
spike rectification model (Mechler & Ringach, 2002; Priebe et al.,
2004), a nonlinear sigmoidal transfer function between the ON–
OFF distance of RF and the F1/F0 of neural response was obtained
analytically (Fig. 2f, see Methods). From this result, we confirmed
that the unimodal distribution of the ON–OFF distance shown in
Fig. 2c can generate bimodal segregation of F1/F0 observed in the
monkey data (Fig. 2g).

Note that the current model predicts the coexistence of both
simple and complex cells in the thalamo-recipient layer (as ob-
served in Martinez et al. (2005)), regardless of the bimodality
of the distribution of F1/F0. Previously, it was suggested that
the bimodal distribution of the F1/F0 ratio can be considered as
evidence that simple and complex cells are distinct classes of V1
neurons (Skottun et al., 1991). However, more recent studies have
shown that whether the distribution is bimodal or unimodal does
not necessarily imply distinct classes but can be a by-product
of the nonlinearity of the measure. For example, although the
distribution of F1/F0 is bimodal in the monkey V1, the underlying
membrane voltage measures (V1/V0) were unimodally distributed
and the shape of the distribution was dependent on an intracor-
tical parameter, such as the spike threshold (Mechler & Ringach,
2002; Priebe et al., 2004). Our model can readily account for
various conditions of the F1/F0 distribution, such as a simple
cell being more dominant than complex cells, as in the cat V1
(Supplementary Figure 1).
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Fig. 2. Retinal-origin model of simple and complex cells. (a) Illustration of the feedforward projections from ON and OFF retinal mosaics to V1 (b) The retinal origin
model of simple and complex cells. (c) ON and OFF-center RGC receptive field mosaic data from monkeys (Gauthier et al., 2009). Red and blue dots represent the
center of mass. Scale bar indicates 2dOFF-OFF . ON–OFF dipoles (N = 116) were defined as a line from each OFF cell to the nearest ON cell, and dON-OFF denotes the
ize of the dipole. Bottom histogram represents the distribution of dON-OFF , fitted to a Gaussian (Red curve). (d) Example receptive fields of local ON and OFF RGC
fferents (from green and purple circles in b). Simpleness index (SI) measures the spatial segregation between ON and OFF receptive field sub-regions. (e) Illustration
f responses of RGCs and V1 neurons to the drifting grating stimulus (see Methods). Dashed black line (Vth) represents spike threshold. Dashed red line represents
ean response. (f) A nonlinear transformation between F1/F0 and ON–OFF distance obtained by an analytic model (see Methods). Shaded area represents standard

deviation. (g) Resulting bimodal distribution of F1/F0 predicted by the model (gray, Hartigan’s dip test, p < 10−5) is compared with the histogram of F1/F0 in Fig. 1c
(red). (h) Top, sample 1-D profile of SI obtained from mosaic data in (c). Middle, spatial map of estimated SI. Bottom, the average difference of SI between two
arbitrary points as a function of distance (from 10,000 pairs of randomly sampled points). Black dashed line indicates the size of smoothing filter used to obtain the
SI map. (i) Same analysis for three different mosaics data. Shaded areas represent SEM. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
2.2. Periodic clustering of simple/complex neurons from RGC mosaics

One important prediction arises from the result above: the
spatial organization of simple and complex cells across a thalamo-
recipient layer would reflect the spatial layout of the corre-
sponding RGC mosaic and therefore would be organized into
topographical clusters. As shown in Fig. 2h, the spatial distribu-
tion of SI estimated from the RGC mosaics is clustered across the
space, generating local regions of large or small SI values. As a
result, the difference of SI between two points in the RGC mosaics
150
gradually increases as the two points become farther apart, im-
plying spatial clustering of SI across the retinal mosaics (Fig. 2h,
bottom). We repeated this analysis for four sets of RGC mosaic
data of monkeys and cats, confirming the spatial clustering of SI
(Fig. 2i, monkey 2 Vidne et al., 2012, cat 1 Zhan & Troy, 2000,
cat 2 Wassle et al., 1981). This finding predicts that simple and
complex cells in V1 would appear as an organization of clusters
across a thalamo-recipient layer.

Previous theoretical studies showed that quasi-periodic maps
of orientation tuning may arise from the spatial organization of
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Fig. 3. Moiré interference of retinal mosaics predicts the periodic spatial organization of SI, dON-OFF , and orientation preference in V1. (a) ON- (red) and OFF-center
blue) retinal ganglion cell receptive field mosaics are described as two noisy hexagonal lattices with different periodicity and the same angle. The resulting hexagonal
oiré interference pattern has a characteristic period λm . (b) Illustration of the statistical wiring model and example estimated projections to V1 from local RGCs.
ed and blue crosses represent the center of ON and OFF subregions, respectively. (c) Pseudo color representation of the synthetic map of preferred orientation,
ON-OFF , and SI (with example 1-D profiles along black arrow). σOFF represents the RF size of model OFF RGCs. Scale bar indicates λm (= 8dOFF-OFF ). (d) Correlation
etween cosine of orientation (cos(2θ +Φ)) and dON-OFF (left), and SI (right) obtained from diverse cortical penetrations on model maps (N = 100 penetrations). (e)
airwise differences of orientation (top), dON-OFF (middle), and SI (bottom) for the simulated model maps. The common period λm is denoted as a purple dashed line.

