
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:6329  | https://doi.org/10.1038/s41598-021-85474-1

www.nature.com/scientificreports

A divide‑and‑conquer algorithm 
for quantum state preparation
Israel F. Araujo1, Daniel K. Park2, Francesco Petruccione3,4,5* & Adenilton J. da Silva1 

Advantages in several fields of research and industry are expected with the rise of quantum computers. 
However, the computational cost to load classical data in quantum computers can impose restrictions 
on possible quantum speedups. Known algorithms to create arbitrary quantum states require quantum 
circuits with depth O(N) to load an N-dimensional vector. Here, we show that it is possible to load an 
N-dimensional vector with exponential time advantage using a quantum circuit with polylogarithmic 
depth and entangled information in ancillary qubits. Results show that we can efficiently load data in 
quantum devices using a divide-and-conquer strategy to exchange computational time for space. We 
demonstrate a proof of concept on a real quantum device and present two applications for quantum 
machine learning. We expect that this new loading strategy allows the quantum speedup of tasks that 
require to load a significant volume of information to quantum devices.

The development of quantum computers can dramatically reduce the time to solve certain computational tasks1. 
However, in practical applications, the cost to load the classical information in a quantum device can dominate 
the asymptotic computational cost of the quantum algorithm2,3. Loading information into a device is a common 
task in computer science applications. For instance, deep neural networks4 learning algorithms run in specialized 
hardware5, and the computational cost to transfer the information needs to be considered in the total computa-
tional cost as data loading can dominate the training time on large-scale systems6. In classical devices, we can use 
the loaded information several times while we do not erase it. The situation is not the same in quantum devices 
because of the no-cloning theorem7, noisy quantum operations8, and the decoherence of quantum information9. 
The no-cloning theorem shows that it is not possible to perform a copy of an arbitrary quantum state. When 
a quantum operation is applied, its input is transformed or is destroyed (collapsed). Even if we represent the 
information in a basis state that we can copy, the noisy operations and decoherence will corrupt the stored state, 
and it will be necessary to reload the information from the classical to the quantum device.

Loading an input vector �x = (x0, . . . , xN−1) to the amplitudes of a quantum system corresponds to create the 
state with log2(N) quantum bits described in Eq. (1).

Circuits to load an N-dimensional classical unit vector in quantum devices use n = log2(N) qubits and have an 
exponential depth in relation to the number of qubits (or polynomial in the data size)10–13.

Here we propose a new format of data encoding. Namely, we load an N-dimensional vector in probability 
amplitudes of computational basis state with entangled information in ancillary qubits as

where |ψj� are unit vectors. We propose an algorithm to load an N-dimensional vector in a quantum state as 
shown in Eq. (2) using a circuit with O(log22(N)) depth and O(N) qubits. The devised method is based on quan-
tum forking13,14 and uses a divide-and-conquer strategy15. The circuit depth is decreased at the cost of increasing 
the circuit width and creating entanglement between data register qubits and an ancillary system. Thus when 
the data register is considered alone (i.e. by tracing out the ancilla qubits), the resulting state is mixed and not 
equal to the pure state shown in Eq. (1). However, it is important to note that in Eq. (2) the classical data is still 
encoded as probability amplitudes of an orthonormal basis set. Useful applications can be constructed based on 
this, and we provide two example applications in machine learning and statistical analysis.

The divide-and-conquer paradigm is used in efficient algorithms for sorting16, computing the discrete Fourier 
transform17, and others15. The main idea is to divide a problem into subproblems of the same class and combine the 

(1)x0|0� + · · · + xN−1|N − 1�

(2)x0|0�|ψ0� + · · · + xN−1|N − 1�|ψN−1�,

OPEN

1Centro de Informática, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil. 2Sungkyunkwan 
University Advanced Institute of Nanotechnology, Suwon 16419, South Korea. 3School of Electrical Engineering, 
KAIST, Daejeon 34141, Republic of Korea. 4Quantum Research Group, School of Chemistry and Physics, University 
of KwaZulu-Natal, Durban, KwaZulu‑Natal 4001, South Africa. 5National Institute for Theoretical Physics (NITheP), 
Durban, KwaZulu‑Natal 4001, South Africa. *email: petruccione@ukzn.ac.za

