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ABSTRACT This paper proposes a cooperative multi-agent online reinforcement learning-based
(COMORL) bias offset (BO) control scheme for cell range expansion (CRE) in dense heterogeneous
networks (HetNets). The proposed COMORL scheme controls BOs for CRE to maximize the number of
user equipments (UEs) that satisfy their quality of service (QoS) requirements, especially in terms of delay
and data rates. For this purpose, we developed a QoS satisfaction indicator that measures a violation of delay
requirements by considering both QoS requirements and signal-to-interference-plus-noise ratio (SINR).
In addition, we formulated a Markov decision process (MDP) model that is solved with a cooperative
multi-agent online reinforcement learning algorithm. The proposed COMORL schememaximizes the global
utility for load-coupled base stations. Our simulation results verify the proposed COMORL scheme’s
effectiveness in terms of throughput, delay satisfaction ratio, and fairness. Specifically, we verify that the
proposed COMORL scheme achieves a maximum of approximately 27% and 30% improvement of the delay
satisfaction ratio, which is how many UEs satisfy their delay requirement among all of the UEs in a serving
BS under medium and full traffic loads, respectively, in a dynamic scenario in comparison to the max-SINR
scheme.

INDEX TERMS Hetnets, cell range expansion, load balancing, QoS, cooperative multi-agent reinforcement
learning.

I. INTRODUCTION
HetNets are one of the key enabling techniques for
fifth-generation (5G) mobile networks. The employment of
small cells is an inevitable trend because increasing the node
deployment density is the only feasible way to improve spec-
tral efficiency. In HetNets, however, the user equipment (UE)
tends to connect to a macro base station (MBS) even though
UEs are closer to a small base station (SBS) because the
transmission power of an MBS is much larger than that of an
SBS. The difference in the transmission power level between
MBSs and SBSs causes low utilization of small cells.

Hence, enhanced inter-cell interference coordination
(eICIC) has been standardized by the 3rd Generation
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Partnership Project (3GPP) release 10 to offload the traffic
of UEs from MBSs to SBSs [1]. In eICIC, the almost blank
subframe (ABS) technique prevents an adjacent MBS from
interfering with cell-edge UEs in SBSs by muting subframes
of the MBS while UEs in the SBSs transmit their data.
Moreover, SBSs expand their coverage by adding a bias
offset (BO) to the reference signal receive power (RSRP) of
SBSs with the cell range expansion (CRE) technique so that
more UEs near the cell edge can connect to SBSs.

In dense HetNets, CRE is a good alternative for user
association (UA) in that it is a simple and effective tech-
nique for load balancing. Also, CRE can achieve near-optimal
load-aware performance [2]. Load balancing in HetNets is
closely related to UA, which determines which BS serves
a particular UE. The problem of UA naturally falls into the
scope of integer programming, of which the computational
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complexity is known as NP-complete because UA is the prob-
lem of mapping between BSs and UEs [3]. Most studies on
UA have formulated the problem with stochastic geometry,
game theory, and combinatorial optimization as surveyed in
[4], and they can achieve optimal load balancing. However,
the computational complexity becomes much higher as the
number of network nodes increases in dense HetNets. There-
fore, we focus on CRE, which is a more pragmatic approach
than the previous UA schemes because of its operational
simplicity for load balancing in dense HetNets.

To exploit small cells efficiently, it is essential to determine
the appropriate BO of SBSs for offloading the traffic from
MBSs to SBSs. Also, care is needed when choosing BOs
in dense HetNets. The coverage adjustment of SBSs in the
middle of dense HetNets has more impact on adjacent SBSs
than in conventional HetNets because the average distance
between SBSs decreases as the networks become denser. In
other words, they are in load-coupled relations. For example,
SBS(1) expands its coverage with a BO to offload UE(1)
traffic from an MBS, as in Fig. 1. Meanwhile, the coverage
expansion of SBS(1) also affects UE(2), which has a prior
association with SBS(2). Consequently, SBS(2) has to adjust
its BO to maintain its cell traffic load. SBSs have to choose
their BOs by considering the traffic offload from not only
an MBS but also neighboring SBSs. Therefore, it is neces-
sary to consider cooperation between SBSs to configure the
optimal BOs. SBSs must interact with their neighbors when
deciding how much to expand their coverage with BO. How-
ever, early-stage studies on the optimal BO for CRE did not
consider network densification sufficiently [5]–[9]. In this
regard, we propose a BO control scheme based on cooperative
multi-agent reinforcement learning (RL).

Determining the optimal BOs of SBSs with an
RL-based approach enables self-organizing features. The
self-organizing network (SON), which monitors changes
in the environment and reconfigures network parameters,
is essential as the number of network elements increases in
dense HetNets, which are hard to configure manually. RL is
well suited for enabling SONs because it adapts to changing
environments by interacting and learning. It has been studied
for many algorithms in various areas, as surveyed in [10].
Although RL helps to enable SONs, RL’s feature based on a
trial and error scheme may harm the network performance.
To minimize performance loss when applying RL-based
algorithms to our proposed scheme, we introduce a handover
strategy to reduce unnecessarily frequent handovers.

In [7], UE determines the BOs for SBSs in a distributed
manner using RL to minimize outages. It is still valid in
dense HetNet because UEs only have to consider nearby
SBSs because learning is done from the UE side. How-
ever, it lacks consideration of UE’s quality of service (QoS)
requirement because the minimization of outages was the pri-
mary consideration. Especially in the circumstances in which
the emerging services in 5G mobile networks such as virtual
reality, augmented reality, health-care, entertainment, intel-
ligent transportation, and factory automation, have various

FIGURE 1. An example of cell range expansion in dense HetNets.

QoS requirements in terms of delay and data rates [11],
a model that considers various individual QoS requirements
is needed. Therefore, we define an indicator for our proposed
scheme to measure QoS satisfaction according to individual
QoS requirements.

Besides, some studies have attempted to optimize BO
while considering other performance metrics together.
In [12], a coordinated CRE for mobility management strategy
was introduced, which considers the cell load, QoS of UEs,
and inter-cell interference with the maximum throughput
scheduling technique. However, the handovers between SBSs
in dense HetNets was not appropriately handled. In [13],
the authors proposed a BO-optimization algorithm based on
Gibbs-sampling. However, in dense HetNets, the computa-
tional complexity becomes a critical issue as the number of
SBSs increases. It is necessary to share a more substantial
volume of information on UEs and SBSs and search all
possible combinations of BOs for the SBSs to find the optimal
BOs in dense HetNets.

There have been studies based on stochastic geometry
to find the optimal BOs [14]–[16]. These approaches can
provide useful analytical insight into how to set BOs. How-
ever, they cannot cope with the network dynamics in real
networks, such as ever-changing wireless channel quality and
UE mobility. Moreover, it is difficult for them to consider the
load-coupled relations between SBSs in dense HetNets.

The main contributions of the paper are listed as follows:
• This paper proposes a cooperative multi-agent online
reinforcement learning-based (COMORL) BO control
scheme for CRE in dense HetNets to overcome the limi-
tations of existing approaches. The proposed COMORL
scheme aims to maximize the number of UEs that satisfy
their QoS requirements.

• To achieve this, firstly, a QoS satisfaction indica-
tor (QSI) is newly defined to evaluate the QoS sat-
isfaction of the UE considering the statistical delay
requirement, data rates, and SINR of the UE. Then,
a utility function is defined using the statistics of the QSI
for BSs. Also, a new handover strategy based on the QSI
is introduced to minimize the side effects of RL-based
algorithms.

