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Abstract: With the technical growth and the reduction of deployment cost for distributed energy
resources (DERs), such as solar photovoltaic (PV), energy trading has been recently encouraged to
energy consumers, which can sell energy from their own energy storage system (ESS). Meanwhile,
due to the unprecedented rise of greenhouse gas (GHG) emissions, some countries (e.g., Republic
of Korea and India) have mandated using a renewable energy certificate (REC) in energy trading
markets. In this paper, we propose an energy broker model to boost energy trading between the
existing power grid and energy consumers. In particular, to maximize the profits of energy consumers
and the energy provider, the proposed energy broker is in charge of deciding the optimal demand and
dynamic price of energy in an REC-based energy trading market. In this solution, the smart agents
(e.g., IoT intelligent devices) of consumers exchange energy trading associated information, including
the amount of energy generation, price and REC. For deciding the optimal demand and dynamic
pricing, we formulate convex optimization problems using dual decomposition. Through a numerical
simulation analysis, we compare the performance of the proposed dynamic pricing strategy with the
conventional pricing strategies. Results show that the proposed dynamic pricing and demand control
strategies can encourage energy trading by allowing RECs trading of the conventional power grid.

Keywords: demand; dynamic pricing; renewable energy certificate (REC); dual decomposition;
optimization; energy broker; energy storage system (ESS); distributed energy resources (DERs);
smart grid

1. Introduction

With technological advancement and growing awareness on how fossil-fuel-based
energy generation is contributing unprecedentedly to global warming and climate change,
more and more people are adopting eco-friendly distributed energy resources (DERs)
(e.g., harnessing the Sun’s energy using solar photovoltaic cells). Despite the fact that
DERs producing energy from renewable energy sources (RESs) have weather-dependent
output, they are increasingly becoming common in different parts of the world (they are
growing both in numbers and production capacity) [1–3]. Generally, the energy produced
from DERs is distributed within a cluster, and the energy exchange market is in charge of
facilitating the energy trading. However, as the consumer-owned DERs are increasing in
numbers and so does their production, direct and distributed energy trading is required
not only among consumers but also among the utility companies and consumers [3,4].
Therefore, this brings about the necessity of an energy broker, which allows to trade
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energy among DERs [4]. In order to manage energy use and trade efficiently, the IoT-
based smart agents [5,6] can facilitate communication between these DERs and the energy
broker, thereby allowing sharing information (e.g., energy generation and consumption
information). In addition, when these smart agents are applied, new DERs can be added
to the consumer side with the existing deployed DERs without modification of operation
(e.g., grid connected mode/isolated mode) [7]. Unlike the existing independent system
operator (ISO) [8], an energy broker is equipped with energy storage systems (ESSs), and it
can purchase electricity from the sellers and sell directly to the buyers. It can even store the
purchased energy in its ESS(s) and sell later. Note that the ISOs may form wholesale power
markets where the power transmission operators, utilities and power consumers can trade.

Due to these energy trading shifts from the conventional energy exchange to energy
brokers, dynamic pricing is considered for balancing energy demand and distribution [9].
At a power grid, based on monopolistic energy trading, fixed pricing is effective for fore-
casting demand and deciding on the required amount of electricity generation. However,
when it comes to trading energy in a DER-based smart grid, the dynamic pricing is more
effective in balancing consumers’ demand as well as reducing the cost of energy distri-
bution. To encourage DER owners to produce energy from RESs, a number of effective
measures have been taken. To verify whether the energy is produced from an RES, an
energy broker may invoke a DER to provide a renewable energy certificate (REC) [10,11].
RECs are US marketable, intangible energy products that demonstrate the ability to gen-
erate and transmit 1MWh of electricity from suitable RESs to the consumers through the
power distribution network. Therefore, the DERs that do not provide RECs may not be
allowed to trade energy. Furthermore, RECs are a tradable commodity, and they can be
used for energy trading. In Europe, to differentiate consumption between RESs and the
conventional energy, the Guarantees of Origin (GO) certificate has been introduced [12].
Similarly, in the USA, Republic of Korea, and India, the government and utility companies
are encouraging energy providers to use RECs when taking part in energy trading. Un-
doubtedly, incorporating REC in energy trading can bolster the investment in deploying
RES-based DERs so as to reduce the carbon footprint for energy production. Therefore, a
dynamic pricing policy and demand control need to be investigated taking into account
DER energy generation and energy providers’ RECs trading in an energy broker-orientated
trading market.