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-85474-1&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:6329  | https://doi.org/10.1038/s41598-021-85474-1

www.nature.com/scientificreports/

solutions of the subproblems to obtain the solution of the original problem. The circuit based divide-and-conquer 
state preparation algorithm has computational cost O(N) and the total complexity time is Oc(N)+ Oq(log

2
2(N)) , 

where Oc(N) is classical pre-computation time to create the quantum circuit that will load the information in the 
quantum device and Oq(log

2
2(N)) is the depth of the quantum circuit. With the supposition that we will load the input 

vector m ≫ N times, the amortized computational time to load the real vector is Oq(log
2
2(N)) . The modified ver-

sion of the loading problem allows an exponential advantage in the depth of the quantum circuit using O(N) qubits.
The remainder of this paper is organized into 3 sections. “Transformation of quantum states” section reviews 

one of the standard methods for loading information in a quantum device using controlled rotations10, which we 
set out to modify to reduce its quantum circuit depth exponentially. “Divide-and-conquer loading data” section 
shows the main result, a quantum circuit with depth O(log22(N)) , and O(N) qubits to load an N-dimensional 
vector in a quantum state with entangled information in the ancillary qubits. “Discussion” section presents the 
conclusion and possible future works.

Transformation of quantum states
In this section, we review a strategy for loading a real vector into the amplitudes of a quantum state using a sequence 
of controlled one-qubit rotations10. Given an N-dimensional vector x, where n = log2(N) is an integer, we can cre-
ate a circuit to load this vector in a quantum computer using Algorithm 1. The task of amplitude encoding (Algo-
rithm 1) has two parts: (1) Function gen_angles (Line 1) finds angles to perform rotations that lead |0�n ≡ |0�⊗n 
to the state in Eq. (1), and (2) Function gen_circuit (Line 18) generates a quantum circuit from these rotations.



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:6329  | https://doi.org/10.1038/s41598-021-85474-1

www.nature.com/scientificreports/

Function gen_angles (Algorithm 1, Line 1) divides the 2n-dimensional input vector into 2n−1 2-dimen-
sional subvectors and creates a 2n−1-dimensional vector new_x with the norms of the subvectors. While the size 
of new_x is greater than 1, the new_x vector is recursively passed as the input of function gen_angles . This 
procedure is described in lines 3 to 6 of Algorithm 1. An example of the inputs in the recursive calls with the 
initial input

is presented in the binary tree named state-tree in Fig. 1b.
After the last recursive call of the function gen_angles , the algorithm starts to compute the vector angles. 

For each k between 0 and the size of vector new_x , we append an angle θ such that sin(θ/2) = x[2k+1]
new_x[k] and 

cos(θ/2) = x[2k]
new_x[k] to the vector angles. Lines 7 to 16 generate the vector angles in the recursive calls. For the 

input in Fig. 1b and using two decimal points the algorithm outputs angles = (1.98, 1.91, 1.43, 1.98, 1.05, 2.09, 
1.23). The angles vector is used as a complete binary tree named angles-tree. For instance, with αk = angles[k] , 
the angles-tree created by gen_angles with an eight-dimensional input vector is described in Fig. 1a. Each call 
of gen_angles will perform log2(N) recursive calls and the cost of each call for k = 1, . . . , log2(N) is N/2k−1 . 
The costs of the recursive calls to generate the angles-vector is 1+ 2+ 22 + · · · + 2log2 N = O(N).