• To determine the optimal BO for maximizing QoS sat-
isfaction while considering the situation of neighboring
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BSs, we newly formulate a Markov decision pro-
cess (MDP) model for our COMORL scheme and
propose a cooperative multi-agent online reinforce-
ment learning algorithm based on a message-passing
approach.

• Through extensive simulations, the proposed COMORL
scheme achieves notable performance improvement in
terms of throughput, delay satisfaction ratio, and fair-
ness. In particular, the proposed COMORL scheme
achieves a maximum of approximately 27% and 30%
improvement of the delay satisfaction ratio under
medium and full traffic loads, respectively, in a dynamic
scenario, compared to the max-SINR scheme (without
cell range expansion).

The rest of the paper is organized as follows. Section II
briefly reviews related works. Section III explains the effec-
tive capacity (EC) link-layer model used in our proposed
scheme. In Section IV, we present the COMORL scheme,
which consists of a CRE execution module and a cooperative
multi-agent Q-learning module. Section V details the perfor-
mance evaluation of the proposed COMORL scheme. Finally,
the conclusions are drawn in Section VI.

II. RELATED WORKS
A mobility load-balancing (MLB) and CRE have a similar
principle in that they adjust the cell offset for load balancing.
MLB was introduced as an example of a SON to re-distribute
the load by optimizing cell reselection/handover parame-
ters [17]. In [18], the authors proposed an adaptive MLB
algorithm in small-cell networks. They adopted an adaptive
threshold to find overloaded cells and restricted the load
released from the overloaded cells. The load is effectively
distributed by estimating the load status of currently over-
loaded cells and candidate target cells. In [19], the authors
proposed a two-layerMLB architecture in which the top layer
dynamically groups SBSs into self-organized clusters accord-
ing to their historical loads and the bottom layer balances
the intra-cluster load distribution using a deep-reinforcement
learning-based algorithm. For stability, they designed amech-
anism that works online for system control and learns policies
offline. In [20], a cluster-based load-balancing algorithm was
proposed for ultra-dense heterogeneous networks. Further
improvement in network performance was achieved in com-
parison to previous MLB schemes by constructing clusters
dynamically and performing load balancing locally. Thus
unnecessaryMLB operations across the networks are avoided
as well. However, these studies measured the cell load with
physical resource block utilization, taking into account only
the data rate requirements of UEs, and lacking consideration
of delay QoS requirements.

Ever since eICIC was standardized by 3GPP release 10,
there have been many studies to optimize BOs for CRE. We
will review themost recent and relevant studies in this section.
In [7], UE learns its BO for nearby BSs that minimizes the
number of outage UEs by using the Q-learning algorithm.

The states for Q-learning are defined as the received powers
of the pilot signals from BSs, and the actions for Q-learning
are defined as BOs. The cost for Q-learning is the number
of UEs that cannot get radio service. Thus, each UE can
learn the BOs for the received power of nearby BSs by
Q-learning. However, this approach does not consider UE’s
QoS requirement. Moreover, learning on the UE-side can be
a burden for mobile devices.

In [12], a coordinated CRE for mobility management strat-
egy was introduced. It analytically computes the joint optimal
BOs at SBSs and MBSs. A combined objective function was
designed, which considers multiple factors, such as the cell
load, QoS of UEs, and interference limitation, and utility
functions for MBSs and SBSs were formulated from the
combined objective function. Also, they introduced the maxi-
mum throughput scheduling technique. However, they did not
sufficiently consider dense HetNet environments.

In [13], the authors proposed BO adjusting algorithms
based on Gibbs-sampling. The introduced various versions of
the algorithm: centralized, distributed, and central-aided dis-
tributed. The centralized algorithm has to know all informa-
tion at the central processor, resulting in significant message
exchange overhead and computational complexity. The dis-
tributed algorithm was proposed to deal with the complexity
problem. To further reduce both the message exchange over-
head and the time complexity, they proposed the central-aided
distributed algorithm with a graph-coloring-based clustering
method. However, in Gibbs sampling, it is still a burden to
search all possible combinations of BOs for the SBSs to find
the optimal BOs in dense HetNets.

In [21], a particle swarm optimization (PSO) algorithmwas
utilized to find optimal BOs for all SBSs. The authors formu-
lated a user association problem to maximize the number of
UEs with fulfilled downlink requirements and the number of
BSs associated with users. At first, the particles are randomly
scattered in the search space, and then they move according
to PSO update equations until the end condition. With the
proposed PSO algorithm, it can expect to balance the network
load without the resolution of the combinatorial optimization
problem.

In recent years, stochastic geometry has attracted atten-
tion for the analysis of the optimal BO for CRE. In [14],
the authors jointly optimized the BO and the density of
SBSs to maximize energy efficiency (EE). They analyti-
cally derived the closed-form expression of the network
EE as a function of the density of SBSs and BO based
on stochastic geometry theory. Also, the joint optimization
algorithm was introduced for joint optimization of the den-
sity of SBSs and BO. In [15], a CRE-based association
for massive multiple-input-multiple-output (MIMO) HetNets
was proposed. The key feature is that they used the user’s
long-term perceived rate instead of the instantaneous rate to
capture both the multi-antenna mode and the BS load. Also,
the proposed closed-form bias factors can approximate the
expected long-term rate instead of evaluating the bias factors
by simulations. In [16], the authors optimized local delay and
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TABLE 1. Brief description of acronyms.

EE with CRE. The analysis based on stochastic geometry
can provide useful analytical insight into how to set BOs.
However, these studies cannot copewith network dynamics in
real networks, such as ever-changing wireless channel quality
and UE mobility.

III. EFFECTIVE CAPACITY MODEL
We consider a downlink (DL) of two-tier HetNets, in which
a single macrocell is overlaid with small cells. Let B =
{bi}, i = 0, 1, . . . ,B denote a set of BSs in which b0 is an
MBS and is overlaid with B SBSs, and let Ui denote a set
of UEs served by BS i. The UEs select the serving BS bservei
based on the RSRP prsrpi and the BO δi of BS i as

bservei = argmax
i∈B

(prsrpi + δi). (1)

Thus, the UE association and the traffic load of each BS
depend on the BO δi.
We assume Rayleigh block fading for the subchannels and

orthogonal frequency-division multiple access (OFDMA)
systems. The SINR of UE k served by the BS i can be given
by

SINRik =
pi · gik∑

h∈B,h6=i ph · ghk + n0
, (2)

where pi is the transmission power of BS i, gik is the channel
gain from BS i to UE k , and n0 is the noise power. The service
rate Rik of the UE k , which can be supported by the associated
BS i in a frame can be given as [22]

Rik =
WTf
MN

N∑
n=1

sk,n log2(1+ SINRik ), (3)

where W is the spectral bandwidth, Tf is the frame duration,
M is the number of slots, N is the number of subchannels,

and sk,n is the service indicator that denotes whether UE k is
served in subchannel n.

We use the EC model as a criterion to judge whether the
delay QoS requirement of a UE can be satisfied or not in
an associated BS. The EC model was initially introduced in
[23] as a link-layer channel model that characterizes wire-
less channels in terms of the statistical delay requirement.
It measures the maximum constant arrival rate under the
delay-bound violation probability constraint for a given chan-
nel capacity. The EC model helps translate both SINR and
delay bounds parameters into throughput.