Shaded gray areas represent the standard deviation obtained from different cortical penetrations. (f) Consistent periods obtained from three maps (one period value
for each penetration for each map, N = 100 penetrations). ns: not significant (Wilcoxon rank-sum test, p = 0.97, 0.72, 0.68, for SI - orientation, SI - dON-OFF , dON-OFF
- orientation, respectively). Error bars indicate the standard deviation. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
RGC mosaics (Jang & Paik, 2017; Jang et al., 2020; Paik & Ringach,
2011; Ringach, 2004, 2007; Soodak, 1987). Combining this notion
with our model, we suggest that simple/complex tuning changes
periodically across the cortical surface as orientation tuning: In
the Paik–Ringach model (Paik & Ringach, 2011, 2012), it was
suggested that two noisy hexagonal lattices of ON and OFF RGC
mosaics generate a periodic interference pattern of a local ON–
OFF dipole-like arrangement, called a moiré interference pattern
(Fig. 3a). In this interference pattern, the ON–OFF distance and
ON–OFF angle changes periodically across the mosaics, with their
spatial period denoted as λm. As suggested in previous model
studies (Ringach, 2004, 2007), we assumed that the response
of a local V1 neuron is constrained by the structure of ON/OFF
afferents from the RGC mosaics: Considering that cortical neurons
receive feedforward inputs from multiple RGCs relayed by LGN
neurons (Alonso et al., 2001), the structure of ON/OFF subregions
was estimated by sampling the receptive field of ON and OFF
RGCs within a retinal area that match the retinotopic location
of a target V1 neuron (Fig. 3b, see Methods for details). In this
scenario, orientation tuning can be estimated from the alignment
of ON and OFF subregions projected from local RGCs, and the SI
of a V1 neuron can be estimated from the segregation between
ON and OFF subregions of corresponding afferents.

Our model simulation predicts that the preferred orientation,
dON-OFF , and SI, of V1 neurons are organized into a spatial cluster
of the same period, λ (Fig. 3c). All three of the simulated maps
m

151
showed clear periodic clustering of tuning across the cortical sur-
face, matching the periodic organization of the RGC interference
pattern. Structural similarity between the periodic clustering of
different tunings was estimated from the maximum correlation
measured at random locations sampled across the cortical surface
(N = 10,000). Cortical profiles of dON-OFF and SI in the model
showed strong correlation with the cosine of the orientation
preference (Fig. 3d). In position-shuffled control, the probability
of obtaining as high a correlation value as in the model was
significantly low (p < 0.0001 for both dON-OFF and SI). Further-
more, the period of each map, calculated from average pairwise
difference as a function of pairwise distance, was identical to the
predicted period λm of the retinal moiré interference (Fig. 3e). The
distribution of the obtained period values of orientation, dON-OFF ,
and SI from different locations of the model map were statistically
indistinguishable (Fig. 3f). Furthermore, these common period-
icity outcomes of the orientation, dON-OFF , and SI were similarly
observed in the measured mosaics (Supplementary Figure 3),
and this tendency might be confirmed when sufficient data per-
taining to multiple mosaics with similar levels of eccentricity in
higher mammals (cats or monkeys) become available from future
studies.

Next, we conducted an additional analysis to test the robust-
ness of the model with variations of the number of ON and
OFF inputs seeding the receptive fields. Specifically, we sought
to determine the highest effective number of RGC inputs with
which our model can operate. For simplicity, we sampled N
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Fig. 4. Robustness of the model under the variation of the number of sampled RGCs. (a) (top) Sampling N nearest-neighboring RGCs with equal weights to generate
the receptive field of a neuron in V1. Example receptive fields for N = 2, 6, 12 are shown. (bottom) Goodness of fit of induced V1 receptive fields to 2D-Gabor
function (Ringach, 2002) when varying the number of sampled RGCs. The purple line indicates the value estimated from data in monkeys (Ringach, 2002). The
goodness of fit is significantly different from that reported in animal data if N exceeds six (One-tailed, two-sample t-test, p = 0.98, 0.14, 0.017, 0.010, 0.0032,
.5×10−6 , 6.6×10−11 , 2.2×10−16 , 3.2×10−21 , 3.0×10−24 , and 1.9×10−30 for N = 2 – 12 respectively; The star indicates that p<0.001) (b) Simulated maps of the
referred orientation, dON-OFF , and SI when varying the number of sampled RGCs. (c) (left) A simple toy model in which the addition of one ON (or OFF) RGC input
an significantly modulate the structure of the ON and OFF domains in the receptive field. (right) Changes of the orientation, dON-OFF , and SI values when the number
f sampled RGCs, N, increases (N = 3–12). Dashed line indicates changes of those in shuffled maps of N = 2. (d) Consistency of the spatial period observed from
ach map (ns: not significant, Wilcoxon rank-sum test, from the left, p = 0.74, 0.93, 0.80, p = 0.85, 0.92, 0.98, p = 0.43, 0.36, 0.93, p = 0.11, 0.62, 0.14, p = 0.35,
.21, and 0.92, for SI - orientation, SI - dON-OFF , and dON-OFF - orientation, respectively). Error bars indicate the standard deviation in (a), (c), and (d)
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earest-neighboring RGCs (regardless of the ON/OFF sign) with
he same weight for each specific position of V1 (Fig. 4a, top).
e initially examined the profile of the receptive fields generated
y N nearest-neighboring RGCs. We calculated the goodness of
it (R2) of the receptive field to the 2D Gabor wavelet function
Ringach, 2002) to find the range of N within which a biologi-
ally observable structure of the V1 receptive fields is generated.
e found that the structure of the induced V1 receptive fields
ecomes significantly different from that reported in animal data
f N is larger than six at the significance level of 0.001 (Fig. 4a,
ottom). This result is consistent with or similar to the condi-
ions reported in previous model studies (Paik & Ringach, 2011;
ingach, 2004, 2007; Song et al., 2021). Next, we simulated a map
f the preferred orientation, dON-OFF, and SI again (Fig. 4b). We
bserved that the local tunings vary as soon as the number of
ampled RGCs increases from two (Fig. 4c). However, we found
hat the periodic topography of the induced maps remains con-
istent under this variation (N = 2–6). Accordingly, our key result,
hat the preferred orientation, dON-OFF , and SI of V1 neurons are
rganized into a spatial cluster with a similar period, was found to
e consistent across all conditions tested here (N = 2–6, Fig. 4d).
otably, the observed spatial periods of the maps were consistent
ith the characteristic period of the retinal mosaic (λ ). This
m