Function gen_circuit (Algorithm 1, Line 18) receives the N − 1 dimensional vector angles, generated by 
the function gen_angles with input x, and outputs a quantum circuit to load the vector x in the amplitudes 
of a quantum state. The state in level j of the tree-state in Fig. 1b can be constructed from the state in the level 
j − 1 of the states-tree and controlled rotations from the level j − 1 in angles-tree. The root of the angles-tree 
defines the first rotation and the algorithm follows a top-down approach where the rotation of angle angle[k] is 
controlled by the qubits in range [0, level(k)) and is applied if the qubits q[0], . . . , q[level(k)− 1] are in the state 
|k − (2level(k) − 1)� . With αk = angle[k] , the circuit to load an eight-dimensional input vector is described in 
Fig. 2. The computational cost to compute the angles and to generate the circuit is O(N). The quantum circuit 
uses O(N) multi-controlled gates that are applied sequentially and the circuit depth is O(N). We have a O(N) cost 
in the classical host machine and a O(N) cost in the quantum device and spatial cost O(log2(N)) . An amortized 
computational cost is O(N) if we need to load the vector several times.

Divide‑and‑conquer loading data
The construction of the quantum state in the previous section starts in the root of state-tree |0�n and build the 
states in each level of the state-tree in a top-down strategy until to build the state described by the last level of 
the state-tree. In this Section, we propose a divide-and-conquer load strategy, and the desired quantum state is 
built following a bottom-up strategy. First, we divide the input into bidimensional subvectors and load qubits 
corresponding to the normalized bidimensional subvectors. In the next steps, we generate the subvectors of the 
previous levels.

For instance, to load the state in the leafs of the state-tree in Fig. 1b, we load four one-qubit states

representing the leafs of the state-tree. To load the two two-qubit states in the previous level, the single-qubit 
states are weighted with the value of their fathers, obtaining the state |ψl� representing the state in the half left 
part of the state-tree in Eq. (3) and the state |ψr� representing the state in the right part of the state-tree in Eq. (4).

Combining states |ψl� and |ψr� weighted with the values of the state in the previous layer generates the desired 
quantum state described in Eq. (5).

To load the classical data using this bottom-up approach we need to combine two m-qubits states |ψ�, |φ� 
and one one-qubit state a|0� + b|1� as a|0�|ψ� + b|1�|φ� with a circuit that does not depend on the input states. 
Using the circuit in Fig. 3 with m− 1 controlled-swap (CSWAP) operations, we generate the desired output in 

(
√
0.03,

√
0.07,

√
0.15,

√
0.05,

√
0.1,

√
0.3,

√
0.2,

√
0.1)

√
0.03√
0.1

|0� +
√
0.07√
0.1

|1�,
√
0.15√
0.2

|0� +
√
0.05√
0.2

|1�,
√
0.1√
0.4

|0� +
√
0.3√
0.4

|1� and
√
0.2√
0.3

|0� +
√
0.1√
0.3

|1�

(3)
|ψl� =

√
0.1√
0.3

|0�
(√

0.03√
0.1

|0� +
√
0.07√
0.1

|1�
)

+
√
0.2√
0.3

|1�
(√

0.15√
0.2

|0� +
√
0.05√
0.2

|1�
)

=
√
0.03√
0.3

|00� +
√
0.07√
0.3

|01� +
√
0.15√
0.3

|10� +
√
0.05√
0.3

|11�

(4)
|ψr� =

√
0.4√
0.7

|0�
(√

0.1√
0.4

|0� +
√
0.3√
0.4

|1�
)

+
√
0.3√
0.7

|1�
(√

0.2√
0.3

|0� +
√
0.1√
0.3

|1�
)

=
√
0.1√
0.7

|00� +
√
0.3√
0.7

|01� +
√
0.2√
0.7

|10� +
√
0.1√
0.7

|11�

(5)

√
0.3|ψl� +

√
0.7|ψr� =

√
0.03|000� +

√
0.07|001� +

√
0.15|010� +

√
0.05|011�

+
√
0.1|100� +

√
0.3|101� +

√
0.2|110� +

√
0.1|111�



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:6329  | https://doi.org/10.1038/s41598-021-85474-1

www.nature.com/scientificreports/

the first m qubits, but with unit entangled information in the m− 1 ancillary qubits. Namely, for the example 
with Fig. 3, the conventional amplitude encoding in the form of Eq. (1) would aim to prepare an m-qubit state 
a|0�|ψ� + b|1�|φ� while our method prepares a|0�|ψ�|φ� + b|1�|φ�|ψ�.

