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Spectrum Sensing for Cognitive Radio Network
with Multiple Receive Antennas Under

Impulsive Noise Environments
Seungwon Lee, So Ryoung Park, Yun Hee Kim, and Iickho Song

Abstract: Spectrum sensing with multiple receive antennas is ad-
dressed in the cognitive radio network under impulsive noise envi-
ronments. Based on order statistics, we propose a non-linear com-
bining scheme to cope with the heavy-tail characteristics of the
probability density function of impulsive noise. Through computer
simulations, it is shown that the proposed scheme exhibits better
detection performance than the conventional schemes in impulsive
noise environments with Rayleigh fading.

Index Terms: Cognitive radio, impulsive noise, non-linear scheme,
order statistics, spectrum sensing.

I. INTRODUCTION

THE proliferation of wireless communication devices and
services is increasing at a high pace. Since the usable spec-

trum is limited, it becomes rather difficult to accommodate the
increasing number of devices requiring higher data rate with a
static frequency allocation schemes. To improve the efficiency
of spectrum utilization, cognitive radio (CR) has been proposed
as a solution [1]–[4]. The idea of the CR is to perform spectrum
sensing, identify spectrum holes that are not currently being oc-
cupied by primary users (PUs), and then dynamically utilize the
spectrum holes without causing harmful interference to PUs.

Apparently, spectrum sensing is one of the most important
components in the CR. Spectrum sensing should monitor ac-
tivation of PUs in order to vacate the spectrums occupied by
secondary users when PUs begin a transmission over their spec-
trums. In general, the signal detection techniques for spectrum
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sensing can be classified into three categories: 1) Matched filter
(coherent detection), 2) cyclostationary feature detection, and 3)
energy detection (non-coherent detection) [4]. If the CR has the
full information on the specifications (e.g., modulation schemes,
preambles, or pilot patterns) of the signal of PU, a matched fil-
ter is optimal and would result in the best sensing performance
(maximum of the signal-to-noise ratio). By exploiting the peri-
odicity of the signal of PU or its statistics such as the mean and
autocorrelation, cyclostationary feature detection differentiates
the signal energy of PU from the local noise energy [5]. The
energy detection, widely used in spectrum sensing because of
low computational and implementation complexities, is optimal
when the local noise power is available at the CR [3], [6].

In the meantime, diversity techniques are exploited to miti-
gate the effects of multipath fading and shadowing in wireless
communication. In receiver diversity, some diversity combining
techniques such as the equal gain combining and selection com-
bining have been incorporated in energy detection in additive
white Gaussian noise (AWGN) environment for spectrum sens-
ing in the CR to improve detection performance [2], [7]–[10].

The distribution of noise is one of the key factors influencing
the performance of a spectrum sensing scheme. In most of pre-
vious studies, the noise is assumed to be AWGN for spectrum
sensing in the CR. Although the Gaussian assumption is reason-
able from the central limit theorem and allows a mathematically
tractable investigation, noise cannot be modeled by the Gaussian
distribution in many practical cases [3], [11]. As a result, it is
meaningful to consider non-Gaussian noise environment in the
spectrum sensing in the CR. Examples of non-Gaussian impair-
ments include man-made impulsive noise, heavy-tailed noise,
and co-channel interference from other CRs [12]–[16]. When
the noise distribution is non-Gaussian, it is well-known that de-
tectors designed for AWGN do not perform adequately. Taking
these observations into account, spectrum sensing for cognitive
radio networks in non-Gaussian noise environment has recently
been addressed [17]–[25].

In this paper, we propose a class of spectrum sensing
schemes, called the ordering and selecting of observations
(OSO), in the CR network with multiple receive antennas.
Based on the observation that non-linear schemes can suc-
cessfully alleviate the effects of impulsive noise components
in many signal processing applications [1], [12]–[14], we ex-
ploit non-linear schemes with a generalized likelihood ratio test
(GLRT) detector. The test statistic of the OSO scheme is the
log-likelihood ratios (LLRs) obtained at the GLRT detector.
Here, the LLR is produced by using a set of selected observa-
tions of small magnitude among all observations from receive
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Fig. 1. Structure of a CR network composed of a CR with K receive antennas
and a PU with one transmit antenna.

antennas. The OSO scheme provides better detection perfor-
mance than conventional schemes in impulsive noise environ-
ments. The novelty of this paper lies in that (1) a new spectrum
sensing scheme is proposed for the CR network with receiver
diversity and (2) the performance characteristics of the OSO
scheme are compared with the conventional schemes in various
noise environments.