152
esult implies that the periodic structure of the retinal mosaic can
till provide a common source of such periodic maps in V1, even
hen the neuronal tuning of local maps is modulated to some
egree as N increases.

.3. Periodic spatial organization of simple/complex cells

In the previous section, we showed that our model predicts
correlation between simple/complex tuning and underlying

rientation tuning across the cortical surface. To validate this
odel prediction with biological data, spatial organization of
imple and complex receptive fields in V1 was examined using
ublished receptive field data (Kremkow et al., 2016) obtained
y multielectrode recording in cats (Fig. 5a). From the observed
N and OFF receptive fields, the simple/complex tuning index
SI) and the distance between ON/OFF center of mass (dON-OFF )
f each recording site were measured (Fig. 5b). The recording
ata contained both simple- and complex-like receptive fields,
hich showed segregated (left) or overlapped (right) ON and OFF
ub-regions respectively. As reported (Kremkow et al., 2016), the
istribution of orientation preference varied periodically (Fig. 5c,
op). Interestingly, both the spatial variation of d and SI
ON-OFF
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Fig. 5. Periodic spatial organization of simple/complex receptive fields and the common period with orientation preference in cat V1. (a) Illustration of multielectrode
ecording from the reference (Kremkow et al., 2016). The contour of ON and OFF receptive fields (measured with light and dark stimuli, respectively) is defined as
level of z-score = 1.5 for each ON/OFF receptive field. Scale bar: average radius (σ ) of the ON/OFF receptive field for each penetration. Polar plots represent a

normalized response to drifting bars. (b) Example calculation of dON-OFF (distance between center of mass of ON/OFF sub-regions), SI, and preferred orientation. (c)
Periodic spatial clustering of orientation preference (green, and its phase-adjusted cosine values), dON-OFF (blue), and SI (red). The Black dashed lines are sine fits for
dON-OFF and SI. The dON-OFF fit: 0.47 + 0.22 × sin(2πx/λ - 1.92), λ = 1.1 mm (R2

= 0.41, p = 3×10−4). The SI fit: 0.4 + 0.13 × sin(2πx/λ - 2.19), λ = 1.0 mm
R2

= 0.52, p = 2×10−5). Phase difference between two fits: 17◦ . (d) Correlation between cosine of orientation (cos(2θ + Φ)) and dON-OFF (top), and SI (bottom) (2
enetrations, N = 52 sites). (e) Average pairwise difference as a function of pairwise distance (averaged over 2 penetrations, averaged pairwise sample > 20 for
ach pairwise distance). Shaded areas represent SEM. Dashed vertical lines represent the period of each curve (∼1.1 mm). (f) Comparison of the observed period of
I, dON-OFF , and orientation with reported values of the orientation map periods (black dash line and shaded area, 1.07 ± 0.27 mm, N = 186; Rao et al., 1997). (For

nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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n V1 appeared periodically clustered along the cortical penetra-
ions. The distribution of dON-OFF (Fig. 5c, 3rd row) was well-fitted
o a sinusoidal function of ∼1.1 mm period. Comparable to this,
he distribution of SI (Fig. 5c, bottom) was also fitted to a sinu-
oidal function of nearly identical spatial period (∼1.0 mm) and
hase (phase difference ∼17◦). We found that the value of the
bserved SI and dON-OFF was tightly correlated (N = 52 data points
rom 2 penetrations, Pearson correlation coefficient, r = 0.66, p
1.2×10−7).
153
Obviously, the correlation between dON-OFF and SI can be ex-
ected in most cases due to their spatial relationship. However,
s the receptive field data are noisy in animal data, the two mea-
ures are not always perfectly correlated (Mata & Ringach, 2005).
hus, it is possible that a periodic organization will be observed
ore readily or more precisely in one of the two measures. In
ddition, the degree of structural irregularity of the receptive field
tructure (Gauthier et al., 2009) can also affect the precision of the
eriodicity measurement. To address all of these possible issues,
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e performed further analyses to examine whether a significant
odulation of the relationship between dON-OFF and SI can be
bserved due to the variations of the receptive field structure
nd of their spatial alignment (Supplementary Figure 4). As a
esult, we found that the correlation between dON-OFF and SI is
onsistently observed under various conditions of receptive fields
n which the spatial structure and the alignment of the ON and
FF receptive fields were varied, as observed in animal data.
his suggests that both measures can be used for estimations of
eriodic organizations under various conditions.
As predicted by the model, the spatial organization of dON-OFF

nd SI was correlated with orientation preference, and had a
ommon period identical to that of the orientation. As shown in
ig. 5d, the values of dON-OFF (or SI) and the cosine of orienta-