Previous research findings in [13–19] impart that a dynamic pricing approach has a
strong influence on energy providers’ profit and consumers’ energy demand. According
to the proposal in [13], a group of users opts for buying energy at a fixed price, while the
other group chooses dynamic pricing. The authors in [13] consider an energy provider’s
revenue and demand in their proposal. However, according to this proposal, the users
are not equipped with DERs and energy storage facilities. Furthermore, in their solution,
the authors assume that a user acts only as a consumer (i.e., a user does not become part
of an energy trading). In [14], the authors propose a novel dynamic pricing scheme in
order to provide users with a price certainty as well as guaranteed uninterrupted power
supply. The authors demonstrate how historical market data can contribute to making
their scheme successful in energy sharing. Perhaps a serious disadvantage of this scheme
is that it does not consider a broker model. In [15], the authors aim at increasing the
availability of renewable energy. In order to attain this goal, they introduce a contract-
based adaptive pricing mechanism based on RES distribution. Additionally, in their
solution, users are equipped with ESSs in order to reduce peak energy demand. However,
this contribution in [15] would have been far more convincing if the authors had considered
operation and energy-storage cost of the batteries in their performance analysis. In [16],
a dynamic pricing algorithm is proposed in order to detect spiteful users and insecure
energy providers. However, according to this solution, the users only consume energy
and do not sell any energy from their DERs to an energy market. In [17], both consumers’
demand and energy providers’ profit are taken into account in a Stackelberg game in
order to determine a daily-ahead hourly pricing. Similar to [14], the authors of [16] do not
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consider an energy broker, which plays a pivotal role in maximizing the profits of energy
providers and consumers. In [18], the authors propose a fair dynamic pricing scheme to
reduce peak demand based on real datasets and guarantee energy providers’ revenue.
However, in their energy trading solution, consumers are not equipped with DERs. In [19],
a dynamic pricing broadcasting scheme is proposed based on domestic load management.
Authors consider that the energy providers have DER-based microgrids (MGs) and, similar
to [13], the consumers do not participate in energy trading in their scheme. In [20], the
authors introduce a day-ahead market where the market participants (consumers and
energy providers) commit to buy or sell wholesale electricity one day prior to the operating
day so as to avoid price volatility. Thus, in a day-ahead market, prices have a greater
impact on demand. However, this study falls short in explaining how the demand of the
consumers varies under different conditions (e.g., presence and the type of DERs). In [21],
a usage-based dynamic pricing with privacy preservation for smart grid is proposed. The
authors claim that as the proposed work enables the dynamic prices to take into account
electricity usage, it can contribute to minimizing consumption costs while maximizing
utility for both retailers and consumers. In [22], the authors propose a rolling horizon
distributed probability control approach for demand-side management of smart grids using
wind turbines. Unlike the solution in [22], where a distributed demand-side management
was proposed, taking into consideration the wind power forecasting uncertainty, our
solution introduced in this paper considers uncertainty in actual PV generation data, which
is widely used in households. In [23], the authors present a multi-purpose probability
optimization model for multiple MGs. In particular, optimal stochastic energy management
is proposed to address multiple MGs structures with the aim of minimizing total cost and
emissions, but our proposed solution embodies energy market-based modeling for energy
trading.

In particular, the existing studies had some limitations, as the focus was on the
benefits of energy trading only from the consumer’s perspective if the residual energy
after the consumption was traded. Therefore, based on this premise, if the consumer
trades the remaining energy into the REC where an energy provider can buy to reduce
greenhouse gases (GHGs), the consumer essentially benefits from the energy trading.
In addition, since energy providers can benefit from the reduction of carbon emissions
by purchasing these RECs, REC trading benefits energy providers as well as consumers.
Consequently, if existing studies were focused only on profit optimization from an energy
seller’s perspective, the proposed study addressed demand and pricing optimization for
both sellers (i.e., consumers) and buyers (i.e., energy providers) in consideration of REC,
which has few previous studies.

In this paper, we investigate a dynamic pricing and demand control mechanism to
maximize the profits of a single energy provider and consumers. The energy provider
produces energy from its conventional energy sources (e.g., nuclear and thermal) and buys
RECs from the DERs. The DER owners (i.e., consumers) also use ESSs in order to store
energy for future use.

In particular, the contributions of this work are stated as follows:

• Contrary to the existing energy trading, we propose a new energy trading model
facilitated by an energy broker, which also uses ESS in order to compensate for the
fluctuating output from the energy generators. Particularly, the clean energy sources
(DERs) and the conventional energy can be traded through the proposed energy
broker where an energy provider and consumers participate in.

• To design the proposed energy trading model, we define an energy consumer model
and energy provider model to maximize the benefits of energy consumers and
providers. The energy consumer model includes a consumer utility function, an
ESS cost function, and an RES cost function. On the other hand, the energy provider
model considers a generation cost function and an RES trading profit function.

• In detail, we define demand and pricing decision problems considering RECs, RESs,
ESSs, and their operation costs. First, to maximize the profit of the energy provider,
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we design an energy provider model, which decides optimal dynamic price for selling
and the optimal amount of RECs that the energy provider ought to buy. Next, we
design an energy consumer model to obtain the optimal energy demand from the
energy provider while reducing the operation cost of RESs and ESSs.

• Via well-designed utility and functions, we formulate a demand-based optimization
problem and optimal dynamic pricing decision to maximize the utilities of the energy
provider and consumers. Using dual decomposition based on the convex optimization,
we obtain the optimal Dynamic Selling through Dynamic Buying (DSDB) scheme,
which runs at the energy broker in a day-ahead market.

• Finally, the results obtained through numerical simulation show that the proposed
DSDB scheme outperforms the conventional pricing schemes. Furthermore, we
evaluate our proposed DSDB using real-world energy market data where there exist
various patterns of energy demand and energy generation.

The rest of this article is organized as follows. Section 2 presents details of our pro-
posed demand-based trading mechanism, which includes the proposed energy provider
model, consumer model, and optimization formulation. Numerical results with perfor-
mance comparison depending on pricing strategy are presented in Section 3. Finally, we
conclude the paper in Section 4.

2. Proposed Demand-Based Trading Mechanism with Dynamic Pricing Model of
Renewable Energy Sources

We propose a demand-based trading mechanism with dynamic pricing for both selling
and buying of energy in this section. We refer to our proposed scheme as DSDB in the
subsequent part of this paper. According to the DSDB scheme, the selling and buying price
of energy for a consumer is set dynamically by the energy broker in order to maximize total
utility. In other words, with this proposed approach, consumers are charged a dynamic
selling price and provided with a dynamic buying price by the energy broker. Using this
scheme, the consumers can control their energy demand depending on the buying price as
well as sell their own RES energy in the case when a higher selling price is offered. In this
paper, we define RES energy as capacity (i.e., kW) per hour for RES.