The EC of UE k served by BS i is given by [22]

CE
ik (SINRik , θk ) = −

1
θkTf

log(E{e−θkRik }), (4)

where θk is the QoS exponent of UE k . Here, θk is expressed
by a QoS triplet (λk ,Dmaxk , εk ), which represents the traffic
attribute of UEwith a traffic arrival rate λk , a maximum delay
bound Dmaxk , and a delay violation probability εk . It can be
calculated as θk = − log εk/λkDmaxk from the approximation
of delay bound violation probability

Pr{Dk (∞) > Dmaxk } ≤ εk ≈ e−θkλDmax , (5)

where Dk (∞) is the steady-state delay experienced by the
traffic flow of UE k .

A large QoS exponent means a stringent QoS requirement,
so the arrival rate of UE that a wireless channel can support
decreases. In other words, EC decreases with increasing QoS
exponent θk and vice versa. Thus, EC is upper bounded by
the average service rate (Shannon capacity) as θ → 0, and
lower bounded by the minimum service rate 0 as θ →∞.

In the remainder of this paper, we assume that BSs have
the QoS triplets of UEs in advance through the connection
establishment process.

IV. PROPOSED BIAS CONTROL SCHEME
In this section, we propose a cooperative multi-agent online
reinforcement learning-based (COMORL) scheme for BO
control to maximize the number of UEs that satisfy their
delay QoS requirement. If an SBS adjusts its BO, it influ-
ences the number of associated UEs and other BSs in dense
HetNets. This kind of system is called a multi-agent system,
where one agent’s behavior affects the other agents’ actions.
They should interact with each other and learn the behavior
from the environment to solve the problem; this is called
multi-agent learning.

A. OVERVIEW OF THE PROPOSED SCHEME
The proposed scheme utilizes multi-agent cooperative RL.
To utilize RL, we have to model the problem using the MDP
model so that RL works with defined states, actions, and
rewards. In addition, because we consider a multi-agent sys-
tem, we need a tool by which RL can determine the optimal
BO considering neighboring BSs decisions. First, a coordina-
tion graph (CG) [24] is a useful tool to show the relation for
cooperation in a graph. The CG starts from the fact that an
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FIGURE 2. Overall process for a cycle tn of the proposed bias control scheme.

agent does not cooperate with all agents in a multi-agent sys-
tem. Instead, it only cooperates with adjacent agents (namely
sparsity). Also, this fact can make a large problem be divided
into small problems. One of these approaches using the CG
is sparse cooperative Q-learning [25], which decomposes the
problem into smaller ones. We adopt edge-based decomposi-
tion for the proposed scheme.

Meanwhile, the BSs (agents) operateQTableS for their own
and QTableC for cooperation. They determine the optimal
BO with Q-values in QTables while considering the BOs
of adjacent BSs. Thus, BSs determine their best BO with
neighbors by the message-passing algorithm. The messages
include the best outcome for neighbors’ BOs. After the mes-
sage exchanges converge or a timer expires, BSs have the
optimal BO. If BSs apply the optimal BO, handover can
be carried out. However, because the BOs keep changing
during the learning process, unnecessary handovers may be
triggered, which results in performance degradation. There-
fore, we introduce our handover strategy, which limits the
handover of UEs satisfying their QoS requirements.

The proposed COMORL scheme consists of a CRE execu-
tion (CE) module and a cooperative multi-agent Q-learning
(CMQ) module. The CE module applies the optimal BOs
and monitors the QSI of UEs in the cell. Also, the CE
module passes states and rewards for the applied BO to
the CMQ module. Meanwhile, the CMQ module conducts
Q-learning-related tasks. It determines the optimal BO and
passes it to the CEmodule. In addition, it manages the Q-table
and infers the optimal BO through cooperative Q-learning
based on message passing between adjacent BSs. Each BS
maintains the QTableS for itself and the QTableC for coor-
dination of its neighbor BSs. The QTableS includes states,
actions, and Q-values for its own, and the QTableC has
the joint states, actions, and Q-values of its neighbors. The
proposed scheme periodically iterates to find the optimal BO
δ∗tn and applies it. The overall operation process for adjusting
the BOs of BSs is illustrated in Fig. 2, and the following
subsection presents details of each module. Note that we
use RL and Q-learning interchangeably because Q-learning

is a representative model-free reinforcement learning
algorithm.

B. CRE EXECUTION MODULE
The CE module describes the status of the BS with the QSI
of each serving UE, which is defined as follows.
Definition: Consider that BS i serves UE k and measures a

measured capacity (MC) CM
ik,j and the EC CE

ik,j(·) of UE k at
j-th frame during m frames. Then, the QSI is defined as

fik =
1
m

m∑
j=1

CM
ik,j

CE
ik,j(SINRik,j, θik )

, (6)

where SINRik,j is the SINR of UE K at the j-th frame of BS
k , and θik is the QoS exponent of UE k at BS i. MC is the
actual average service rate of UE k during a measured period
measured by the serving BS, and EC means the minimum
required service rate to guarantee the statistical delay QoS
requirement of UE k . Thus, the QSI indicates whether the
UE’s delay QoS requirement is guaranteed or not at the serv-
ing BS. Also, the proposition related to the QSI is presented
as follows.
Proposition: If BS i has provided enough capacity for UE

k to satisfy its delay QoS requirement during m frames, then
fik ≥ 1; if not, fik < 1.
In terms of the queuing theory, if the service rate is higher

than the minimum service rate for guaranteeing the delay
requirement, it is clear that the queuing delay is less than the
delay requirement.

The QSI can support various emerging services with var-
ious delay and data rate requirements such as virtual reality,
health care, factory automation, and smart grid because the
QoS exponent of EC is determined by the QoS triplet. More-
over, if we are only concerned about delay, it would be better
to directly monitor the packet queuing delay. However, using
the QSI, we can estimate the guarantee of delay requirement
by considering both the SINR and the degree of resource
competition according to the density of UE, so it is possible
to understand the offloading effect according to a BO.
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The CE module works periodically. It monitors MC and
EC during a cycle after the optimal BO is applied and the
handover is done. We suppose that each BS has the statistics
of the QSI according to the BO δi for the set Ui of UEs at BS
i as

µi(δi) =
1
|Ui|

∑
k∈Ui

fik (δi), (7)

σ 2
i (δi) =

1
|Ui|

∑
k∈Ui

{fik (δi)− µi(δi)}2, (8)

where µi(δi) is the mean, and σ 2
i (δi) is the variance of QSI

for BO δi of BS i, and |Ui| is the cardinality of the set Ui.
These statistics consist of the state of BSs for the MDPmodel
presented in the following subsection. In addition, we define
the utility of BS i with the statistics of the QSI as described
below.
Definition: Consider that the BS i applies the BO δi, and

µi(δi) and σ 2
i (δi), the statistics of the QSI forUi is given. Then

the utility function of BS i is defined as

ψi(δi) = µi(δi)−
ρ

2
σ 2
i (δi) for 0 ≤ i ≤ B, (9)

where 0 ≤ δi ≤ δmax, and ρ > 0 is the risk aversion
parameter of the conventional mean-variance utility function,
which is one of the tenets in rational decision making under
risk [26]. Here, ρ determines the sensitivity of the QSI’s
variance to the utility. As ρ increases, the rate of decrease
in utility by variance increases, and vice versa.