Loading complex data.  The divide-and-conquer strategy can be generalized to load a complex vector 
(|x0|eiω0 , |x1|eiω1 , . . . , |xN−1|eiωN−1) into the probability amplitudes of a quantum state as

To explain the process, we introduce two parameters used in Ref.18

where v = 1, 2, . . . , n is the level of the tree in reverse order (i.e. 1 for the leaf nodes and n for the root node) and 
j = 1, 2, . . . , 2n−v is the qubit index in the layer v. Next, one needs N/2 one-qubit states corresponding to the 
leaf nodes of the state-tree (see Fig. 1b for example) to be prepared as

To load the states in the previous levels (represented by v on the expression below), the states of the current 
level ( v − 1 , since v is in reverse order) are weighted with the values of their parents, obtaining the state

After recursively updating the state |ψj,v� for v = 2, . . . , n and j = 1, 2, . . . .2n−v , the desired quantum state 
is generated as

Combining two states at children nodes in the state-tree as shown in Eq. (8) is done with controlled-swap 
operations as explained in the previous section, and we will need N qubits with entangled auxiliary qubits to 
generate the state in Eq. (6). Thus the only modification in the quantum circuit is the introduction of the Rz(�j,v) 
rotations to set the phases, following the Ry rotations. The pseudocode for generating the angles for the Rz rota-
tions is given in Algorithm 2. 

(6)|x0|eiω0 |0�|ψ0� + · · · + |xN−1|eiωN−1 |N − 1�|ψN−1�.

�j,v =
2v−1
∑

l=1

(ω(2j−1)2v−1+l − ω(2j−2)2v−1+l)/2
v−1 and βj,v =

√

√

√

√

2v−1
∑

l=1

|a(2j−1)2v−1+l|2/

√

√

√

√

2v
∑

l=1

|a(j−1)2v+l|2,

(7)|ψj,1� = e−i
�j,1
2

√

1− |βj,1|2|0� + ei
�j,1
2 βj,1|1�.

(8)|ψj,v� = e−i
�j,v
2

√

1− |βj,v|2|0�|ψ2j−1,v−1� + ei
�j,v
2 βj,v|1�|ψ2j,v−1�.

(9)|ψ1,n� = |x0|eiω0 |0� + |x1|eiω1 |1� + · · · + |xN−1|eiωN−1 |N − 1�.

Figure 1.   Data representation of information in function generate angles.

Figure 2.   Circuit to load an 8 dimensional real vector in a quantum device.



5

Vol.:(0123456789)

Scientific Reports |         (2021) 11:6329  | https://doi.org/10.1038/s41598-021-85474-1

www.nature.com/scientificreports/

Algorithm 3 presents the complete pseudocode for the divide-and-conquer state preparation algorithm. 
The for loop in line 2 initializes the qubit q[k] with the value Ry(αk) . After this step, the qubits with index 
k > ⌊(N − 1)/2⌋ (in the leaf of the angle tree) are normalized versions of the states in the leafs of the state-tree. 
The next subroutine with Rz rotations (Line 4 to Line 5) is used to encode phase information. Line 6 calculates 
the index of the first angle that has a right children in the angle-tree data structure. The while loop starting at 
line 7 combines the states generated in the subtree rooted in the angle αactual . To combine the states, we first 
apply a cswap(q[actual], q[left_child], q[right_child]), and then we update the values of left and right child with 
the value of their left child and apply another cswap(q[actual], q[left_child], q[right_child]) while the left_child 
and right_child have valid values. With the input described by the angle-tree in Fig. 1a, Algorithm 3 generates 
the circuit described in Fig. 4.

Figure 3.   Combining states with controlled-swap operations.



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:6329  | https://doi.org/10.1038/s41598-021-85474-1

www.nature.com/scientificreports/

The process to load each state in the same layer of the state tree can be performed in parallel, because the 
control swap gates use different qubits. The controls are qubits in one layer of the angle-tree and targets are 
qubits in their subtrees. Layer with height k contributes to the depth of the circuit with the tree height minus 
height of the layer. The circuit will have a depth of O(1+ 2+ · · · + log2(N)− 1) with an overall depth in order 
O(log22(N)) . This result is stated in Theorem 1.