tion preference (Fig. 5c, 2nd row) were correlated across cortical
surface (N = 46 data points from 2 penetrations). In position-
huffled control, the probability of obtaining as high a correlation
alue as in the data was significantly low (p = 0.0026 for dON-OFF

and p < 0.0001 for SI). Furthermore, the remarkably similar
clustering period among the three organizations was manifested
in the average absolute pairwise difference for each measure
(orientation, dON-OFF , and SI) plotted as a function of cortical dis-
tance (Fig. 5e, averaged over the 2-penetration data sets, where
each mean value includes more than 20 pairwise comparisons).
The calculated mean period values (orientation 1.1 mm, dON-OFF
1.0 mm, SI 1.1 mm) were not only similar to each other, but also
matched the previously reported values of period of orientation
maps in cats (Rao et al., 1997) (Fig. 5f). These findings – the
periodic organization of simple/complex receptive fields and a
spatial period consistent with orientation tuning maps – imply
that our retinal origin model can account for the relationship
between the spatial clustering of simple/complex tunings and the
orientation maps in V1.

As it has been reported that the value of F1/F0 is significantly
correlated with the overlap of the ON/OFF receptive field (Mata &
Ringach, 2005), a periodic organization of F1/F0 is also predicted
from the observation of the periodic organization of SI. Our simu-
lation using a linear–nonlinear model with the observed ON and
OFF receptive field data suggests that F1/F0 is also expected to
have a periodic spatial organization in V1 (Supplementary Figure
5). Further validation using a direct measurement of F1/F0 with a
large dataset is necessary to confirm this model prediction.

In addition, to strengthen the model prediction of the to-
pographic correlation between orientation tuning and simple/
complex tuning in the experimental data, we conducted an ad-
ditional analysis of the multi-electrode data and observed that
the extrema of the simpleness and the pinwheel positions in the
orientation map spatially overlap, as our model predicts (Sup-
plementary Figure 6). Specifically, our model predicts that the
locations of pinwheels are likely to be either on the maxima or
minima of the local simple/complex tuning (or SI) due to the
topographic matching between the ON–OFF distance in the moiré
interference pattern and the corresponding orientation map. We
examined the experimental data and found that the SI values are
either maxima or minima at the pinwheel locations, similar to the
model analysis. This result suggests the possibility that our model
can exploit the information of the orientation map topography
to predict local simple/complex tunings, further supporting the
validity of the model.

3. Discussion

Our findings suggest that simple and complex tuning in V1 can
commonly originate from spatial arrangement of the local projec-
tion of retinal afferents. An analysis of multi-electrode recording
data from cats shows a tendency consistent with the model pre-
diction that simple and complex receptive fields are periodically
154
clustered in V1. Moreover, the observed periodic organization has
a period consistent with the orientation preference, implying the
common origin of the simple/complex and the orientation tuning
in V1. The Paik–Ringach model provides a possible explanation
for the observed periodicity from the periodic projection of retinal
afferents imprinted in retinal mosaics.

Our simplified model is designed to consider RGC cells as
only inputs based on the concept that the receptive field of a
V1 neuron at the early developmental stage is restricted by the
structure of the receptive fields of local ON and OFF RGCs (Jin
et al., 2011) and that intracortical inputs from other V1 cells may
refine this crudely initialized tuning successively. Specifically,
this assumption is based on the previous experimental observa-
tion that orientation-selective neurons and their orderly cortical
structures are observed before the complete development of in-
tracortical circuits (Crair et al., 1998), and that cortical receptive
fields are strongly constrained by feedforward thalamic afferents
(Jin et al., 2011). Notably, it was reported that the orientation
preference of a cortical column can be predicted by the local
arrangement of ON/OFF afferents (Lee et al., 2016) and that other
functional tunings such as direction selectivity (Lien & Scanziani,
2018), ON/OFF polarity, and ocular dominance (Kremkow et al.,
2016) are observed to develop from the integration of thalamic
feedforward inputs.

Based on these observations, our model assumes that the
initial cortical phase invariance is restricted by the spatial struc-
ture of the ON and OFF feedforward afferents, especially before
the intracortical circuit is fully developed by visual experience.
This notion is in line with a number of our previous publica-
tions that explain the retinal origin of the functional organization
of the early visual cortex — including orientation maps, ocular
dominance maps, spatial frequency maps, and their orthogonal
relationships (Jang & Paik, 2017; Jang et al., 2020; Paik & Ringach,
2011, 2012; Song et al., 2021). However, it is important to note
that the current model is not a complete description of cortical
development. Extension of the current concept with additional
factors such as intracortical interactions and refinement with
visual experience is necessary, as such work will address more
realistic issues in adult animals (Lien & Scanziani, 2013) that
feedforward afferents alone cannot explain.

Several works suggest that the nonlinear summation of sim-
ple cell-like linear filters can generate the phase-invariant ori-
entation tuning properties of complex cells. For example, the
phase-invariant responses of a complex cell were modeled as
a nonlinear summation of the responses of simple cells with
opposite phases (Adelson & Bergen, 1985; Touryan et al., 2005).
More recently, revised models using a combination of various
linear filters and nonlinearities have been presented to capture
the wide variation of the observed phase invariance in V1 cells
(Almasi et al., 2020; Rust et al., 2005; Sharpee et al., 2004).
However, it is notable that simple and complex cells are observed
even at the early developmental stage and that their proportions
are similarly maintained throughout the visual experience (Al-
bus & Wolf, 1984; Braastad & Heggelund, 1985). Furthermore,
considering that orientation-selective neurons and their orderly
cortical structures are observed before the complete development
of intracortical circuits (Crair et al., 1998), early feedforward
inputs may provide a blueprint for such an architecture. Our
result suggests that such simple and complex receptive fields
can be initialized in parallel by the structure of the ON and OFF
feedforward afferents, particularly before the intracortical circuit
is fully developed. However, it should be noted that our model
does not preclude a scenario of ‘serial’ development, in which
complex cells develop from the nonlinear integration of the input
of simple cells (Adelson & Bergen, 1985; Touryan et al., 2005).
Rather, our model suggests a probable scenario of the ‘parallel’
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evelopment of both simple and complex cells, in line with our
ecent studies on the development of various cortical tunings in
1 (Song et al., 2021).
In previous studies on cats, it was reported that simple cells