Considering an energy broker market where consumers are capable of producing
energy from their DERs and participate in energy trading, we propose our system model,
as depicted in Figure 1. Consumers have DERs with PV-based energy generation capability
and ESS for storing energy. When they are willing to sell their residual energy to the energy
broker, they may provide REC voluntarily or they might be asked to provide it by the
energy broker so as to comply with imposed environmental policies, similar to [11]. In
our proposal, to supply energy, the energy provider may rely on consumers’ DERs besides
its own conventional energy sources (e.g., nuclear and thermal). In other words, in our
solution, the energy provider has only its conventional energy sources, and it may buy
RECs when the energy from its own sources is not sufficient to meet the energy supply
of the consumers at a given time. In our proposal, similar to [6], we consider that the
consumers have a smart energy agent (SEA), which is a type of smart meter with the
capability of communicating with other SEAs when it comes to trade energy. Additionally,
we assume that an SEA allows not only a consumer to make the energy request but can
also autonomously make an energy request to the energy broker if it is authorized by
the consumer. In order to facilitate energy trading-related communication among the
consumers and energy broker, we consider two messages: (i) energy request message,
which incorporates the amount of required energy, and (ii) energy availability message, in
which an energy provider states the amount of available energy it has and the per unit cost
for trading.

The SEAs can be mounted on energy providers, energy brokers, and energy consumer
sides. Therefore, information, such as power generation, energy price, consumption, and
renewable energy trading can be defined as distributed local information in their respective
areas, and global information can be updated over the communication network to update
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their local information again. Therefore, for energy brokers, the centralized framework
processes the local information received from each SEA and provides updated information
to each of the SEAs. As suggested in [7], the functionality of SEA can also change the
information decision policy from a centralized to distributed manner. Therefore, the
framework allows SEAs located anywhere in the system to participate in the management
of energy trading technically and economically. The proposed solution can be deployed
in both centralized and multi-agent framework-based SEA. It is worth note that both
frameworks have their strengths and weaknesses in terms of privacy, computational and
communication overhead, and implementation complexity. As suggested in [24], it is
necessary to consider the tradeoff of both cases. One possible solution for determining the
most appropriate one would be is to consider the number of participating agents. That is, a
centralized framework can be applied when the number of components for energy trading
is small, whereas a distributed case (multi-agent framework-based SEA) can be selected
when the number of components is relatively larger.

The notations that are used for mathematical expressions presented in the subsequent
part of this paper are tabulated in Table 1.

Table 1. Symbol notations.

Symbol Description Unit

xi,k
the quantity of energy used by i-th consumer
based on k-th unit time slot kWh

gi,k
the quantity of RES energy resold to the energy broker
by i-th consumer in k-th unit time slot kWh

Li the RES energy produced for the purpose of i-th consumer kWh
Ci the energy stored capacity of an ESS in i-th consumer kWh

ci,k
the quantity of energy preserved in k-th unit time slot
in i-th consumer kWh

ei,k

the quantity of energy filled up with from the electric grid
(ei,k ≥ 0) or discharged to the electric grid (ei,k ≤ 0)
by i-th consumer in k-th unit time slot

kWh

δi,k
the quantity of maximum charging of the ESS
in k-th unit time slot in i-th consumer kWh

si,k
the quantity of energy selling to energy broker
in k-th unit time slot in i-th consumer kWh

Rk
the quantity of RES energy that the energy provider
purchases from consumers in the k-th unit time slot REC/kg

P the price value per unit carbon emissions (P > 0) kW/kg
Mk the quantity of carbon footprint in the k-th unit time slot kg

Gk
the energy generated by the energy provider
in k-th unit time slot MW

2.1. Energy Consumer Model

We formulate the quantity of energy used by the i-th consumer based on the k-th unit
time slot as xi,k. The lower and upper bound of energy consumption of the i-th consumer
are described as mi and Mi, respectively. Therefore, we can describe the characteristic of
xi,k as mi ≤ xi,k ≤ Mi. The energy from RESs is stored in the consumer premises, and the
consumers have the authority to decide upon the amount of energy to resell to the energy
broker for each unit time slot.

Then, let us define gi,k as the quantity of RES energy resold to the energy broker by
the i-th consumer in the k-th unit time slot, and Li = {li,t|t = 1, 2, ..., T} clearly states the
RES energy produced for the purpose of i-th consumer. We suppose that the produced
curve function of RES generators is allowed. Since the quantity of resold RES energy
cannot exceed the quantity of preserved energy, we can consider the inequality constraint
condition of gi,k as follows:
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0 ≤ gi,k ≤
k−1

∑
t=0

li,t − gi,t, ∀i ∈ N, k ∈ K. (1)

: REC purchase

: Energy demand

(Energy request message)

: Energy price (Pm)

Energy

Provider

Energy

Consumers

Energy Broker

…
EC1 ECn

1
REC

n
REC

Main Grid

𝑃𝑚

: Energy generation 

(Energy availability message)

: REC selling (RECn)

EC : Energy consumer : Smart energy agent (SEA)

Figure 1. System model of proposed demand-based trading mechanism in an energy broker with
dynamic pricing.