Theorem 1  Algorithm 3 generates a quantum circuit with depth O(log22(N)).

Orthonormal ancillary.  The ancillary states |ψ0�, . . . , |ψN−1� in Eq. (2) are not necessarily orthogonal to 
each other, but we can modify the divide-and-conquer state preparation adding label qubits to ensure orthonor-
mality of the ancillary states with the addition of label quantum register with log2(N) qubits. The label register 
is prepared in |0�⊗ log2(N) , and log2(N) controlled-NOT (CNOT) gates are applied to the label qubits, each con-
trolled by a data qubit. With this modification, the final state becomes

where {|ψ̃k�}N−1
k=0 = {|ψk�|k�}N−1

k=0  is a set of orthonormal states.

Experiments.  To evaluate the proposed method we perform two sets of experiments. In the first set of 
experiments, we use a quantum computing simulator and a NISQ computer to show as a proof of concept that 
the proposed method can be applied in near future. In the second set of experiments, we compare the depth of 
the circuits generated by the proposed method and other state preparation algorithms10,11 with a random input.

Proof of concept with a NISQ device.  In this experiment we load a four-dimensional data into a two qubit state 
|ψ� =

√
0.6|00� +

√
0.2|01� +

√
0.1|10� +

√
0.1|11� in a NISQ device as a proof of concept. For this experimen-

tal validation, we chose dimension of data to be small to be compatible with currently available quantum devices, 
although the time advantage of the proposed method will manifest when a large number of qubits are required 
for loading high-dimensional data. We use qubits 1, 2 and 3 of the ibmq_rome device. The CNOT error rates 
were 8.832e-3 (qubits 1 and 2) and 8.911e-3 (qubits 2 and 3). The single-qubit error was in the order of 1e-4.

Figure 5a presents the output of the experiment with 1024 executions using a quantum device simulator and 
the Rome quantum device. The Rome NISQ device has an output very close to the expected result. The circuit 
used to obtain this result is described in Fig. 5b, where c is a classical register. We remove the last CNOT of the 
controlled operation because the qubit 2 will be discarded. The resulting circuit has 10 CNOT operators because 
a quantum swap was necessary to run this circuit in the real quantum device with a limited qubit connectivity. 
The circuit used in the quantum device is described in Fig. 7.

(10)x0|0�|ψ0�|0� + · · · + xN−1|N − 1�|ψN−1�|N − 1� =
N−1
∑

k=0

xk|k�|ψ̃k�,

Figure 4.   Rotated angle-tree and a circuit generated by the divide-and-conquer strategy described in 
Algorithm 3. The quantum bit q[k] in the circuit is aligned with the angle α[k] in the angle-tree, this 
organization allows to draw the quantum gates in each layer in parallel. In this example, the desired state is 
stored in qubits q[0], q[1] and q[3] to generate the quantum state with entangles ancilla as in Eq. (2).



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:6329  | https://doi.org/10.1038/s41598-021-85474-1

www.nature.com/scientificreports/

Circuit depth.  The main difference between the divide-and-conquer state preparation and previous approaches 
is an exchange between circuit depth by circuit width. Table 1 presents the depth of the circuits generated using 
the proposed strategy, implementation of a version of11 available at19 and a non optimized version of the algo-
rithm described in10. The proposed strategy and10 implementation are publicly available. The implementation of 
the proposed method shows its theoretical asymptotic time advantage to load a vector when the dimension is 
larger than 32. The proposed method has two main disadvantages: the linear number of qubits in relation to the 
logarithmic number in other methods, and the information entangled in the ancillary qubits.

The higher depth of circuits using the divide-and-conquer strategy with small vectors occurs because of the 
use of three-qubits gates to combine the vectors. In other works, it is only necessary to use O(n) qubits to load 
a 2n-dimensional vector while requiring sequential applications of O(2n) n-controlled gates. To improve the 
performance of the divide-and-conquer loading strategy and to reduce the number of qubits one can combine 
algorithm11 with the divide-and-conquer strategy. Instead of divide the vector in parts with size 2, we can divide 
the vector in parts with size k (equal to a power of 2), load the normalized k-dimensional vectors using a sequen-
tial algorithm and combine the small vectors with the divide-and-conquer approach.