Note that ψi(δi) is the function of the BO δi because the
UEs’ association and the statistics of BS i change as δi
changes.

To evaluate the global utility and the contribution of each
BS to it, the global utility is defined in an additive manner as
follows.
Definition: Consider that the vector of BOs for all BSs

denoted by 1 = (δ0, δ1, . . . , δB) is given, and each BS
applies its BO δi. The global utility of the entire system is
defined as

9(1) =
∑
i∈B

ψi(δi). (10)

Theorem (Existence of1∗): There is an optimal BO vector
1∗ = (δ∗0 , δ

∗

1 , . . . , δ
∗
B) that maximizes the global utility (10)

of the system,

1∗ = argmax
1

9(1). (11)

Proof: Actually, the utility function (9) can transform to
the type of ψi(xi, yi) = xi −

ρ
2 y

2
i . Then, the Hessian matrix

of the function is given by Hψi (xi, yi) =
(
0 0
0 −ρ

)
. Because

the first principle minors are 0 and −ρ, which are ≤ 0,
and the second principle minor is 0, the function ψi(xi, yi)
is concave on R2. Furthermore, because the sum of concave
functions is itself concave, the global utility function9(1) is
also concave. Hence, there exist a maximum value of 9(1)
and the arguments that maximize the function. �

If the CMQ module determines the optimal BO vector,
the CE module applies the BO for each SBS and executes
the handover process. However, the CE module may produce
unnecessarily frequent handovers, which result in the degra-
dation of throughput and delay performance when the BO is
applied in every iteration of learning. Therefore, we adopt
a handover strategy to minimize the side effects. The CE
module decides whether to invoke handover or not to prevent
frequent handovers during operation. If there is a BS with
better signal strength than the current serving BS for a UE by
(1), the CE module executes handover only when the current
serving BS cannot guarantee the delay QoS requirement of a
UE, fik < 1 from (6). Limiting handover based on the delay
satisfaction of UEs can reduce performance degradation that
can occur with a trial and error scheme.

C. COOPERATIVE MULTI-AGENT Q-LEARNING MODULE
To find the optimal BO vector (11), we formulate the prob-
lem as an MDP model with the previously defined QSI and
utility function to apply RL. Then we propose a message-
passing-based cooperative multi-agent Q-learning algorithm,
which can find the optimal BO vector (11) while considering
the influence on neighboring BSs for each BS.

1) MARKOV DECISION PROCESS MODEL
We model the RL problem in the form of an MDP, a mathe-
matical framework for modeling decision making. It consists
of 4-tuple (S,A,P,R), where S is the finite set of states, A is
the finite set of actions, P is the state transition probability,
and R is the reward function.

1) State: the state of BS i is the joint vector of Iµ and Iσ

si =
(
Iµi , Iσ 2i

)
, (12)

where

Iµi =


0, if µi < 1− ωµ
1, if 1− ωµ ≤ µi ≤ 1+ ωµ
2, if µi > 1+ ωµ

,

Iσ 2i =

{
0, if σ 2

i ≤ ωσ 2

1, if σ 2
i > ωσ 2

,

and ωµ and ωσ 2 are the tuning parameters for deter-
mining the optimality of BSs. Here, Iµi indicates the
average delay satisfaction level of UEs at the BS i. Note
that Iµi = 0 means that UEs at the BS i receive poor
service on average, whereas Iµi = 2 means that UEs
at the BS i receive good service, and Iµi = 1 means
that UEs receive adequate service. The possible factors
affecting Iµi are the SINR of UEs or UEs’ density at
the BS i, which may cause resource competition. Here,
Iσ 2i represents the index of the balance, which indicates
whether the load is balanced or not in terms of the
variance of QSI. The variance of QSI indicates the level
of fairness among UEs in the cell. If all of the UEs
in the cell satisfy their QoS requirements at a similar
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FIGURE 3. Examples of (a) edge-based decomposition (b) message νij .

level, the variance of QSI approaches zero. Thus we
conceive Iσ 2i = 0 as the more balanced state. Thus,
the combination of Iµi and Iσ 2i can represent a total
of 6 states of the BS i, and the state (1, 0) is the most
well-balanced state.

2) Action: the action of BS i is defined as the n-step BOs
δi = {δ

0
i , δ

1
i , . . . , δ

n
i }. For example, if the BO of the BS

i varies from 0 dB to 16 dB, then δi = {0, 1, . . . , 16}.
Note that δ0 = {0} becauseMBS does not adjust its BO.
We use actions and BOs interchangeably in the rest of
the paper.

3) State Transition Probability: state transition probabil-
ities are difficult to model because they depend on
various factors in real environment dynamics, such as
UE mobility, channel states, and data rates. However,
RL can find a solution for the MDP without explicitly
specifying the state transition probability by a trial-
and-error approach. Therefore, we adopt the RL-based
algorithm to solve this MDP, and we explain it in detail
in the next subsection.

4) Reward: the reward of BS i, Ri(S,1) is determined
by the utility function (9) that is achieved after
all BSs apply their actions 1 in the global states
S = (s0, s1, . . . , sB).

2) MESSAGE-PASSING-BASED COOPERATIVE Q-LEARNING
ALGORITHM
Our approach is motivated by sparse cooperative Q-learning
(SparseQ) [25], which approximates the global Q-function
into a linear combination of local Q-functions. The CG takes
advantage of the sparsity that only a few agents depend
on each other in many multi-agent problems [24]. Thus,
the problems can be decomposed into simpler subproblems
with the CG. In this regard, based on the fact that the influence
of adjusting the BO of BSs is limited to adjacent BSs, the CG
can represent BSs’ interdependency where the vertices of
the CG stand for BSs, and the edge means the dependency
between adjacent BSs. Thus, with a given CG, we can decom-
pose the global Q-function into the local Q-function, and it
enables the BSs to update their actions and rewards locally
while considering the action of neighboring BSs jointly.

There are two ways to perform decomposition, namely,
agent-based and edge-based decomposition [25]. A agent-
based decomposition must consider the dependency for all

actions of connected vertices in CG. Thus, the representa-
tion of the local Q-function in agent-based decomposition
becomesmore complex as the number of neighbors increases.
In contrast, the local Q-function depends on only the actions
of two agents (vertices) over the edge in edge-based decom-
position, and it scales linearly in the number of neighbors.
Therefore, it is suitable for dense small cells that may have
many neighbors.

The CMQ module manages Q-Tables: the QTableS is used
for the local state and action, whereas the QTableC is used
for the joint state and action with neighboring BSs. For the
QTableS , the Q-function of BS i is defined and updated as

Qi(si, δi)← Qi(si, δi)

+α{Ri(S,1)+ γQi(s′i, δ
∗
i )− Qi(si, δi)}, (13)

where Ri(S,1) is the reward of BS i, α is the learning rate,
γ is the discount factor of Q-learning and Qi(s′i, δ

∗
i ) is the

Q-function for the optimal action δ∗i in the next state s′.
If a coordination graph G = (V ,E) with |V | vertices and
|E| edges that represents the cooperative relations between
BSs is given, an edge-based local Q-function can decompose
the global Q-function as

Q(S,1) =
∑

(i,j)∈E

Qij(sij, δi, δj), (14)

where the local Q-function Qij(sij, δi, δj) is defined on the
edge (i, j) ∈ E and depends on the actions (δi, δj) of BSs i
and j as in Fig. 3 (a), and sij ⊆ (si ∪ sj) is the subset of the
state of BS i and j.
To compute the local Q-function Qij, we assume that the

contribution ofQi andQj toQij is proportional to their number
of neighbors |0(i)| and |0(j)|,

Qij(sij, δi, δj) =
Qi(si, δi)
|0(i)|

+
Qj(sj, δj)
|0(j)|

. (15)

Then, the update equation of Qij can be given by

Qij(sij, δi, δj) ← Qij(sij, δi, δj)

+α

{
Ri(S,1)
|0(i)|

+
Rj(S,1)
|0(j)|

+γQij(s′ij, δ
∗
i , δ
∗
j )− Qij(sij, δi, δj)

}
, (16)

where Qij(s′ij, δ
∗
i , δ
∗
j ) is the Q-function for the optimal joint

action of δ∗i and δ∗j in the next state s′ij. After the CE module
updates the statics of QSI for the BO δ∗i and shares them with
neighboring BSs, the CMQ module updates the QTableS and
QTableC .