The RES energy is resold here, which implies that the PVs of consumers have produced
energy during the day. The consumer then produces and spends for its own energy and
stores the remaining energy in the ESS. It also sells the remaining ESS energy to the energy
broker during high-priced hours. Furthermore, we can take into account the stored energy
capacity of an ESS as Ci. We can also consider the quantity of energy preserved in the k-th
unit time slot as ci,k. Finally, we can describe the quantity of energy filled up from the
electric grid (ei,k ≥ 0) or discharged to the electric grid (ei,k ≤ 0) by the i-th consumer in the
k-th unit time slot as ei,k. Therefore, we can formulate the quantity of energy in the energy
storage as

ci,k =
k

∑
t=0

ei,k, ∀i ∈ N, k ∈ K. (2)

The ESS of the i-th consumer, in general, has a maximum charging and discharging
rate defined as ei,max and−ei,min, respectively. Therefore, we have the inequality constraints
as follows:

0 ≤ ci,k ≤ Ci, ∀i ∈ N, k ∈ K, (3)

− ei,min ≤ ei,k ≤ ei,max, ∀i ∈ N, k ∈ K. (4)

2.1.1. Consumer Utility Function

We can formulate the different consumer behavior based on a differentiated selection
of various utility-based functions [25]. We can describe U(x, δ, s) as the equivalent utility
function for all consumers. Here, x is the level of energy usage for the consumer, δ is the
variable of maximum charging of an ESS, which may differ among consumers at dissimilar
unit times of a given day, and s is the quantity of the energy selling level of the consumer.
Specifically, the utility function describes the level of consumer satisfaction that consumers
experience from charging ESS and selling energy as a function of its energy usage for each
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consumer. Therefore, we suppose that the consumer utility functions meet the following
properties according to different consumers.

(I) Utility function is nondecreasing. This implies mathematically that

∂U(x, δ, s)
∂x

≥ 0. (5)

(II) A marginal benefit function is defined as

V(x, δ, s)=̇
∂U(x, δ, s)

∂x
. (6)

The above marginal benefit of a consumer is nonincreasing. Therefore, it can be
rewritten as

∂V(x, δ, s)
∂x

≤ 0. (7)

That is to say, the utility function is concave. This implies that the satisfaction level of
the consumers can gradually become saturated.

(III) We assume that without energy consumption, there is no utility. Namely, we can
present this as

U(0, δ, s) = 0, ∀δ, s > 0. (8)

There are various choices of utility functions in the literature to formulate the satis-
faction of energy consumers. From the aspect of microeconomics, we model the reactions
of different consumers by using the concept of utility function [25]. Here, we define
U(xi,k, δi,k, si,k) as the utility function for each consumer, where xi,k indicates the quantity of
energy used within the k-th unit time slot in the i-th consumer, δi,k represents the quantity
of maximum charging of the ESS in the k-th unit time slot by the i-th consumer, and si,k
represents the quantity of energy selling to energy broker in the k-th unit time slot by the
i-th consumer. We can take the different utility functions by choosing a disparate value of
δi,k. To be specific, the utility function U(xi,k, δi,k, si,k) represents the level of satisfaction for
each consumer with the quantity of charging of ESS δi,k, energy xi,k consumed, and energy
sold to the energy broker in the k-th time slot by the i-th consumer. We assume that the
ESS is used for reducing the demand request to the energy broker and that the quantity
of energy consumed by the consumer does not exceed the capacity of the ESS. Therefore,
we assume that the i-th consumer will have the highest satisfaction when its consumption
reaches the ESS capacity. Furthermore, even if it consumes more than that, the satisfaction
remains constant as there is no energy stored in the ESS. Here, we apply a utility function
with a quadratic function [26,27], defined as

U(xi,k, δi,k, si,k) =

{
wixi,k − wi

2δi,k
x2

i,k − si,k, if 0 ≤ xi,k ≤ δi,k,
wiδi,k

2 − si,k, if xi,k ≥ δi,k,
(9)

where xi,k indicates the quantity of energy consumed by k-th unit time slot in the i-th
consumer, wi (i.e., demand weight factor) is the i-th given consumer’s preference, δi,k is the
quantity of maximum charging of ESS in the k-th unit time slot by the i-th consumer, and
si,k is the quantity of energy sold to the energy broker in the k-th unit time slot by the i-th
consumer.

2.1.2. Cost Function of ESS Operation

The ESS operation cost depends on how much and how speedily it charges and
discharges energy. Consequently, it is assumed that the ESS operational cost function
CESS presents a convex function of ei,k [28]. The ESS operational cost function with the
parameters ξ (ξ > 0) and κ (κ ≥ 0) is

CESS(ei,k) = ξe2
i,k + κ, (10)
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di,k =
k

∑
l=1

ei,l , 0 ≤ di,k ≤ Di, (11)

where ei,k is the quantity of energy charging and discharging by the k-th unit time slot by
the i-th consumer, ξ is the slope coefficient parameter (e.g., slope of a battery type) and κ is
the initial energy level of the battery, di,k is the quantity of energy stored in the k-th unit
time slot by the i-th consumer, and Di is ESS capacity of the i-th consumer.

Lemma 1. The proposed CESS(ei,k) has a convex function and a unique solution for the quadratic
ESS operational cost model.

Proof. From Equation (10), we can rewrite

CESS(ei,k) = ξe2
i,k + κ,

where ei,k > 0, ξ > 0 and κ ≥ 0. For CESS(ei,k), the ESS operational cost function stems
from ∂

∂ei,k
CESS(ei,k) > 0, ∂2

∂2ei,k
CESS(ei,k) > 0. Therefore, the proposed ESS operational cost

function CESS(ei,k) is a convex function and a unique solution for ei,k.