Example applications.  Hierarchical quantum classifier.  This section compares the divide-and-conquer 
algorithm with two other approaches in which input data encoding in a quantum state can be achieved to initial-
ize a quantum circuit, namely qubit encoding and amplitude encoding. In the former, data is encoded in the am-
plitudes of individual qubits in a fully separable state, performed using single-qubit rotations20. In the later, data 
is encoded in the amplitudes of an entangled state11,18, similarly to the divide-and-conquer. We use the accuracy 
of a quantum variational classifier as a metric to evaluate the state preparations. The divide-and-conquer algo-
rithm is expected to produce results similar to the amplitude encoding. The results of the classifier using qubit 
encoding are also presented for completeness, albeit our main objective is to compare the divide-and-conquer 
and amplitude encoding schemes.

The classifier is based on a tree-like circuit known as tree tensor network (TTN)20. This choice is based on 
the fact that tensor networks can represent both neural networks and quantum circuits, acting as a link between 
these fields21,22. Initially, it applies a set of two-qubit unitaries to each pair of qubits from the initial state, dis-
carding one output from each unitary, leaving half the number of qubits left for the next layer. The process is 
repeated until only one qubit remains. Multiple measurements are carried on this last qubit to approximate the 
expectation value.

Following Grant et al.20, we built the circuits using single-qubit rotations around the y-axis of the Bloch 
sphere, denoted by Ry(θ) , and CNOT gates, composing two-qubit unitary blocks CNOT · (Ry(θ0)⊗ Ry(θ1)) . The 
single-qubit rotation angle θ is subject to training by some optimization procedure. Examples of the resulting 
circuits are represented in Fig. 6a–c.

We follow the general classical-quantum hybrid approach in which the optimization procedure is processed 
on a classical computer to determine a set of parameters, i.e. rotation angles for the Ry(θ) operation, for the para-
metrized quantum circuit. The quantum device prepares a quantum state as prescribed by the circuit pipeline and 
performs measurements. The measurement outcomes are processed by a classical device to generate a forecast, 
using it to update the model parameters via a learning algorithm. This whole process is repeated towards the goal.

Four datasets were used in this work: Iris, Haberman’s Survival, Banknote Authentication23, and Pima Indians 
Diabetes24. Three binary datasets were extracted from the original Iris dataset (paired combinations of the original 
three classes). Mean test accuracy and one standard deviation are computed on ten random initializations for 
each dataset and encoding. The simulation results are presented in Table 2, where the test accuracy of the qubit 
and amplitude encodings are compared against the results obtained using the divide-and-conquer encoding.

The results show similar classification accuracy for all encodings, favoring qubit encoding due to the greater 
number of circuit parameters for the optimization. The main advantage of divide-and-conquer encoding over 
qubit encoding is the representation of encoded data in a quantum state of a reduced number of qubits, log2(N) , 
compared to the initial state N − 1 . This also results in a lower depth classifier. Moreover, when the data is given 
by qubit encoding, TTN circuits can be evaluated efficiently using classical techniques20. This is not true when 
the input data is amplitude encoded. The advantage over amplitude encoding is a lower depth encoding circuit 
for N ≥ 64 (Table 1).

To verify that the above comparison of the models is appropriate, a nonparametric statistical test was 
employed. We used the Wilcoxon paired signed-rank test25 with α = 0.05 to check whether there exist significant 
differences between the classification performances of compared encoders over the chosen datasets. As expected, 
we verified that amplitude encoding and divide-and-conquer encoding are statistically equivalent for all datasets.

Swap test.  Some metric between two data set encoded as 
∑

i xi|i� =
∑

i |x̃i� and 
∑

j yj|j� =
∑

j |ỹj� can be 
calculated with the state prepared by the divide-and-conquer state preparation and the swap test. The required 
state is

where 
∑

i |x̃i�|ψi� and 
∑

j |ỹi�|φj� are prepared by the encoding scheme explained in Sec. 3.2 so as to make the 
ancillary states orthonormal.