This paper is organized as follows. In Section II, the system
model is introduced. In Section III, the OSO scheme is described
in detail. In Section IV, the performance of the OSO scheme for
spectrum sensing is analyzed and compared with that of the con-
ventional schemes in various noise environments with Rayleigh
channel fading.

II. SYSTEM MODEL

Consider a simple CR network composed of a CR with K re-
ceive antennas and a PU with one transmit antenna as shown in
Fig. 1. We assume each antenna on the CR receives N samples,
where N is a sample size, i.e., the number of samples in an ob-
servation period. A generalization to the case of multiple PUs
should be straightforward. The low-pass discrete-time observa-
tion

xk(n) = xk,I(n) + jxk,Q(n), (1)

on the k-th receive antenna at the n-th time instant with xk,I(n)
and xk,Q(n) denoting the in-phase (I) and quadrature (Q) com-
ponents, respectively, can be expressed as

xk(n) = vk(n), (2)

when the frequency band is not being used by the PU, and as

xk(n) = hk(n)s(n) + vk(n), (3)

when the frequency band is being used by the PU. In (2)
and (3), vk(n) = vk,I(n) + jvk,Q(n) for k = 1, 2, · · ·,K
and n = 1, 2, · · ·, N are independent and identically dis-
tributed (i.i.d.) complex additive noise components with the
common joint probability density function (pdf) fVI ,VQ of
{(vk,I(n), vk,Q(n))}, s(n) = sI(n)+jsQ(n) is the transmitted
complex signal of the PU, and hk(n) = hk,I(n) + jhk,Q(n)
is the complex channel gain. Note that hk(n)s(n) is the faded

transmitted complex signal. If we assume that the fading is suf-
ficiently slow, the complex channel gains {hk(n)}Nn=1 do not
change over an observation period. Then the complex channel
gains {hk(n)}Nn=1 can be simplified as hk, the complex channel
gain on the k-th receive antenna.

When the transmission schemes of the spectrum user are un-
known to the CR and the total transmitted signal power is fixed,
the transmit diversity technique with multiple transmit anten-
nas does not provide performance improvement [26]. Thus we
assume that the PU has one transmit antenna without loss of
generality.

The spectrum sensing problem in the CR network can be
modeled as a binary hypothesis testing of the null hypothesis

H0 : The frequency band is not being used by PU (4)

against the alternative hypothesis

H1 : The frequency band is being used by PU. (5)

Under this scenario, the decision rule can be expressed as

T (X)
H1

>
<
H0

λ, (6)

where the test statistic T (X) is a function of the N ×K matrix

X =
[
x1, x2, · · ·, xK

]
(7)

and λ denotes the pre-determined threshold satisfying the
false alarm probability Pr{T (X) > λ | H0} with xk =

[xk(1), xk(2), · · ·, xk(N)]
T the observation vector of sizeN×1

at the k-th receive antenna for k = 1, 2, · · ·,K.

III. SPECTRUM SENSING SCHEMES

A. Noise Model

The bivariate isotropic symmetric α-stable (BISαS) model is
widely used to characterize non-Gaussian impulsive (or heavy-
tailed) noise [27]. The BISαS pdf is expressed as

fX1,X2 (x1, x2) =
1

(2π)
2

∫ ∞
−∞

∫ ∞
−∞

exp
{
−j (x1t1 + x2t2)− γ

(
t21 + t22

)α
2

}
dt1dt2, (8)

where the parameters γ > 0 and 0 < α ≤ 2 are the dispersion
and characteristic exponent, respectively. The dispersion param-
eter γ represents the spread of the BISαS pdf: A larger value of
γ indicates a wider spread of the BISαS pdf. The characteristic
parameter α represents the heaviness of tails of the BISαS pdf:
A smaller value of α indicates more severe impulsiveness of the
BISαS pdf.

Unless α = 1 or 2, no closed-form expression is known for
the integral in (8). When α = 1, the BISαS pdf (8) is the same
as the bivariate Cauchy pdf

fX1,X2
(x1, x2) =

γ

2π (x21 + x22 + γ2)
3
2

, (9)
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and the BISαS pdf (8) becomes the bivariate Gaussian pdf

fX1,X2 (x1, x2) =
1

2πσ2
exp

(
−x

2
1 + x22
2σ2

)
, (10)

with σ2 = 2γ the variance when α = 2, which corresponds also
to the limiting case of no impulsiveness.