2.1.3. Cost Function of RES Energy

The selling cost of the energy from a RES generator is described as a function CRES(gi,k)
associated with the quantity of energy sold. In particular, this cost is determined based on
two factors as we can notice from (12). The first and second terms in (12) are the operation
cost of an ESS and the maintenance and repayment installation cost of the RES generator
during its continuous cycle of life, respectively.

Therefore, the cost function of the RES energy is formulated as follows:

CRES(gi,k) = ζg2
i,k + ηgi,k, (12)

0 ≤ gi,k ≤
k−1

∑
l=1

pi,l − gi,l , (13)

where gi,k is the quantity of the RES energy sold to the energy broker by the k-th unit time
slot by the i-th consumer, ζ is a slope coefficient parameter (e.g., slope of battery type)
(ζ > 0), η is average cost per unit of the RES energy and pi,l is the RES energy output for
the i-th consumer.

2.2. Energy Provider Model

We indicate the energy generated from the energy provider within the k-th unit time
slot as Gk. The energy provider furnishes a lower bounded energy Gk,min to fulfill the
overall smallest energy demands of all consumers in the k-th unit time slot. In addition,
the energy provider also guarantees an upper bounded energy Gk,max to include the largest
demands of all consumers to avoid system blackout due to energy deficiency. Moreover,
the energy provider determines how much energy it needs to generate and how much RES
energy it needs to repurchase. We describe Rk as the quantity of RES energy that the energy
provider purchases from consumers in the k-th unit time slot.

2.2.1. RES Energy Trading Profit Function

We present how the energy provider can turn carbon footprint reductions into sub-
stantial profits through RECs trading. The Kyoto Protocol grant offsetting is a way for
government and private enterprises to obtain carbon credits that they could trade in the
marketplace [29]. Carbon emissions can also be addressed through RES systems, the shape
of RECs or the RES energy purchased by utilities, and carbon offsets by GHG reporting
programs. Therefore, a profit function for RECs trading can be summarized as
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F(Mk) = P×Mk, (14)

where F(Mk) denotes the profit function in the k-th unit time slot, P indicates the price
value per unit carbon emissions (P > 0), and Mk shows the quantity of carbon footprint
in the k-th unit time slot. The relationship of P and Mk based on financial market-based
trading theory [30] can be expressed as

P = −λMk + µ. (15)

Equation (15) indicates the market price of energy falls when supply increases. This
can be again stated as follows:

F(Mk) = −λτ2R2
k + µτRk, (16)

where Mk is the quantity of carbon emission (Mk > 0), Rk is Rk unit RES energy (Rk > 0) in
the k-th unit time slot, λ, µ, and τ are slope coefficient parameters (λ, µ, τ > 0), respectively.

The relationship between carbon emissions and RES energy is represented as Mk = τRk.
This shows we are able to lessen τRk unit carbon emission through purchasing Rk unit
REC. For example, energy utilities in the Republic of Korea emit 0.517 kg of carbon in
producing 1 kWh of energy [31]. The energy provider lessens their comprehensive carbon
emissions by 0.517 kg by purchasing 1 kWh of energy from RESs. Therefore, the profit
function relevant to the quantity of RES energy can be presented as

F(Rk) = −λR2
k + µRk. (17)

2.2.2. Generation Cost Function

We describe CG(Gk) as the cost for the energy provider to generate Gk energy. The
cost function is modeled as [27,28,32]

CG(Gk) = αG2
k + βGk + γ, (18)

where Gk is the energy generated by the energy provider in the k-th time slot. α, β, and γ is
quadratic/linear/no load coefficient parameter (α > 0, β ≥ 0, γ ≥ 0), respectively.

2.3. Demand-Based Optimization Problem Formulation

In this subsection, we formulate the demand-based optimization problem [33]. To
find a solution to the problem efficiently in a convex dual manner, the primal problem
is taken apart into a consumer subproblem and an energy provider subproblem. After
that, we propose two dual mechanisms for each part. In the viewpoint of consumers’
demand, we can express a unit time-slot-dependent demand-based trading optimized
formulation, which is a convex problem that maximizes the total utility. That is to say,
the total utility means that the total profit of all consumers increases as the profit of the
energy provider increases. Therefore, we can state the following optimization problem
under several constraints:

maximizeH

N

∑
i

K

∑
k

(
ωU(xi,k, δi,k, si,k)− ψCESS(ei,k)− CRES(gi,k)

)
+

K

∑
k

(
F(Rk)− χCG(Gk)

)
,

(19)

subject to
N

∑
i
(xi,k + ei,k − gi,k) ≤ Gk, ∀k ∈ K, (20)

N

∑
i

gi,k = Rk, ∀k ∈ K, (21)
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where H = {xi,k, δi,k, si,k, ei,k, gi,k, Rk, Gk | i ∈ N, k ∈ K}, ω is a weight factor for profit per
energy consumption, ψ is a weight factor for the ESS price ratio, and χ is a weight factor
for the ESS capacity ratio.

The inequality constraint in (20) shows that the net demand of all consumers cannot go
over the energy supply limit from the energy provider in each unit time slot. The equality
constraint in (21) presents that the total selling quantity of RES energy for all consumers
should be equal to the purchasing quantity of the energy providers in every unit time slot.

In addition, firstly, all elements of the objective function in (19) represent concave prop-
erties or convex properties. Secondly, inequality and equality constraints in (20) and (21)
denote linear functions. Thirdly, the feasible set represents a convex set. Finally, the ob-
jective function in (19) shows the concave function. Thus, the proposed problem can be
resolved centrally by convex programming manners as a convex optimization problem.
Furthermore, to ensure consumer privacy, we will solve the demand-based trading problem
in a convex dual decomposition scheme [15,33–35].