re mostly observed in layer 4 of V1 (Hirsch et al., 1998; Martinez
t al., 2002), and that the proportion of complex cells becomes
reater as the layers become deeper (Martinez et al., 2005). These
bservations are not different from our model prediction, because
rojection from an input layer of V1, especially layer 4, will
onverge into a superficial layer, such as layer 2/3, to generate
ore complex receptive fields. In our model, the retinotopic over-

ap between simple and complex cells across the layer (Alonso
Martinez, 1998) can also arise from convergent feedforward

rojections between the layers. Although hierarchical variation of
imple/complex tuning has been extensively discussed since the
ioneering study of Hubel and Wiesel (1962), how both types of
ells can arise in V1 is not fully understood. Here we focus on
he complex cells that coexist with simple cells (almost equal
opulations) in layer 4 of monkeys, which receives the majority
f feedforward afferents from the thalamus (Ringach et al., 2002).
ven in layer 4 of cat, which consists mostly of simple cells,
significant portion of the complex cells were observed and

imple cells exhibited various degrees of nonlinearity, as did the
omplex cells (Carandini & Ferster, 2000; Priebe et al., 2004). Our
odel suggests a possible scenario for the parallel development
f simple and complex cells in the thalamo-recipient layer.
Our current study provides a conceptual model of a proba-

le developmental scenario, but it must be noted that currently
vailable experimental data for validation of the model is very
imited. Thus, the suggested developmental scenario will need to
e fully validated by further experimental observations involving
nformation about both the neuronal receptive fields and cortical
ositions of large populations of neurons in the visual cortexes of
oung animals. A recent study demonstrated that such informa-
ion can be procured from large-scale two-photon imaging data
Lee et al., 2016). Although such a dataset is not immediately
vailable, it would be possible to identify a two-dimensional map
f simple and complex cells in the V1 in higher mammals (cats
r monkeys) in future studies for validation of the current model.
revious works also suggested that wide functional variation
f complex cell properties can be reproduced by unsupervised
earning with the temporal slowness principle (Berkes & Wiskott,
005; Wiskott & Sejnowski, 2002). Our current model only con-
iders feedforward circuits as a simplified model of the early
evelopmental process of the visual cortex, but consideration of
dditional factors, such as intracortical connectivity and the spa-
iotemporal dynamics of receptive field, would enable the model
o account for more realistic characteristics observed in experi-
ental data. For example, consideration of the simple temporal
elay between the ON and OFF pathways along with our current
odel can readily address ‘‘direction selectivity’’. It is notable that
ur recent publication (Song et al., 2021) discusses this issue in
etail using the same model framework; in the current model
hat only considers static receptive fields, direction selectivity of
1 neurons can be seeded by simply considering the intrinsic
emporal delay between ON and OFF retinal projections. In this
cenario, the delay between the ON and OFF response induces
more or less synchronized response of the V1 target neuron
epending on the direction of the drifting grating stimulus.
The current model is also limited in its ability to address

‘end and side inhibition’’, referring to a property of V1 neurons
hat shows sensitivity to the length and width of the stimulus,
espectively (DeAngelis et al., 1994). These properties are con-
idered to stem from the inhibitory inputs outside the classical
eceptive fields of the neurons (Seriès et al., 2003), but the current

odel does not consider any mechanism regarding extra-classical
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receptive fields. However, it is possible to address this issue in
the model by including inhibitory horizontal connectivity in V1
so that the response of an orientation-tuned neuron is inhibited
by inputs from other V1 neurons with the same orientation
preference beyond the classical receptive field of the neuron. In
addition, consideration of intracortical interactions may explain
the variation of the sharpness of the orientation and frequency
tuning curves. Previous studies reported that the orientation pref-
erence angle of a V1 neuron can be predicted by the structure
of the feedforward thalamic input (Kremkow et al., 2016; Lee
et al., 2016), whereas the tuning can be modulated by a number
of factors, such as the spike thresholds of individual neurons
(Carandini & Ferster, 2000; Mariño et al., 2005) and intracortical
interactions (Lee et al., 2012; Li et al., 2013; Lien & Scanziani,
2013). Therefore, consideration of these additional factors may
enable our model to implement more realistic characteristics.
Overall, it should be noted that our model can predict the global
topography of orientation maps and simple/complex maps but
is limited if used to estimate the precise tunings of individual
neurons.