B. Generalized Likelihood Ratio Test

Assuming that the CR has no information of the patterns (e.g.,
modulation schemes, preambles, or pilot patterns) of the signal
of PU, variance of the noise, and channel gain between the PU
and CR, the GLRT detector is often used and the unknown pa-
rameters are replaced by their maximum likelihood estimates
(MLEs). Specifically, assuming the faded transmitted complex
signal hk(n)s(n) is unknown, the MLE of the faded transmitted
complex signal hk(n)s(n) of the k-th receive antenna is used.
For the k-th receive antenna with the assumption of i.i.d. noise
components, denote the pdf of xk(n) by fXk (xk(n);Hz) under
the hypothesis Hz for z = 0 and 1. Then the common joint
pdf of observation vector xk on the k-th receive antenna can be

expressed as fXk
(
xk;Hz

)
=

N∏
n=1

fXk (xk(n);Hz).

The output T
(
xk
)

of the GLRT detector in the k-th receive
antenna branch can be expressed as the LLR

T
(
xk
)

= ln
fXk

(
xk;H1

)
fXk

(
xk;H0

)
=

N∑
n=1

ln
fVk

(
xk(n)− ̂hk(n)s(n)

)
fVk (xk(n))

, (11)

where ln(·) is the natural logarithm, ̂hk(n)s(n) is the MLE of
hk(n)s(n), and fVk(x) = fVI ,VQ (Re(x), Im(x)) is the joint
pdf of vk(n). Under the i.i.d. Cauchy noise environment, the
numerator and denominator of the natural logarithm in (11) can
be expressed with

fVk (d) =
γk

2π
(
|d|2 + γ2k

) 3
2

, (12)

using (9), where γk = γ is the dispersion parameter of Cauchy
noise distribution for the k-th receive antenna. Similarly, un-
der the i.i.d. Gaussian noise environment, the numerator and
denominator of the natural logarithm in (11) can be expressed
with

fVk (d) =
1

2πσ2
k

exp

(
−|d|

2

2σ2
k

)
(13)

using (10), where σ2
k = 2γk = σ2 is the variance of Gaussian

noise distribution for the k-th receive antenna. Now, it is easy to
obtain the MLE

̂hk(n)s(n) = xk(n) (14)

of hk(n)s(n) under the Cauchy and Gaussian noise environ-
ments. Then, the output T (xk) of the GLRT detector in the

k-th receive antenna branch can be expressed as

TC
(
xk
)
=

N∑
n=1

ln

(
1 +
|xk(n)|2

γ2k

)
, (15)

in Cauchy noise environment and as

TG
(
xk
)
=

1

2σ2
k

N∑
n=1

|xk(n)|2, (16)

in Gaussian noise environment.

C. Non-linear Schemes

When the noise is impulsive, non-linear schemes are reported
to be successful in mitigating the influence of noise components
in many signal processing applications. In impulsive noise envi-
ronment, since observations with larger magnitudes might with
high probability have resulted from noise components rather
than from signal components, observations with smaller mag-
nitudes by using a non-linear scheme based on order statistics
would be best selected to improve the performance.

C.1 The Combining with Order Statistics (COS) Scheme

In [1], the COS scheme exploiting non-linear combining
strategies together with the GLRT detector has been proposed.
The LLR T (xk) obtained at the GLRT detector in the k-th
receive antenna branch can be expressed as (15) and (16) in
Cauchy and Gaussian noise environments, respectively. With
the K LLRs

T =
{
T
(
x1
)
, T
(
x2
)
, · · ·, T

(
xK
)}

(17)

obtained at GLRT detectors, an ordering operation will produce
the order statistics{

T[1] (X) , T[2] (X) , · · ·, T[K] (X)
}
, (18)

where T[j] (X) is the j-th order statistic in T . Then, M or-
der statistics

{
T[i1] (X) , T[i2] (X) , · · ·, T[iM ] (X)

}
are linearly

combined with equal weight to produce the test statistic

TCOS (i1, i2, · · ·, iM ;X) =
M∑
a=1

T[ia](X) (19)

for spectrum sensing. Here, M ∈ {1, 2, · · ·,K} is the num-
ber of antenna branches employed in the combining and 1 ≤
i1 < i2 < · · · < iM ≤ K. As in [1], the notation
COS(i1, i2, · · ·, iM ) is employed in this paper to denote the de-
tector based on the test statistic (19).