To find the optimal joint action of BSs, we propose a hybrid
message-passing-based algorithm based on the max-product
algorithm for finding the maximum a posteriori (MAP) [27].
The CMQ module in each BSs must decide the optimal BO
with consideration of its QTableS and QTableC as well as
neighboring BSs’ QTableS and QTableC . Thus, it finds the
optimal joint action 1∗ that maximizes (14) by repeatedly
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Algorithm 1 Find Optimal BOs Using Hybrid
Message-Passing Based Algorithm

Require: Coordination Graph G = (V ,E), QTableSi ,
QTableCi for BSs

1: Send an initial message value νij(δj) to all neighbors
2: while Timer < Timeout do
3: if Receive a message value νji(δi) then
4: for Neighbor j ∈ 0(i) in CG do
5: Compute νij(δj) · · · (17)
6: if νij(δj) 6= previously sent message value then
7: Send νij(δj)
8: end if
9: end for
10: δ′i = argmaxδi gi(δi) · · · (18)
11: end if
12: end while
13: Every SBSs send the gi(δ′i) to the MBS
14: MBS sends Q(1′) = 1

2(|B|+1)

∑B
i=0 gi(δ

′
i) to SBSs

15: if Q(1′) > Qprev(1∗) then
16: δ∗i = δ

′
i,Q

prev(1∗) = Q(1′)
17: end if

sending a message value νij(δj) to its neighbors as in Fig. 3(b).
For simplicity, we omit the states of BSs:

νij(δj)=max
δi

{
Qi(δi)+Qij(δi, δj)+

∑
h∈0(i)\j

νhi(δi)
}
− cij, (17)

where 0(i) \ j is the set of neighbors except j, and to prevent
divergence in the case of a cyclic graph, the normalization
parameter is defined as cij = 1

|0(i)|

∑
k∈0(i) νik (δk ), which is

the average value of νik . The contribution of BS i to the global
Q-function is defined by

gi(δi) = Qi(δi)+
∑
j∈0(i)

νji(δi), (18)

where 0(i) is the set of neighbors of BS i, and νji(δi) repre-
sents the sum of the local payoff that BS j receives from the
neighbors except BS i when BS i selects the action δi. After
exchanging the message values, each BS i selects the action
δi that maximizes (18).
The detailed algorithm is shown in Algorithm 1.

We assume that the coordination graph of BSs is known in
advance. The CMQmodule sets the timeout to be shorter than
the iteration cycle time of the proposed COMORL scheme.
Until a timeout occurs, it continues exchanging message
values (17) with neighboring BSs, whose relations are rep-
resented by the coordinated graphG. After an initial message
value νij(δj) is sent to neighbors on G, successive message
exchanges are invoked, and this continues until a timeout
occurs.When BSs receive amessage value νji(δi), they should
send a message value νij(δj), which is the response to the
neighbor BS’s action δj to all neighbor BSs only when the cal-
culated νij(δj) is not the same as the previously sent message
value. In addition, when a BS receives a new message value,
the BS always records the optimal action that maximizes (18)

temporally. BSs do not know the global payoff directly
because they send and receive messages locally. Therefore,
when the timer expires, BSs share their contribution to the
global payoff through MBS and select the optimal action by
checking the global payoff’s enhancement.

The hybrid message-passing-based algorithm benefits
from the hierarchical structure of HetNets in that it sends
messages to adjacent BSs directly in a distributed manner and
shares the global Q-function through MBS in a centralized
manner. Furthermore, it is scalable because it only considers
the actions received from neighboring BSs via messages, not
all possible combinations of neighboring BSs’ actions.

D. COMPLEXITY ANALYSIS
The sample complexity (or sample efficiency) is the time
required to find an approximately optimal policy or the num-
ber of samples that the RL algorithm needs to learn a target
function successfully. Generally, a strategy for managing the
tradeoff between exploration and exploitation determines the
sample complexity. The sample complexity of the proposed
COMORL scheme follows that of model-free Q-value iter-
ation (QVI) because the COMORL scheme works based on
model-free QVI. The sample complexity of model-free QVI
is known as Õ( SA

(1−γ )5η2
ln 1
ξ
), where S and A are the numbers

of states and actions of the MDP, respectively; γ is the
discount factor; and η and ξ are accuracy parameters [28].
The space complexity, that is, the amount of memory used

by the algorithm, of general model-free RL isO(SAH ), where
S,A,H are the numbers of states, actions, and steps of the
MDP [29]. The proposed COMORL scheme exploits the
joint Q-function, which requires additional memory space
proportional to the joint S and A for neighboring BSs. Thus,
its space complexity is O(S3A3HN ) per BS, where N is the
number of a BS’s neighbors.

The message overhead is another important con-
cern because the CMQ module works based on the
message-passing scheme. First, the CMQ module exchanges
its utility (9) with neighboring BSs to update the QTableC .
If the size of the message is p bytes for sharing the util-
ity value, the message overhead for updating the QTableC

becomes (k · p)|V | bytes, where k is the average degree of
a given CG G = (V ,E), and |V | is the number of vertices.
Second, if the CMQmodule sends a message value (17) to the
neighboring BSs, it induces successive message exchanges.
The total size of the induced messages is q · (|V | − 1)k bytes,
where q is the size of the message value in bytes. Generally,
the total size of induced messages is smaller than q·(|V |−1)k

bytes because the CMQ module sends a message value only
when the message is not the same as the previously sent
message.

V. SIMULATION RESULTS
A. SIMULATION SETUP
In this section, we present the evaluation of the performance
of the proposed COMORL scheme using the LTE model
in the NS3 network simulator [30] in two scenarios: static
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and dynamic. In the static scenario, it was assumed that the
source nodes generate traffic at a constant bit rate (CBR),
and UEs have no mobility. The UEs receive data at CBRs,
namely, about 137, 218, and 275 kbps under medium, heavy,
and full traffic loads, respectively. COMORL was compared
with other algorithms: max-SINR, max-SINRwith fixed-bias
(‘FB’), UE-side Q-learning (‘UEQ’) [7], and the optimal BO
vector (‘OPT’). For comparison with the OPT, we found the
optimal BO vector of (11) by an exhaustive search algorithm
before the simulation began with known parameters, such as
the positions of BSs and UEs, the SINR of UE receiving from
BSs, and the bitrates of traffic per UE. Then, we applied it
from the beginning of the simulation in the static scenario.