Another limitation of the model is that it targets a single
pathway, especially the magnocellular pathway (parasol retinal
ganglion mosaic), which would seed the initial tuning of V1 neu-
rons by providing the earliest inputs. Specifically, previous works
suggested that orientation selectivity in the cat V1 is observed
between developmental stages E57 and P0, but only in sublayer
4Cα, which receives dominant inputs from the magnocellular
pathway (Ghosh & Shatz, 1992; Mooser et al., 2004; Shatz &
Luskin, 1986). On the other hand, the migration of cortical cells
in layers 2/3, which receive dominant inputs from the parvocel-
lular pathway, is completed at postnatal week 3. This suggests
that the initial orientation tuning in V1 layer 4 is dominantly
governed by the inputs from the magnocellular pathway. Hence,
we inferred that the cortical tuning as well as the associated
topographic map are initially seeded by this single type of RGC
that develops earlier, while the connections of other types of
cells could be fitted into this blueprint via activity-dependent
plasticity. However, this is only an assumption in the current
model, and further experimental studies that reveal the precise
contributions of different types of RGCs during the development
of functional maps may contribute to the revision of the current
model.

The periodic organization of simple and complex cells can
induce an efficient structure that includes the complete set of
simple-complex (or phase-specific/invariant) tunings along with
other visual features. Previous studies suggested that when multi-
ple features of V1 neurons (such as orientation, spatial frequency,
and ocular dominance) change in a similar period and their gra-
dients intersect orthogonally, ‘‘efficient tiling’’ can be achieved
so that all combinations of multiple features can be efficiently
encoded within a cortical hypercolumn (Nauhaus et al., 2016;
Song et al., 2021; Swindale et al., 2000). When the periods of
phase invariance and orientation maps are similar, as suggested
in the current model, efficient tiling between the phase invariance
and other tunings can also be obtained together. A recent study
(Song et al., 2021) reported that such efficient tiling can originate
from the structure of the retinal mosaic and that the gradient of
the ON–OFF distance intersects perpendicularly the gradient of
the ON–OFF angle seeding the orientation tuning. Furthermore,
as neurons in earlier layers can be combined in a further layer
by nonlinear processing, such a spatial distribution of the phase
invariance can be more uniform in deeper layers. Previously,
as the spatially biased architecture of orientation preference is
widely observed in V1 (e.g., the iso-orientation domain), it was
postulated that ‘‘orientation scotomas’’ may exist — the cortex

cannot encode every orientation equally well at some locations
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Paik & Ringach, 2011). In this scenario, this type of biased encod-
ng of a specific visual feature (e.g., orientation, phase invariance)
n the thalamo-recipient layer can be supplemented through fur-
her feedforward and recurrent connections, and the periodic
rganization of early layers may help to induce a uniform mixture
f complete feature sets in further layers. Overall, our results
uggest that projection of the structure of the retinal mosaic to
he early thalamo-recipient layer would play a role in providing
layout for efficient visual processing.

. Conclusions

Our finding suggests that the architecture of V1 is not only
ierarchical, but also parallel, and that this parallel architecture
efines the classical notion of visual cortex. That is, the role
f simple/complex cells in visual information processing is not
estricted to distinguishing different stages of the cortical micro-
ircuits, but can be regarded as an element of functional diversity
n the same cortical layer.

To sum up, the observed periodic spatial organization of sim-
le and complex receptive fields provides a population-level clue
egarding how simple and complex receptive fields may arise
nitially. Furthermore, it leads to the view that the spatial orga-
ization of ON and OFF retinal afferents can contribute signif-
cantly to the simple/complex neural response spectrum in V1.
omplementary to the classical notion that simple and complex
eceptive fields are hierarchically distinct, the observed periodic
patial organization of simple/complex receptive fields shows
ystematic variation in layer 4 of V1, which receives thalamic
nputs. That the period is consistent with that of the orientation
reference encourages the view that structured retinal afferents
esigned by interference between ON and OFF RGC mosaics pro-
ide the common source of both orientation preference and the
imple/complex-property of the connected V1 neurons. These
esults support the scenario that the diverse functional tunings of
1 can be initially biased by the arrangement of ON/OFF afferent
nputs of retinal origin.

. Methods

.1. Simpleness index (SI)

To quantify the simple/complex tuning of the receptive field,
e calculated the simpleness index (SI), which represents the de-
ree of segregation between ON/OFF subregions (Dean & Tolhurst,
983; Lee et al., 2016; Mata & Ringach, 2005; Van Hooser et al.,
013). The SI is defined as follows:

I =

∑
|RFOFF − RFON |∑
|RFOFF + RFON |

where RFOFF and RFON represent 2-d matrices of ON and OFF
receptive field subregions, respectively, and the summation is
over all matrix elements. Note that the relationship between
dON-OFF and SI is dependent on the shape and size of the ON and
OFF receptive fields.

5.2. Analysis of RGC mosaics

The ON–OFF dipole was defined as a line connecting the near-
st ON cell from each OFF cell in the mosaic. The SI values in Fig. 2
ere calculated by assuming that a model V1 neuron receives
ominant inputs from one ON-center RGC and one OFF-center
GC of equal strength. The receptive field of ON- and OFF-center
GCs was modeled as the difference of a Gaussian (σ =
surround
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3σcenter , σcenter,ON/OFF = half of the average ON–ON/OFF–OFF dis-
tance, respectively). The map of SI in Fig. 2h and i was obtained
as,

SI (r) =

∑
i

SIi ∗ exp(−

⏐⏐r − rdipole,i
⏐⏐2

2σ 2
r

),

here rdipole,i and SI i are the center and SI value of the ith dipole,
espectively (σr was defined for each mosaic as the value of
verage nearest distance between OFF cells). After the above
alculation, the map was linearly rescaled to match the minimum
nd maximum value of the original SI values.