Dual Decomposition to Primal and Subproblem

To effectively solve the problem in a dual decomposition scheme, the primal problem
is transformed to a dual problem through a Lagrange function. Finally, the Lagrange
dual function for dual decomposition is proposed. Therefore, we require to modify the
inequality and equality constraints in (20) and (21), respectively, so as to differentiate
between the consumer and the energy provider by using Lagrange multipliers. Thus, by
applying this technique, we can easily solve the problem in (19).

Here, firstly, we require to reconfigure the parameters xi,k, ei,k, gi,k, and Gk in inequality
constraint (20) and parameters gi,k and Rk in equality constraint (21). For the decomposition
of the primal problem of (19), we can describe the Lagrangian as [15,33–35],

L(H, ν, o) =
N

∑
i

K

∑
k

(
ωU(xi,k, δi,k, si,k)− ψCESS(ei,k)− CRES(gi,k)

)
+

K

∑
k

(
F(Rk)− χCG(Gk)

)
−

K

∑
k

νk

( N

∑
i
(xi,k + ei,k − gi,k)− Gk

)
+

K

∑
k

ok

( N

∑
i

gi,k − Rk

)
,

(22)

where ν and o are Lagrange multipliers, which are defined as {νk | k ∈ K} and {ok| k ∈ K},
respectively.

Moreover, the Lagrange dual function is expressed in (23).

g(ν, o) = maximizeHL(H, ν, o), (23)

where the constraints (20) and (21) are mitigated by Lagrangian (22), and we can revise (22) as

L(H, ν, o) =
N

∑
i

K

∑
k

(
ωU(xi,k, δi,k, si,k)− ψCESS(ei,k)− CRES(gi,k)− νk(xi,k + ei,k − gi,k) + okgi,k

)
+

K

∑
k

(
F(Rk)− χCG(Gk) + νkGk − okRk

)
.

(24)

Due to the individuality of consumers, the duality function in (23) can be reformulated
as

g(ν, o) =
N

∑
i

max
K

∑
k

(
ωU(xi,k, δi,k, si,k)− ψCESS(ei,k)− CRES(gi,k)− νk(xi,k + ei,k − gi,k) + okgi,k

)
+ max

K

∑
k

(
F(Rk)− χCG(Gk) + νkGk − okRk

)
.

(25)
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For clarity, (25) can be organized as

g(ν, o) =
N

∑
i

{
max

K

∑
k

(
ωU(xi,k, δi,k, si,k)− ψCESS(ei,k)− CRES(gi,k)− νk(xi,k + ei,k − gi,k) + okgi,k

)}

+ max
K

∑
k

(
F(Rk)− χCG(Gk) + νkGk − okRk

)
.

(26)

For simplicity, (26) can be rewritten as

g(ν, o) =
N

∑
i

Πi(ν, o) + Θ(ν, o), (27)

where

Πi(ν, o) = max
K

∑
k

(
ωU(xi,k, δi,k, si,k)− ψCESS(ei,k)− CRES(gi,k)− νk(xi,k + ei,k) + (νk + ok)gi,k

)
, (28)

Θ(ν, o) =max
K

∑
k

(
F(Rk)− χCG(Gk) + νkGk − okRk

)
. (29)

At this point, a consumer subproblem (28) and an energy provider subproblem (29)
have been taken apart from the Lagrange dual function. Moreover, by setting buying price
νk and selling price (νk + ok) in the aspect of the consumer’s view, subproblems (28) and
(29) are the same as the consumer welfare function and the energy provider profit function,
respectively. Consequently, we can write the Lagrange dual problem as follows:

D(ν, o) = minν≥0,og(ν, o). (30)

Here, we convert the primal problem (19) to the dual problem (30). After that, we
pursue a solving method with respect to the dual problem. Since the primal problem
indicates convex function and the slater’s condition is retained for the primal problem,
strong duality holds. Thus, the duality gap indicates 0.

Consequently, instead of finding a solution to a primal problem, we can find a solution
to a dual problem.

2.4. Gradient Iteration Method for Demand-Based Trading

In this subsection, we design our demand-based trading mechanism with a dynamic
pricing model of RESs to find a solution concerning the dual problem. Here, we can find a
solution to the problem iteratively using the gradient projection method [36] as follows:

νl+1 =

[
νl − τ

∂g(ν, o)
∂ν

]+
=

[
νl − τ

( N

∑
i

(
g∗i (ν

l , ol)− x∗i (ν
l , ol)− e∗i (ν

l , ol)
)
+ G∗(νl , ol)

)]+
,

(31)

ol+1 =

[
ol − τ

∂g(ν, o)
∂o

]
=

[
ol − τ

( N

∑
i

(
g∗i (ν

l , ol)
)
− R∗(νl , ol)

)]
.

(32)

Here, l ∈ ρ, ρ presents the set of repetition parameters, and τ indicates the step size
in the gradient method. We indicate x∗i (ν

l , ol), g∗i (ν
l , ol) and e∗i (ν

l , ol) as the optimiza-
tion tool of subproblem (28) concerning i-th consumer, and R∗(νl , ol), G∗(νl , ol) as the
optimization tool of subproblem (29) with a given νl , ol concerning energy provider.
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Thus, we can present two kinds of algorithms to seek a solving method of the dual prob-
lem that represents the consumer and energy provider aspects. Initially, Algorithm 1 decides
to acquire the values of x∗i (ν

l , ol), g∗i (ν
l , ol) and e∗i (ν

l , ol) by solving the subproblem in
(28) given pricing information νl and ol from the energy provider. Second, Algorithm 2
decides the values of R∗(νl , ol) and G∗(νl , ol) by solving subproblem in (29) through the
response information x∗i (ν

l , ol), g∗i (ν
l , ol) and e∗i (ν

l , ol) obtained from every consumer in
addition to the updated values of νl and ol .