The dynamic scenario is more similar to the actual network
situation. UEs’ mobility follows the two-dimensional random
walk model, and UEs move around at a speed of 3km/h and
received data at a random rate, which follows an exponential
distribution with averages of 126, 200, and 252 kbps under
medium, heavy, and full traffic loads, respectively. The pack-
ets arrive at the network according to the Poisson process,
where the mean arrival rates were set to the average data
rates divided by the packet size. We compared COMORL
with max-SINR, FB, and UEQ except for OPT.We calculated
the optimal bias offsets of ‘OPT’ with the QSI, which was
measured by the actual throughput and effective capacity.
In the static scenario, the networks were stable (no mobility,
CBR traffic), and all parameters for the simulation were
prior knowledge. Thus, at the beginning of the simulation,
the optimal bias offsets for ‘OPT’ could be found with an
exhaustive search. However, in the dynamic scenario where
the networks’ condition kept changing, it was impossible to
get the optimal bias offsets.

In both scenarios, we deployed four SBSs over one MBS,
and a total of 200 UEs were distributed in the network. Also,
1/3 of UEs were uniformly distributed over the coverage
area of MBS, and 2/3 of UEs were uniformly distributed
over the coverage area of each SBS. We varied the number
of UEs among SBSs, which was randomly generated from
the normal distribution N (33, 53), to induce load imbalance
between SBSs. We assumed that all BSs had an X2-interface
between them, and the control channel was ideal, which
means there was no loss of control messages. The event A3
[31], at which the RSRP of neighbors becomes better than
that of the serving cell, triggers the X2-based handover. The
almost subframe blank (ABS) ratio was set to 50%. We sim-
ulated three different traffic load cases: medium, heavy, and
full traffic loads, which were around 50%, 70%, and 100%
of the system capacity, respectively. The bit rate of traffic per
UE was increased according to the traffic load cases because
the number of UEs was fixed for every case. The results from
multiple simulations were averaged. Table 2 lists the detailed
simulation parameters [32].

B. THROUGHPUT
Fig. 4 presents the throughput distribution of UEs for the
six schemes for the three different traffic load cases in the

TABLE 2. Simulation parameters.

FIGURE 4. Average throughput of UEs in the static scenario.

static scenario. The throughput distribution tends to spread
as the network traffic load increases. This is because net-
work resources become scarce when the network traffic
load increases while each traffic source is generating traf-
fic at the same rate. The big dots in the boxplot show the
average throughput of UEs. COMORL shows an enhance-
ment in average UE throughput in comparison to the other
algorithms by improving the 50th percentile throughput.
In particular, the cell-edge throughput performance is shown
in Fig. 5. We assumed the 10th percentile throughput as the
cell-edge throughput. Remarkably, the average throughput of
COMORL approaches that of OPT under a medium traffic
load. The cell-edge throughput under a medium traffic load
is higher than that in the other traffic load cases because
there are enough network resources even though the SINR
of UEs at the cell-edge is low. The gap between COMORL
and OPT in the cell-edge throughput widens when traffic load
becomes heavy because UE handover has more impact on
system performance under a heavier traffic load than in the
low traffic load. UEs at cell-edge perform handovers in the
process to find the optimal BO set in COMORL, whereas
there is no handover in OPT because the optimal BO vector
was calculated before the beginning of simulations.
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FIGURE 5. Cell edge UE throughput in the static scenario.

FIGURE 6. Average throughput of UEs in the dynamic scenario.

Fig. 6 presents the throughput distribution of UEs for
the five schemes in the three different traffic load cases
in the dynamic scenarios. COMORL shows an improve-
ment in terms of the average throughput as the traffic load
level increases. Under a medium traffic load, COMORL
offloads a limited number of UEs due to its handover strategy,
which restricts the handover of UEs that meets their delay
requirements because there are enough network resources
available to guarantee an individual UE’s delay requirement.
Therefore, UEQ shows a slightly better average throughput
than COMORL under a the medium traffic load because
COMORL roughly balances it. However, as the traffic load
increases, the network resources become scarce, and accord-
ingly, COMORL performs stricter load balancing to assure
UEs’ delay requirement. This results in remarkable improve-
ment in the 50th percentile throughput and the average
throughput. Also, cell edge throughput in Fig. 7 shows similar
trends with average throughput. Without BO adjustment as
max-SINR, most UEs at the cell edge attach to MBS and
suffer from low SINR and high competition for network
resources resulting in throughput degradation. The adaptive
adjustment of BO in UEQ and COMORL improves cell
edge and 50th percentile throughput by offloading UEs to
nearby BSs, which results in average throughput enhance-
ment, whereas the fixed BO in FB shows no meaningful
throughput improvement in the dynamic scenario.

FIGURE 7. Cell edge UE throughput in the dynamic scenario.

FIGURE 8. Average delay satisfaction ratio in the static scenario.

C. DELAY SATISFACTION RATIO
The delay satisfaction ratio is defined as the number of
delay-guaranteed UEs over the total number of UEs in a BS.
In this simulation, the UEs’ delay requirement was set to
150ms for a general video service [33]. Fig. 8 shows the delay
satisfaction ratio in the static scenario. UEQ showed much
lower performance than the other schemes in terms of delay
satisfaction. This is mainly attributed to the trial-and-error
scheme, which may produce ping-pong handovers. Most UEs
at the cell edge may experience this phenomenon in adjusting
the BO, and they show lower throughput and higher delay.
COMORL reduces the number of unnecessary handovers dra-
matically by limiting handovers of UEs that satisfy their delay
requirements. COMORL shows a slight improvement in the
delay satisfaction ratio compared to FB-6 or FB-10 in the
static scenario. This result is attributed to the fact that CBR
traffic has a constant inter-arrival time, which increases the
probability of network congestion. Nevertheless, COMORL
shows a remarkable throughput improvement while main-
taining an improved delay satisfaction ratio in comparison to
other algorithms.

Fig. 9 illustrates the satisfaction ratio in the dynamic
scenario. COMORL improves it about 27p.p. and 30p.p.
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FIGURE 9. Average delay satisfaction ratio in the dynamic scenario.

FIGURE 10. Jain’s fairness index in the static scenario.

compared to max-SINR under medium and full traffic loads,
respectively. FB-6 and FB-10 meet the UE’s delay require-
ments quite well under a medium traffic load because there
are available network resources, but they degrade further
when the network traffic load becomes heavy. COMORL
still maintains UEs’ delay satisfaction ratio over 65% even
when the network traffic load is full, while those of the other
algorithms drop to less than 50%.

D. FAIRNESS
Fig. 10 compares the fairness index of UEs’ throughput by
using Jain’s fairness index (JFI) [34] in the static scenario.
The high JFI of UEs means that all UEs receive at the same
data rates. In this case, network resources are used efficiently.

Uneven distribution of UEs degrades the JFI in max-SINR
because UEs in hotspot areas suffer from competition for
scarce resources, while there are extra resources in sparse
areas. Load balancing through the adjustment of BOs of SBS
in UEQ and COMORL results in better throughput fairness
by enhancing cell-edge throughput, as shown in Fig. 4 and 5.
In addition, Fig. 11 presents the average number of UEs
associated with SBSs in the static scenario, and the error bars

FIGURE 11. Average associated number of UEs at SBSs in the static
scenario.

FIGURE 12. Jain’s fairness index in the dynamic scenario.

in the figure represent the standard deviation of the number
of associated UEs to SBSs for four SBSs.