C.2 The Proposed Spectrum Sensing Scheme

Now, we consider the OSO scheme. Fig. 2 shows a block
diagram of the OSO scheme. Define the 1×NK vector

y = vecT (X) , (20)

where vec (A) is the vectorization of a matrix A: That is, all
columns in A are listed one by one vertically to form vec (A).
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Fig. 2. A block diagram of the OSO scheme.

Now, magnitude ordering operation on the y gives the magni-
tude order statistic vector

|y|[·] =
{
|y|[1] , |y|[2] , · · ·, |y|[NK]

}
(21)

where |y|[j] is called the j-th magnitude order statistic and is the
j-th smallest observation among the NK absolute values in y;
that is,

0 ≤ |y|[1] ≤ |y|[2] ≤ · · · ≤ |y|[NK] . (22)

Then, a set
{
|y|[1] , |y|[2] , · · ·, |y|[J]

}
of J smallest order statis-

tics for 1 ≤ J ≤ NK is selected to produce the test statistics

TC,OSO (X) =
J∑

i=1

ln

(
1 +
|y|2[i]
γ2i

)
(23)

in Cauchy noise environment (α = 1) and

TG,OSO (X) =
J∑

i=1

|y|2[i]
2σ2

i

(24)

in Gaussian noise environment (α = 2), where γi = γ is the dis-
persion parameter of Cauchy noise distribution for the receive
antenna associated with |y|[i] and σ2

i = 2γi = σ2 is the variance
of Gaussian noise distribution for the receive antenna associated
with |y|[i]. Note that (24) is also well-known as the energy de-
tector.

The proposed test statistics in (23) and (24) are produced by
the J smallest observations to reduce the effect of impulsive
noise. First, the value of the proposed test statistics, like other
appropriately chosen statistics, under the alternative hypothesis
with positive signal components will tend to be larger than that
under the null hypothesis. Second, as it is clearly observed, the
proposed test statistics are based on the J smallest observations,

which makes the proposed test statistics less sensitive to the
more frequent occurrences of noise components of high magni-
tudes in impulsive environment (than in non-impulsive noise en-
vironment). In essence, the proposed test statistics are stochas-
tically smaller than a threshold under the null hypothesis while
they are stochastically greater than the threshold under the alter-
native hypothesis: In the detection procedure, in addition, order
statistics are exploited to reduce the influence of the impulsive
noise components.

D. Complexity Analysis

In this section, the complexity of the OSO and COS schemes
are compared. The computational complexity of the OSO
scheme depends on two major operations; 1) ordering opera-
tion and 2) computation of the test statistic TC,OSO (X) in (23)
in Cauchy noise environment and TG,OSO (X) in (24) in Gaus-
sian noise environment. For convenience, we assume that the
dispersion parameters {γk}Kk=1 are the same in Cauchy noise
environment. Similarly, we assume that variances of Gaussian
noise distribution

{
σ2
k

}K
k=1

are the same in Gaussian noise envi-
ronment. First, for the ordering of theNK values inX , we need
2NK multiplications and NK additions to obtain the magni-
tude order statistic vector |X|[·], and then, dNKlogNKe com-

parisons (additions ). Second, for the computation of the test
statistic T (X), we need 2J − 1 additions and J divisions in
Cauchy noise environment and 1 division and J−1 additions in
Gaussian noise environment.

On the other hand, the COS scheme requires dKlogKe com-
parisons (additions ) for ordering operation. Secondly, for com-
putation of K LLRs, (3N − 1)K additions, 2NK multipli-
cations, and NK divisions in Cauchy noise environment and
2NK multiplications, (2N − 1)K additions, and K divisions
in Gaussian noise environment are required in addition. Since
the test statistic of the COS scheme is the sum of one or more
order statistics of the LLRs, M −1 additions are required where
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Fig. 3. The numbers of operations of OSO and COS for the scenarios in Sec-
tion IV.

M is the number of antenna branches employed in the com-
bining. The computational complexities are summarized in Ta-
bles 1 and 2 for BISαS noise environments with α = 1, 1.6, and
α = 2.

Table 1. Computational complexity of the OSO and COS schemes in BISαS
noise environments with α = 1 and 1.6.