.3. Relationship between ON-OFF RGC afferent distance and
1/F0 of V1 neuron

Based on previous studies (Mechler & Ringach, 2002; Priebe
t al., 2004), the membrane voltage response of a V1 neuron
o the drifting grating stimulus was modeled with a sinusoidal
unction:

(t) = V0 + V1cos (2π ft + φ)

here V0 represents the mean elevation of the membrane voltage
nd V1 represents the amplitude of the modulation, f is the tem-
oral frequency of the drifting grating, and φ is a constant phase
erm. The relationship between the membrane voltage fluctua-
ion and F1/F0 was formulated using the following 3-parameter
odel:

(V ) = g[(V − Vth)]
p
+

where F is spike rate, p is an exponent and g is a gain factor.
For the simplest case, p = 1, the analytic expression of F1/F0 as
a function of a variable χ = (Vth − V0)/V1 can be obtained as
follows (Mechler & Ringach, 2002).
F1
F0

=
−χ

√
1 − χ2 + arccos (χ)√

1 − χ2 − χarccos (χ)
when − 1 ≤ χ ≤ 1

F1
F0

=
1
χ

when χ < −1
(1)

From this, an analytically tractable model that expresses F1/F0
s a function of the distance between ON and OFF RGC afferents
as formulated (Fig. 2f). A previous electrophysiological study
howed that the response measured by firing of retinal ganglion
ells varies sinusoidally with the matched temporal frequency
f the drifting grating stimulus with optimal spatial frequency
Enroth-Cugell & Robson, 1966). Thus, a firing rate of an RGC
o the drifting grating stimulus was described as a sinusoidal
unction, which is denoted as r(t).

(t) = r0 + r1cos (2π ft + φ) , (r0 > r1 for r (t) > 0)

here f is the temporal frequency of the drifting grating stimulus
nd φ is the phase determined by the location of the RGC recep-
ive field (x). Note that for a suitable choice of reference, one can
rite the phase as a variable of spatial position divided by the
patial frequency (λ) of the drifting grating.

= 2π ∗ x/λ

ere, the value of λ was determined to produce the maximum
esponse for each RGC, where the RGC receptive field was mod-
led as in the previous section and the response was calculated
ith a conventional linear nonlinear model (Chichilnisky, 2001).
ummation of the response of ON and OFF RGCs at different
ositions (and thus different phases) yields the equation for the
ummed response, rsum (t).

sum (t) = ron + roff = r0,on + r1,oncos (2π ft + φon)( )

+ r0,off + r1,off cos 2π ft + π + φoff
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he addition of π phase arises from the opposite polarity of
N/OFF response. By letting r0,on = r0,off = r0, r1,on = r1,off =

1, and applying the trigonometric identity yields the simplified
xpression of the summed response.

sum (t) = 2r0 + 2r1cos
(
φon

2
−
φoff

2
−
π

2

)
× cos

(
2π ft +

φon

2
+
φoff

2
+
π

2

)
The interpretation of the above equation is as follows. The

irst term, 2r0, is independent of the phase difference between
N and OFF RGCs. The amplitude of the second term, however,
s dependent on the phase difference between ON and OFF RGCs
φon−φoff ). When φon = φoff , namely when ON and OFF receptive
ields are completely overlapped, the amplitude of sinusoidal
odulation becomes zero due to the cos(0+

π
2 ) term. As φon−φoff

increases, the amplitude of sinusoidal modulation increases and
becomes maximum when φon − φoff = π .

Next, the expression of the membrane voltage fluctuation
suggested by Mechler and Ringach was linked with the above
expression of rsum (t) as follows.

V0 ∼ mean (rsum (t)) = A ∗ 2r0

V1 ∼ |1st harmonic component of rsum (t)|k

= B ∗

(
2r1cos

(
φon

2
−
φoff

2
−
π

2

))k

here the exponent k was applied for the expansive relationship
etween input and membrane voltage modulation that arises
rom nonlinear integration in dendrites (Polsky et al., 2004).
his nonlinear relationship can generate a skewed distribution of
1/V0 as observed in cat (Priebe et al., 2004) from a Gaussian-like
istribution of ON–OFF distance.
This sinusoidal membrane voltage fluctuation is rectified to

enerate spike response modulation. The expression that links the
istance between ON/OFF afferent and χ , which determines the
odulation ratio F1/F0 becomes,

=
Vth − V0

V1
=

Vth − 2Ar0

B
(
2r1cos

(
φon − φoff −

π
2

))k
= c1

(
cos

(
φon − φoff −

π

2

))−k

= c1

(
cos

(
2π
λ

(xON − xOFF ) −
π

2

))−k

here c1 =
Vth−2Ar0
B(2r1)k

is a constant. Substituting the χ into Eq. (1)

nd expressing the ON–OFF distance as xON − xOFF = d, yields the
nalytic expression of F1/F0 in terms of d. Eq. (2) is given in Box I
From this expression, the distribution of F1/F0 can be calcu-

lated as in Fig. 2f of the main text. In our demonstration, k = 3,
c1 ∼N (mean, std2) = N (−0.04, 0.082) were used (N represents
the normal distribution).

5.4. Receptive field data

Receptive fields were analyzed using published data obtained
by multielectrode recording in Layer 4 of cat V1, provided by Jose-
Manuel Alonso via data presented in Fig. 2 of a previous study
(Kremkow et al., 2016). The detailed experimental procedures for
mapping receptive fields are described in the reference.

We defined the size of the receptive field (σ ) for each record-
ing site as the average radius of receptive fields within each
penetration (assuming circular receptive fields). The distance be-
tween the center of mass of ON and OFF subfields was normalized
by dividing that distance by r. The period of each distribution
157
(SI, dON-OFF , and orientation preference) was calculated as the
distance at which the pairwise difference value reaches its min-
imum among local minima of the curves, following the process
to calculate the period of orientation preference in the reference
(Kremkow et al., 2016).