COMORL tends to offload more traffic to SBSs as the
traffic load increases, whereas max-SINR, FB, andUEQ keep
the same UE association regardless of traffic load. For load
balancing, it makes sense to offload traffic to SBSs depending
on the traffic load level, which results in better fairness.

The JFI in the dynamic scenario is shown in Fig. 12. From
the medium traffic load to the full traffic load, the JFI is
improved from 0.05 to 0.1 by COMORL compared to max-
SINR. In the dynamic scenario, the overall fairness index
appears lower than that in the static scenario because the
originally generated data rates for each UE are different.
However, we can compare the JFI with that of max-SINR.
The JFI of FB-6 and FB-10, which is lower than that of max-
SINR, shows that the uniform application of BOs without
consideration of each BS-specific situation worsen fairness.
UEQ also shows similar enhancement of the JFI under a
medium traffic load, but COMORL’s JFI performance gets
better as the traffic load increases. Besides, the average num-
ber of UEs associated with SBSs in COMORL increases,
and the standard deviation of the number of connected UEs
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FIGURE 13. Average associated number of UEs at SBS in the dynamic
scenario.

to SBS for four SBSs becomes smaller with the network
traffic load, as shown in Fig. 13. As the network’s traffic
increases, the network’s free resources decrease, so more
UEs are offloaded to SBS, and load balancing is done more
tightly to ensure the UEs’ delay requirements in COMORL.
Accordingly, COMORL further improves fairness under a
higher traffic load.

In the static scenario, we observed that the performance
of COMORL nearly approaches that of OPT. Some the per-
formance losses are inevitable, and the difference in perfor-
mance between COMORL and OPT increases as the traffic
load increases because RL works in a trial and error manner.

Nevertheless, COMORL shows outstanding performance
in terms of throughput, delay satisfaction ratio, and fairness
in comparison to the other algorithms. The simulation results
in the dynamic scenario showed that COMORL outperforms
the other algorithms in terms of throughput, delay satisfac-
tion ratio, and fairness. In particular, COMORL shows out-
standing improvement in the delay satisfaction ratio, and the
improvement becomes better as the traffic load in the network
increases.

VI. CONCLUSION
In this work, a COMORL scheme was proposed for CRE
in dense HetNets. The proposed COMORL scheme dynami-
cally adjusts the BOs of load-coupledBSs by learning cooper-
atively from neighbor BSs to maximize the delay satisfaction
ratio. To achieve this, an MDP model was developed with
a proposed QoS satisfaction indicator and utility function.
Also, a cooperative multi-agent Q-learning algorithm based
on a message-passing approach was proposed to find the BO
of BSs in the networks, which maximizes the global utility
of the networks. Through extensive simulations, we found
that the proposed COMORL scheme achieves a maximum
of approximately 27% and 30% improvement of the delay
satisfaction ratio under medium and full traffic loads, respec-
tively, in a dynamic scenario in comparison to the max-SINR
scheme (without CRE).

REFERENCES
[1] 3rd Generation Partnership Project; Technical Specification Group Radio

Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA)
and Evolved Universal Terrestrial Radio Access Network (E-UTRAN);
Overall Description; Stage 2 (Release 10), document 3GPP, (TS) 36.902,
Version 10.12.0, Dec. 2014.

[2] Q. Ye, B. Rong, Y. Chen, M. Al-Shalash, C. Caramanis, and J. G. Andrews,
‘‘User association for load balancing in heterogeneous cellular networks,’’
IEEE Trans. Wireless Commun., vol. 12, no. 6, pp. 2706–2716, Jun. 2013.

[3] H. Boostanimehr and V. K. Bhargava, ‘‘Unified and distributed QoS-driven
cell association algorithms in heterogeneous networks,’’ IEEE Trans. Wire-
less Commun., vol. 14, no. 3, pp. 1650–1662, Mar. 2015.

[4] D. Liu, L. Wang, Y. Chen, M. Elkashlan, K.-K. Wong, R. Schober,
and L. Hanzo, ‘‘User association in 5G networks: A survey and an out-
look,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 2, pp. 1018–1044,
2nd Quart., 2016.

[5] S. Mishra, A. Sengupta, and C. S. R. Murthy, ‘‘Enhancing the performance
of HetNets via linear regression estimation of range expansion bias,’’ in
Proc. 19th IEEE Int. Conf. Netw. (ICON), Dec. 2013.

[6] T. Koizumi and K. Higuchi, ‘‘Simple decentralized cell association method
for heterogeneous networks in fading channel,’’ in Proc. IEEE 78th Veh.
Technol. Conf. (VTC Fall), Sep. 2013.

[7] T. Kudo and T. Ohtsuki, ‘‘Cell range expansion using distributed Q-
learning in heterogeneous networks,’’ EURASIP J. Wireless Commun.
Netw., vol. 2013, no. 1, p. 61, Dec. 2013.

[8] K. Yamamoto and T. Ohtsuki, ‘‘Parameter optimization using local search
for CRE and eICIC in heterogeneous network,’’ in Proc. IEEE 25th Annu.
Int. Symp. Pers., Indoor, Mobile Radio Commun. (PIMRC), Sep. 2014,
pp. 1536–1540.

[9] X. Gu, X. Deng, Q. Li, L. Zhang, and W. Li, ‘‘Capacity analysis and
optimization in heterogeneous network with adaptive cell range control,’’
Int. J. Antennas Propag., vol. 2014, pp. 1–10, Apr. 2014.

[10] M. Qin, Q. Yang, N. Cheng, J. Li, W. Wu, R. R. Rao, and X. Shen,
‘‘Learning-aided multiple time-scale SON function coordination in ultra-
dense small-cell networks,’’ IEEE Trans. Wireless Commun., vol. 18, no. 4,
pp. 2080–2092, Apr. 2019.

[11] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, and H. Dai, ‘‘A survey on
low latency towards 5G: RAN, core network and caching solutions,’’ IEEE
Commun. Surveys Tuts., vol. 20, no. 4, pp. 3098–3130, May 2018.

[12] E. Rakotomanana and F. Gagnon, ‘‘Optimum biasing for cell load balanc-
ing under QoS and interference management in HetNets,’’ IEEE Access,
vol. 4, pp. 5196–5208, 2016.

[13] H. Jiang, Z. Pan, N. Liu, X. You, and T. Deng, ‘‘Gibbs-sampling-based
CRE bias optimization algorithm for ultradense networks,’’ IEEE Trans.
Veh. Technol., vol. 66, no. 2, pp. 1334–1350, Feb. 2017.

[14] Y. Sun, W. Xia, S. Zhang, Y. Wu, T. Wang, and Y. Fang, ‘‘Energy efficient
pico cell range expansion and density joint optimization for heterogeneous
networks with eICIC,’’ Sensors, vol. 18, no. 3, p. 762, Mar. 2018.

[15] G. Hattab and D. Cabric, ‘‘Rate-based cell range expansion for downlink
massive MIMO heterogeneous networks,’’ IEEE Wireless Commun. Lett.,
vol. 7, no. 3, pp. 296–299, Jun. 2018.

[16] X. Dong, F.-C. Zheng, X. Zhu, and J. Luo, ‘‘HetNets with range expan-
sion: Local delay and energy efficiency optimization,’’ IEEE Trans. Veh.
Technol., vol. 68, no. 6, pp. 6147–6150, Jun. 2019.