Number of multiplications Number of additions

COS 3NK dKlogKe+ (3N − 1)K +M − 1

OSO 2NK + J dNKlogNKe+NK + 2J − 1

Table 2. Computational complexity of the OSO and COS schemes in BISαS
noise environment with α = 2.

Number of multiplications Number of additions

COS (2N + 1)K dKlogKe+ (2N − 1)K +M − 1

OSO 2NK + 1 dNKlogNKe+NK + J − 1

Fig. 3 shows the complexity in terms of the number of oper-
ations (addition + multiplication) of the OSO and COS for the
scenarios considered in Section IV. Although it is not straight-
foward to simply compare the computational complexity be-
tween addition and multiplication, the multiplication can be
slower than addition when the algorithms are implemented in
hardware [28], [29]. As an attempt to provide the numbers of
the two operations more specifically, we have included Tables 3
and 4, which show that the OSO requires less and more multi-
plications and additions, respectively, than the COS.

IV. PERFORMANCE COMPARISONS

Let us now compare the performance of several schemes
in various noise environments, assuming that CR is exposed
to BISαS noise with α = 2, 1.6, or 1 and γ = 1. We
consider slowly varying Rayleigh fading channel where the
complex channel gains {hk} on the k-th receive antenna with

Table 3. The numbers of additions of OSO and COS for the scenarios in
Section IV.

BISαS α = 1 α = 1.6 α = 2

N 5 25 100 5 25 100 5 25 100

COS 65 305 1205 65 305 1205 45 205 805

OSO 118 824 4097 134 904 4417 126 864 4257

Table 4. The numbers of multiplications of OSO and COS for the scenarios in
Section IV.

BISαS α = 1 α = 1.6 α = 2

N 5 25 100 5 25 100 5 25 100

COS 60 300 1200 60 300 1200 44 204 804

OSO 46 230 920 54 270 1080 41 201 801

E
(
|hk|2

)
= 1 may change at the beginning of each observa-

tion period. Here, E(·) is the expectation operator. For sim-
plicity, we assume that all the transmitted signals are set to
constant values with sI(n) = sQ(n) and normalized to make

the total transmit signal power P =
N∑

n=1
|s(n)|2. The number

K of receive antennas on the CR is chosen to be 4 based in
the performance-complexity tradeoff since no significant gain is
achieved for K > 4 [30] while hardware cost and complexity
increases.

The detection threshold λ is often pre-determined to satisfy
the false alarm probability. In Gaussian noise environments,
methods and procedures on how to obtain the detection thresh-
old λ has been explained in many research papers such as [31]
and [32]. For the BISαS pdf (8), however, no closed-form ex-
pression is known to exist. Therefore, the detection threshold
has been obtained in experimentally, not theoretically, in this
paper.

The performance of spectrum sensing schemes are here mea-
sured in terms of receiver operation characteristic (ROC). In the
simulation, the ROC of each scheme under various BISαS noise
environments is obtained by Monte-Carlo simulation of 106 in-
dependent realizations for each point.

The notation OSOC(J) and OSOG(J) will be used to denote
the OSO scheme with the test statistic obtained using (23) and
(24), respectively. Since the lack of a closed-form expression for
the BISαS pdf (except for α = 1 and 2) prohibits the exact eval-
uation of the test statistics, we have obtained the test statistics
from (23) when α = 2, 1.6, and 1 and using (24) when α = 2.
Note that Cauchy detectors have frequently been used as a useful
alternative under the general impulsive noise circumstances be-
cause of their acceptable performance in various impulsive envi-
ronments, although they are only suboptimal when the noise is
not Cauchy. In addition, we would also like to note that, because
the energy detector is known to result in a severe performance
degradation in impulsive noise environments, OSOG(J) is con-
sidered only in BISαS noise environment with α = 2. Since the
OSOC(J) and OSOG(J) have almost the same tendency of per-
formance as shown in Fig. 4, we will consider only the ROCs of
OSOC(J) in various noise environments with Rayleigh fading.