After applying the swap test circuit to the above state, i.e. the Hadamard on the first (ancilla) qubit, the swap 
operation between the test register and the data register controlled by the ancilla qubit, and the Hamadard on 
the first qubit, one obtains

(11)|0�
∑

ij

|x̃i�|ỹj�|ψi�|φj�,



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:6329  | https://doi.org/10.1038/s41598-021-85474-1

www.nature.com/scientificreports/

Now, when the σz measurement is performed on the ancilla qubit, the probability to measure z = ±1 , i.e. 
z = +1 if the ancilla qubit is |0� and z = −1 if the ancilla qubit is |1� , is

Therefore, measuring the expectation value of σz on the ancilla qubit yields

Several measures in statistics can be derived from the above result. First, by setting |xi|2 to be the possible 
values of a discrete random variable X : � → R with the probability Pr(X = |xi|2) = |yi|2 , the above equation 
becomes an expectation value of the random variable X. The above equation can be also viewed as the second 
moment of a discrete random variable X, i.e. E(X2) , with the probability Pr(X = xi) = |yi|2 . This can be used 
to calculate the variance of X given E(X)2 . Alternatively, the above equation can be viewed as E(XY) of two uni-
formly-distributed discrete random variables X and Y that satisfy Pr(X = |xi|2) = Pr(Y = |yi|2) = 1/N . This can 
be used with E(X) = ∑N

i |xi|2/N = E(Y)
∑N

i |yi|2/N = 1/N to calculate the covariance, E(XY)− E(X)E(Y).
The idea above can be extended for calculating the covariance of two discrete random variables X and 

Y with any known probability distribution. Let possible outcomes of X and Y be (|x0|2, . . . , |xN−1|2) and 

(12)
1

2



|0�
�

ij

�

|x̃i�|ỹj� + |ỹj�|x̃i�
�

|ψi�|φj� + |1�
�

ij

�

|x̃i�|ỹj� − |ỹj�|x̃i�
�

|ψi�|φj�



.

(13)

Pr(z = ±1) = 1

4

�

ijkl

2
�

�x̃k|x̃i��ỹl|ỹj� ± �ỹl|x̃i��x̃k|ỹj�
�

�ψk|ψi��φl|φj�

= 1

2





�

ij

�x̃i|x̃i��ỹj|ỹj� ± |�ỹj|x̃i�|2




=
1±�

ij |�ỹj|x̃i�|2
2

.

(14)
∑

ij

|�ỹj|x̃i�|2 =
∑

i

|xiyi|2.

Figure 5.   Proof of concept experiment with a IBM quantum device (ibmq_rome) on the cloud platform.

Table 1.   A comparison between Refs.10,11 and divide-and-conquer strategy to load a n-dimensional real vector 
into a quantum computer.

n dc depth dc width 11 depth 11 width 10 depth 10 width

4 12 4 3 3 5 3

8 31 8 17 4 53 4

16 58 16 47 5 277 5

32 93 32 105 6 1237 6

64 136 64 239 7 5205 7

128 187 128 493 8 21333 8

256 246 256 982 9 9

512 313 512 2025 10 10

1024 388 1024 4009 11 11



9

Vol.:(0123456789)

Scientific Reports |         (2021) 11:6329  | https://doi.org/10.1038/s41598-021-85474-1

www.nature.com/scientificreports/

(|y0|2, . . . , |yN−1|2) , respectively, and the probability distribution be (px0, . . . , p
x
N−1) and (py0, . . . , p

y
N−1) , respec-

tively. Then the divide-and-conquer algorithm can be used to prepare a state

where |p̃xi � =
√

pxi |i� , |p̃
y
k� =

√

p
y
k|k� , |x̃j� = xj|j� , |ỹl� = yl|l� , and |ψijkl� is the orthonormal ancillary state as 

before. Now, the swap test circuit is applied with a small modification such that 3n controlled-swap gates are 
applied to transform |p̃xi �|x̃j�|p̃

y
k�|ỹl� to |x̃j�|p̃yk�|ỹl�|p̃xi � when the ancilla qubit for the swap test is |1� . Measuring 

the expectation value of the σz observable on the ancilla qubit yields

E(X) and E(Y) can be calculated from the swap test algorithm presented in the beginning of this section, which 
provided Eq. (14), by choosing the input vectors appropriately.