[17] Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Self-
Configuring and Self-Optimizing Network (SON); Use Cases and Solu-
tions, document 3GPP, (TS) 36.902, Version 9.3.1, May 2011.

[18] M. M. Hasan, S. Kwon, and J.-H. Na, ‘‘Adaptive mobility load balancing
algorithm for LTE small-cell networks,’’ IEEE Trans. Wireless Commun.,
vol. 17, no. 4, pp. 2205–2217, Apr. 2018.

[19] Y. Xu, W. Xu, Z. Wang, J. Lin, and S. Cui, ‘‘Load balancing for ultradense
networks: A deep reinforcement learning-based approach,’’ IEEE Internet
Things J., vol. 6, no. 6, pp. 9399–9412, Dec. 2019.

[20] M. M. Hasan and S. Kwon, ‘‘Cluster-based load balancing algorithm for
ultra-dense heterogeneous networks,’’ IEEEAccess, vol. 8, pp. 2153–2162,
2020.

[21] H. P. Kuribayashi, M. A. De Souza, D. De Azevedo Gomes,
K. Da Costa Silva, M. S. Da Silva, J. C.W. A. Costa, and C. R. L. Francês,
‘‘Particle swarm-based cell range expansion for heterogeneous mobile
networks,’’ IEEE Access, vol. 8, pp. 37021–37034, 2020.

[22] S.-W. Ahn, H. Wang, and D. Hong, ‘‘Throughput–delay tradeoff of pro-
portional fair scheduling in OFDMA systems,’’ IEEE Trans. Veh. Technol.,
vol. 60, no. 9, pp. 4620–4626, Nov. 2011.

92356 VOLUME 9, 2021



H. Choi et al.: Cooperative Online Learning-Based Load Balancing Scheme

[23] D. Wu and R. Negi, ‘‘Effective capacity: A wireless link model for support
of quality of service,’’ IEEE Trans. Wireless Commun., vol. 24, no. 5,
pp. 630–643, May 2003.

[24] C. Guestrin, D. Koller, and R. Parr, ‘‘Multiagent planning with factored
MDPs,’’ in Proc. NIPS, vol. 1, 2001, pp. 1523–1530.

[25] J. R. Kok andN.Vlassis, ‘‘Collaborativemultiagent reinforcement learning
by payoff propagation,’’ J. Mach. Learn. Res., vol. 7, pp. 1789–1828,
Sep. 2006.

[26] L. G. Epstein, ‘‘Decreasing risk aversion and mean-variance analysis,’’
Econometrica, vol. 53, no. 4, p. 945, Jul. 1985.

[27] M.Wainwright, T. Jaakkola, andA.Willsky, ‘‘Tree consistency and bounds
on the performance of the max-product algorithm and its generalizations,’’
Statist. Comput., vol. 14, no. 2, pp. 143–166, Apr. 2004.

[28] M. Azar, R. Munos, M. Ghavamzadaeh, and H. Kappen, ‘‘Speedy
Q-learning,’’ in Advances in Neural Information Processing Systems,
J. Shawe-Taylor, R. S. Zemel, and P. Bartlett, Eds. 2011, pp. 2411–2419.

[29] C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan, ‘‘Is Q-learning prov-
ably efficient?’’ in Proc. Adv. Neural Inf. Process. Syst., Dec. 2018,
pp. 4863–4873.

[30] NS3. The NS-3 Network Simulator. [Online]. Available: http://www.
nsnam.org

[31] Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource
Control (RRC); Protocol specification, document 3GPP, (TS) 36.331,
Version 14.2.2, Apr. 2017.

[32] Evolved Universal Terrestrial Radio Access (E-UTRA); Further Advance-
ments for E-UTRA Physical Layer Aspects, document 3GPP, (TS) 36.902,
Version 9.2.0, Mar. 2017.

[33] R. A. Cacheda, D. C. García, A. Cuevas, F. J. G. Casta no, J. H. Sánchez,
G. Koltsidas, V. Mancuso, J. I. M. Novella, S. Oh, and A. Pantò, ‘‘QoS
requirements for multimedia services,’’ in Resource Management in Satel-
lite Networks, G. Giambene, Ed. Boston, MA, USA: Springer, Jan. 2007,
pp. 67–94.

[34] R. Jain, D. Chiu, and W. Hawe, ‘‘A quantitative measure of fairness and
discrimination for resource allocation in shared computer systems,’’ 1998,
arXiv:cs/9809099. [Online]. Available: https://arxiv.org/abs/cs/9809099

HYUNGWOO CHOI (Student Member, IEEE)
received the B.S. degree from Chungnam National
University, Daejeon, South Korea, in 2005, and the
M.S. degree in information and communication
engineering from the Korea Advanced Institute
of Science and Technology (KAIST), Daejeon,
in 2007, where he is currently pursuing the Ph.D.
degree in information and communication engi-
neering. His research interests include traffic engi-
neering, resource management, the Internet of

Things, and machine learning for networking.

TAEHWA KIM (Graduate StudentMember, IEEE)
received the B.S. degree from Jeonbuk National
University, Jeonju, South Korea, in 2005, and the
M.S. degree from the Korea Advanced Institute of
Science and Technology (KAIST), Daejeon, South
Korea, in 2007, all in information and communica-
tion engineering, where she is currently pursuing
the Ph.D. degree in information and communi-
cation engineering. Her research interests include
network coding and video streaming protocols,

the Internet of Things, and machine learning for networking.

HONG-SHIK PARK (Member, IEEE) received
the B.S. degree from Seoul National University,
Seoul, South Korea, in 1977, and the M.S. and
Ph.D. degrees from the Korea Advanced Institute
of Science and Technology (KAIST), Daejeon,
South Korea, in 1986 and 1995, respectively,
all in electrical engineering. In 1977, he joined
the Electronics and Telecommunications Research
Institute (ETRI) and was involved in the develop-
ment of the TDX digital switching system family,

including TDX-1, TDX-1A, TDX-1B, TDX10, and ATM switching systems.
In 1998, he moved to Information and Communications University, Daejeon,
as a Faculty Member. From 2004 to 2012, he was the Director of the BcN
Engineering Research Center sponsored by KEIT, South Korea. He is cur-
rently a Professor with the School of Electrical and Electronics Engineering,
KAIST. His research interests include network architectures and protocols,
traffic engineering, and performance analysis of telecommunication systems.
He is a member of the Institute of Electronics Engineers of Korea (IEEK) and
the Korea Institute of Communication Science (KICS).

JUN KYUN CHOI (Senior Member, IEEE)
received the B.Sc. (Eng.) degree in electron-
ics engineering from Seoul National University,
Seoul, South Korea, in 1982, and the M.Sc. (Eng.)
and Ph.D. degrees in electronics engineering from
the Korea Advanced Institute of Science and Tech-
nology (KAIST), in 1985 and 1988, respectively.
From June 1986 to December 1997, he was with
the Electronics and Telecommunication Research
Institute (ETRI). In January 1998, he joined the

Information and Communications University (ICU), Daejeon, South Korea,
as a Professor. In 2009, he moved to the Korea Advanced Institute of Science
and Technology (KAIST) as a Professor. He is an Executive Member of
the Institute of Electronics Engineers of Korea (IEEK), an Editor Board of
Member of the Korea Information Processing Society (KIPS), and a Life
Member of the Korea Institute of Communication Science (KICS).

VOLUME 9, 2021 92357