We have first tried to find appropriate value of J in or-
der to improve the detection performance of the CR exploit-
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Fig. 5. The ROCs of OSOC(J) for various values of J and N in BISαS noise
environment with α = 2.

ing the OSOC(J) scheme by assuming that the number N
of observations and the number J of selected observations
are among {5, 25, 100} and {0.1NK, 0.2NK, · · ·, NK}, re-
spectively. Figs. 5–7 show the detection performance of the
OSOC(J) for various values of J and N in BISαS noise en-
vironments with α = 2, 1.6, and 1. It is noteworthy that the
signal power P/N per observation is higher when N is smaller
since we fixed the total transmit signal power P : As a conse-
quence, the performance of the proposed detector is better when
N is smaller than when N is larger, which is clearly observed in
all the figures.

In Fig. 5, OSOC(J) with larger value of J shows a better
detection performance in BISαS noise environments with α =
2. In Figs. 6 and 7, OSOC(J) with J = 0.7NK and J =
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environment with α = 1.6.
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Fig. 7. The ROCs of OSOC(J) for various values of J and N in BISαS noise
environment with α = 1.

0.3NK shows better detection performance than OSOC(J) with
other values of J in BISαS noise environments with α = 1.6
and 1, respectively. The simulation results of Figs. 5–7 clearly
show that detection performance of OSOC(J) with a smaller
value of J is better than that with a larger value of J , especially
as the impulsiveness of noise gets more severe.

Hereafter we consider detectors with J = NK, 0.7NK, and
0.3NK for BISαS noise environments with α = 2, 1.6, and 1,
respectively. For the sake of simplicity, we let OSOC stand for
OSOC(NK), OSOC(0.7NK), and OSOC(0.3NK) in BISαS
noise environments with α = 2, 1.6, and 1, respectively. First,
since the COS scheme exhibits the best detection performance
among the conventional schemes in impulsive noise environ-
ments [1], we compare the detection performances of the OSOC,
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Fig. 8. The ROCs of OSOC, COS (i1), and COS (i1, i2) in BISαS noise envi-
ronment with α = 2.

COS (i1), and COS (i1, i2). Figs. 8–10 show that detection per-
formances of OSOC, COS (i1), and COS (i1, i2) in the BISαS
noise with α = 2, 1.6, and 1. It is observed that OSOC out-
performs COS (i1) and COS (i1, i2) in the BISαS noise with
α = 1.6 and 1 and has the same performance as COS (i1, i2) in
the BISαS noise with α = 2.

It is clearly observed that the OSO outperforms the COS, es-
pecially when the impulsiveness of the noise is high. Although
the OSO requires slightly higher computational complexity than
the COS, the performance improvement of the OSO is signifi-
cant enough to justify such an increase of complexity.

The performances of COS and OSO are also explainable from
the viewpoint of signal detection theory. It is well known that
an observation with a very large magnitude should be considered
not as a signal plus noise but just as a noise in impulsive noise
environments. Thus, when the noise is impulsive and the im-
pulsiveness of noise gets higher, selecting smaller observations
generally leads to a better performance than selecting larger ob-
servations. The main difference between COS and OSO lies in
how to obtain the test statistic with the observations. In COS,
the LLR of each antenna is firstly obtained using N observa-
tions, and then, the linear combination of the M smallest LLRs
selected among a total of K LLRs becomes the test statistic. In
OSO, on the other hand, the J smallest observations are firstly
selected among a total of NK observations of K antennas, and
then, the LLR of these J smallest observations becomes the test
statistic. Thus, the values of observations employed to produce
the test statistic of OSO are smaller than those used to produce
the test statistic of COS, and consequently, the detection per-
formance of OSO would be better than that of COS when the
impulsiveness of noise is more severe.

V. CONCLUDING REMARK

In this paper, we have proposed a class of spectrum sens-
ing schemes called the OSO, which provides reasonable per-
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Fig. 9. The ROCs of OSOC, COS (i1), and COS (i1, i2) in BISαS noise envi-
ronment with α = 1.6.
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Fig. 10. The ROCs of OSOC, COS (i1), and COS (i1, i2) in BISαS noise
environment with α = 1.

formance for spectrum sensing in impulsive noise environments
with Rayleigh fading. The OSO scheme employs the GLRT and
non-linear diversity combining strategy. The test statistic of the
OSO is obtained by using a number of selected observations
with small magnitudes. The number of selected observations in
this paper is determined by simulation.

The performance of the OSO and COS has been compared in
various noise environments via Monte-Carlo simulations. From
simulation results, OSO scheme is observed to provide better de-
tection performance than COS in impulsive noise environments.
In addition, as the impulsiveness of noise gets higher, the gap
between the detection performances of OSO and COS becomes
wider.
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