Algorithm 1 Consumer’s Demand Decision Algorithm

1: procedure CONSUMER DEMAND (νl , ol)
2: while each l ∈ ρ do
3: get x∗(νl , ol), g∗(νl , ol), e∗(νl , ol) by solving subproblem (28) for the given νl , ol

4: send consumer’s demand x∗(νl , ol), g∗(νl , ol), e∗(νl , ol) to the energy provider
5: end while
6: return x∗(νl , ol), g∗(νl , ol), e∗(νl , ol)
7: end procedure

Algorithm 2 Energy Provider’s Dynamic Pricing Decision Algorithm

1: procedure PRICING INFORMATION (x∗, g∗, e∗)
2: while each l ∈ ρ do
3: adjust R∗(νl , ol), G∗(νl , ol) by solving subproblem (29)
4: update pricing data as follows

5: νl+1 =

[
νl − τ

(
∑N

i
(

g∗i (ν
l , ol)− x∗i (ν

l , ol)− e∗i (ν
l , ol)

)
+ G∗(νl , ol)

)]+
6: ol+1 =

[
ol − τ

(
∑N

i
(

g∗i (ν
l , ol)

)
− R∗(νl , ol)

)]
7: dispatch updated pricing data to every consumer
8: end while
9: return νl+1, ol+1

10: end procedure

2.5. Overall Demand-Based Trading Mechanism

In short, the overall demand-based trading mechanism with RESs works as follows:
from the first hour of the day, the energy provider firstly establishes a selling price ν0 and a
repurchasing price (ν0 + o0), which are announced to the consumers through the energy
broker. After receiving the information, every consumer makes an attempt to maximize
their own profit with relevant price data and sends a corresponding response to the energy
provider. After reflecting the response information of consumers’, the energy provider
adjusts new prices to maximize profits, and then dispatches the updated new dynamic
pricing data to all the consumers. Therefore, the dynamic pricing strategy procedure makes
up an iterative linkage structure between consumers and the energy provider. If this linked
structure is convergent at the starting point of a given day, the selling price ν and the
repurchasing price (ν + o) are secured.

Hence, if the energy provider configures the selling price as ν and the repurchasing
price as (ν + o), the consumers maximize their profits. Therefore, dynamic pricing and
demand decision sequence flows in Algorithms 1 and 2 present interactive interactions
between the energy provider and consumers, as depicted in Figure 2.
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,
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Figure 2. Interactions between the energy provider and consumers.

3. Performance Evaluation and Discussion

We perform intensive simulations to indicate that the proposed method is able to
accomplish demand-based energy trading for the grid and total utility for the consumers.

3.1. Simulation Assumption

The proposed simulated demand-based trading system environment comprises an
energy provider and 100 residential consumers, and each of them is equipped with a PV
and an ESS. We suppose that all the consumers install and operate a 5 kW PV system and a
6 kW ESS at their residential areas. The average generating cost of a 5 kW PV system is
around 79.93 Korea won (KRW) per kWh (USD 0.0687 per kWh), and the battery capacity
of an ESS is 6 kWh for residential areas. Although the our mathematical formulation
can be extended by considering the residential areas with different ESS capacities, for the
sake of simplicity, we suppose that the ESSs deployed in residential areas have the same
capacity in this performance evaluation. At this point, it is worth noting that in a real
deployment scenario, the residential users deploy lithium-ion-based accumulator batteries
in order to attain desired capacity. According to [37], the price of such batteries would be
1500 USD/kWh.

Figure 3 demonstrates the electricity output performance on a clear sunny day of a PV
that is installed in an electronics and telecommunications research institute testbed [38,39],
Republic of Korea. From this figure, we notice that the PV provides at least 1 kWh of output
power of around 33% of a day.

We assume that every consumer has different minimal and maximal bound of energy
demand requirement. The decision variables we consider here have real values. Each
consumer’s preference w is arbitrarily decided within a range from 0.5 to 6.5. Additionally,
in our performance evaluation, we use real market data from independent electricity
system operator market report [40] in order to present the consumers’ energy demand
pattern on a given day, as depicted in Figure 4 as the input of 100 residential consumers’
demand preference. Demand preference means that consumers with higher preference are
likely to use more energy.

3.2. Demand-Side-Based Resource Operation Performance Comparison

We measure the total energy demand of consumers under three different cases, with
different resource configurations on the consumer side: (i) the consumers do not have
both PV and ESS, (ii) the consumers have only ESS, and (iii) the consumers have both PV
and ESS.
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Figure 3. Electricity output curve according to PV power generation.
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Figure 4. Demand preferences of consumers.

As depicted in Figure 5, the third case relatively reduces more peak-time energy
demand than other cases because consumers are able to resell RES energy to the energy
broker when they are equipped with both ESS and PV. The results in Figure 6 indicate that
the third case shows no sharp fluctuation in demand, resulting in the smallest variance in
consumer demand. Therefore, in this case, the consumers’ demand is adequately satisfied,
and they will have an uninterrupted power supply due to having their own PV and
ESS. Figure 7 presents that the third case has the smallest peak-to-average ratio as well.
Additionally, we notice from this figure that, in this case, the consumers’ demand during
peak-times does not fluctuate abruptly. This indicates that a power outage is less likely to
occur in this case. Therefore, we conclude that when consumers are equipped with both
PV and ESS, they can have more stable energy supply compared to the other two cases.
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Figure 5. Comparison of total consumer demand.
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Figure 6. Consumer demand variance.
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Figure 7. Consumer peak to average ratio.