5.5. Map simulation

The simulations were conducted based on the statistical wiring
model published earlier (Paik & Ringach, 2011; Ringach, 2004,
2007). Here, we summarize the algorithm and parameters that
were used to produce the results.

5.6. Generation of retinal ganglion cell mosaics

The ON and OFF RGC mosaics used in the simulation were
generated by adding random spatial noise to each node of the
hexagonal lattices that represent the position of the center of ON-
center and OFF-center receptive fields, respectively. The position
vectors of the centers of the receptive fields were defined as

xij,OFF = d ∗ H ij + ηij

xij,ON = (1 + α)d ∗ H ij + ηij

where d represents the lattice constant of the OFF mosaic, (1 +

)d represents the lattice constant of the ON mosaic (α = 1/7),
ηij represents the 2-D additive Gaussian noise with a standard
eviation 0.12d (so that a model mosaic has the similar near-
st neighbor distance statistics as the measured mosaic Paik &
ingach, 2011), and Hij represents the vectors of the nodes of a
nit hexagonal lattice spanned by two basis vectors.

ij =
1
2

[
1 1

√
3

√
3

][
i

j

]
i, j ∈ Z

The characteristic period of the hexagonal moiré interference
pattern, λm, is given by (Blair et al., 2007)

λm =
(1 + α)

α
d

hen the directions of the two principal axes of the lattices
atch.
The main results of the model simulation and comparison

ith the data are nearly identical to the various choices of the
arameter of the moiré interference.

.7. Statistical connectivity and receptive field computation

The mean receptive field at each cortical site can be computed
y the weighted sum of the afferent LGN input (it relays the
fferent RGC input).

(x, y; x) =

∑
i

exp(− (x − xi)2 /2σ 2
con)Ψi,LGN

where x is the cortical site at which we calculate the mean
receptive field, xi is the location of the ith LGN afferent, ψi,LGN
is the receptive field of the LGN afferent, and σcon (= 0.325d) is
the parameter that determines the spatial extent of the synaptic
weight distribution, which is assumed to be a form of Gaussian
(Ringach, 2007; Sailamul et al., 2017). Previous work suggested
that approximately six geniculate receptive fields are sufficient
to match the size of a simple cell receptive field (Alonso et al.,
2001). Based on this observation, along with the notion that
the structure of each LGN receptive field is similar to that of a
single RGC in most cases (Usrey et al., 1999), our model assumes
that the retina-LGN-V1 feedforward connectivity is fairly well
localized, with nearby V1 neurons tending to share a large portion
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F1
F0

=
F1
F0
(d)

=

−c1
(
cos

( 2π
λ
d −

π
2

))−k
√
1 − c21

(
cos

( 2π
λ
d −

π
2

))−2k
+ arccos

(
−c1

(
cos

( 2π
λ
d −

π
2

))−k
)

√
1 − c21

(
cos

( 2π
λ
d −

π
2

))−2k
+ c1

(
cos

( 2π
λ
d −

π
2

))−k
arccos

(
−c1

(
cos

( 2π
λ
d −

π
2

))−k
)

when − 1 ≤ χ ≤ 1,

=
1

−c1
(
cos

( 2π
λ
d −

π
2

))−k when χ < −1

(2)
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f the local retinal feedforward projections. To implement this
ondition, approximately three to six RGCs are sampled with the
aussian sampling range of σ = 0.225–0.325. Under this param-
ter condition, the preferred orientations of the local map appear
onsistent; thus, the periodic organization of the preferred ori-
ntation, dON-OFF , and SI are also fairly consistent (Supplementary
igure 2).

.8. Measurements of cortical maps

Simulated cortical maps were obtained from the computed
eceptive fields at each cortical position. The SI of the V1 neurons
as calculated in the same way as the SI of the data. The preferred
rientation of each receptive field was calculated as the angle
rthogonal to the line connecting the center of ON and OFF
ubregions. If either an ON or OFF subregion dominated (so called
‘monocontrast’’ cells, which respond to only one particular sign
f contrast), so that the sum of all the weights of ON afferents
as larger than two times the sum of all the weights of OFF
fferents and vice versa, the neurons were excluded from the map
easurement. After obtaining the SI and orientation preference of
ach cortical site, we smoothened the map with a 2-D Gaussian
ernel with standard deviation 0.16λm. The filtered map of SI
nd dON-OFF was linearly rescaled to recover the minimum and
aximum values of the raw cortical maps.
We obtained pixel-values from cross-sections of each simu-

ated map along line segments that had the same length as the
ata segments, but with random penetration direction. The length
f the data and model was normalized to match the period of
rientation preference of the data (1.1 mm) and that of model
λm). As in the data, 27 sites with equal spacing were sampled for
ach cross-section (10,000 cross-sections) and pairwise difference
urves were calculated. Two pairwise difference curves were
andomly sampled and the mean and standard deviation of the
ean of the two curves were calculated for 100,000 iterations.
The structural similarity among different maps was assessed

t randomly sampled cortical lines (N = 10,000) by transforming
rientation preference (θ ) into cos(2θ +Φ) and spatially shifting
o find the maximum correlation between preferred orientation
nd SI (or dON-OFF ). The values of Φ (0–360◦) and spatial shift
−0.5–0.5 mm) that maximize the correlation between cos(2θ +

) and SI along each penetration were determined iteratively. In
he position-shuffled control dataset, the position information of
ach SI (or dON-OFF ) value was randomly permuted.
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