3.3. Analysis of Various Demand-Based Trading Strategies

According to our proposed DSDB scheme, a consumer has a dynamic selling and
buying price of energy, which is decided by the energy broker. In this subsection, we
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want to evaluate this proposed scheme with three other conventional schemes, which are
stated below:

(I) Fixed Selling through Fixed Buying (FSFB) scheme: According to this scheme, the
consumers are charged with a fixed selling price and provided with a fixed buying
price [9], which is the most common scheme in conventional smart grids. In this
strategy, consumers are provided with energy based on personal preferences without
taking the price into account. Therefore, there is no incentive for consumers to manage
the timing of reselling RES energy to the energy broker deliberately.

(II) Fixed Selling through Dynamic Buying (FSDB) scheme: This strategy charges con-
sumers a fixed selling price and provides consumers with a dynamic buying price for
RES energy.

(III) Dynamic Selling through Fixed Buying (DSFB) scheme: This strategy allows the
consumers a dynamic selling price and provides them with a fixed buying price for
RES energy [28]. In this strategy, consumers do not store RES energy for later selling
but prefer to sell the residual energy instantly at a dynamic price.

Next, we evaluate DSDB (proposed scheme), DSFB, FSDB and FSFB under the case
where the consumers are equipped with both PV and ESS. Furthermore, we analyze those
four strategies of pricing based on the proposed total utility.

In this performance evaluation, we consider that the energy broker is equipped with
an ESS. When the energy provider produces more energy than the consumers’ demand,
the residual energy will be discarded inefficiently. Currently, an ESS is expensive to install,
but the cost of its installation will gradually decline with technological advancements in
the foreseeable future. Bearing this in mind, we consider that the energy broker will be
equipped with a low-cost ESS in the coming days. This will allow the energy broker to
store the residual energy and sell it to the consumers when necessary. Considering that
the energy brokers would have low-cost ESS for storing energy in the future, we want to
evaluate those four strategies.

First of all, for evaluating those four strategies, we consider the current installation
cost of an ESS. The installation cost of an ESS 1 MWh is about KRW 540 million in the
Republic of Korea (USD 464,117) [41]. Figure 8 demonstrates the total utility performance
for DSDB, FSFB, DSFB, and FSDB. The total utility is quantified by summing up the value
of the overall profit during each unit time slot in 24 h. The summary of the results, which
is stated in Table 2, indicates that DSDB outperforms the other three strategies (see the
first row).

In view of this case when ESS cost would be reduced in the future, let us consider that
the installation cost of an ESS 1 MWh is about KRW 5 million in the Republic of Korea (USD
4297). With the drop of an ESS price, we surmise that the number of energy brokers with
ESS will increase significantly in the future. Considering such a case, we present the total
utility of those four strategies in Figure 9. In this case, the total utility is measured taking into
account the installation cost of an ESS. The summary of the result is presented in Table 2 (see
the second row). We can notice from this table that the highest profit (229.1 cents) is achieved
when DSDB is applied, while the lowest profit (200.1 cents) can be made when FSFB is used.
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Figure 8. Total utility in the case in which the energy broker has high-cost ESS.

In a nutshell, in both cases (i.e., an energy broker with low-cost and high-cost ESS),
our proposed DSDB provides the highest total utility among all the strategies. However,
looking at this table, one can realize that when an ESS price is low, DSDB leads to ensuring
3.52% more profit compared to the case when the price is high.
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Figure 9. Total utility in the case in which the energy broker has low-cost ESS.

Table 2. Total utility comparison under present and future ESS deployment cost.

DSDB FSFB DSFB FSDB

Total Utility (cent) for High ESS’s Cost 221.3 192.6 194.0 218.9
Total Utility (cent) for Low ESS’s Cost 229.1 200.1 201.1 223.3

4. Conclusions

In this paper, we have proposed an optimal demand and dynamic pricing mechanism
in order to maximize the profit of consumers by increasing the profit of an energy provider
in an energy trading ecosystem where clean energy generation is encouraged through
RECs trading. We formulated convex optimization problems using dual decomposition
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in order to decide the optimal demand and dynamic pricing. Considering the present
and future deployment cost of ESS in an energy broker, we have rigorously studied the
proposed DSDB scheme and observed that it noticeably increases the profit of both the
consumer and energy provider no matter how the price of ESSs changes. In the proposed
mechanism, regardless of the cost of ESS, the total utility of DSDB is approximately 15%
higher than that of the existing FSFB. As a result, we found that the proposed mechanism
in terms of total utility is excellent when adjusting demand with dynamic prices. The
limitation of this proposed study is that when the number of agents increases, it becomes
more complicated to calculate as a centralized case, and there is also a disadvantage that
the decision of the target to be traded will be delayed in real-time. In addition, distributed
cases have the disadvantage of having to pay for the use of communication overheads to
solve problems by exchanging local information with other SEAs, so structural studies on
overcoming these limitations are also necessary.

In the future, the spread of DER is expected to lead to the basic installation and use of
PV and ESS for each household, and the proposed mechanism will help consumers benefit
from an economical reduction in energy supply costs. Therefore, our proposed mechanism
is expected to be used as an IoT application to the large scale energy trading market where
existing energy providers and consumers participate more actively.
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