The total time complexity for the aforementioned quantum algorithms is still Oq(log
2
2(N)) , since the swap 

test only requires additional O(log2(N)) controlled-swap gates. The quantum speedup can be manifested when 
constructing a covariance matrix for two multivariate random variables X and Y , each containing m discrete 
random variables of size N. Since there are m2 entries in the matrix, the classical time cost is Oc(Nm

2) , while the 
quantum approach requires Oc(N)+ Oq(log

2
2(N)m2).

Discussion
One of the major open problems for practical applications of quantum computing is to develop an efficient means 
to encode classical data in a quantum state3. Most quantum algorithms do not present advantages in loading 
data2. The method proposed in this work fills this gap by proposing a new quantum state preparation paradigm, 
which can complement or enhance the known methods, such as qubit encoding and amplitude encoding. Our 
approach was based on the Möttönen et al. algorithm10 and a divide-and-conquer approach using controlled 
swap gates and ancilla qubits. With this modification, we obtain an exponential quantum speedup in time to load 
a N-dimensional real vector in the amplitude of a quantum state with a quantum circuit of depth O(log22(N)) 

(15)|0�
∑

ijkl

|p̃xi �|x̃j�|p̃
y
k�|ỹl�|ψijkl�,

(16)
∑

ijkl

�p̃xi |x̃j��x̃j|p̃
y
k��p̃

y
k|ỹl��ỹl|p̃xi � =

∑

i

pxi p
y
i |xi|2|yi|2 = E(XY).

Figure 6.   TTN classifier with (a) divide-and conquer encoding, (c) amplitude encoding and (b) qubit 
encoding.



10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:6329  | https://doi.org/10.1038/s41598-021-85474-1

www.nature.com/scientificreports/

and space O(N). The exponential speedup to load data in quantum devices has a potential impact on speeding 
up the solution of problems in quantum machine learning and other quantum algorithms that need to load data 
from classical devices.

The speedup is achieved at the cost of using ancilla qubits that are entangled to the data register qubits. How-
ever, we showed that some interesting problems such as quantum supervised machine learning and statistical 
analysis can be performed with the input quantum state given by our method. The tradeoff between time and 
space complexities that our method provides is favorable when increasing the circuit width is easier than increas-
ing the circuit depth, which is a likely scenario to occur during the development of near-term quantum devices.

We demonstrated the proof-of-principle using the IBM quantum cloud platform to verify the validity and 
the feasibility of our method. Furthermore, the numerical experiments showed that the new encoding method 
offers advantages, reducing complexity and computational resources when applied in conjunction with existing 
algorithms. Our perspective is that these advantages will extend to other cases.

This work leaves some open questions. What are other problems that can be solved with a divide-and-conquer 
quantum strategy? What are the implications to efficiently load a quantum vector with entangled information 
in the ancillary qubits for machine learning? And how to combine sequential with parallel strategies to create a 
robust algorithm with respect to input size? Also, finding an efficient means to uncompute the ancillary informa-
tion remains as an interesting future work that will broaden the applicability of our method.

Methods
We performed the proof of concept experiment with a publicly available IBM quantum device consisting of 
five superconducting qubits, named as ibmq_rome. The quantum circuit used in this experiment is depicted in 
Fig. 5b. The circuit in Fig. 5b is compiled to the physical qubit layout of ibmq_rome and the resulting circuit is 
depicted in Fig. 7 that is executed 1024 times to obtain the data used to generate Fig. 5a. We used the quantum 
information science kit (qiskit). Python implementation of gen_angles and Algorithm 3 are used to generate 
the quantum circuit in Figs. 4 and 5b.

The depth of the quantum circuits for state preparations described in Table 1 is obtained using a python 
implementation of Algorithm 3, the qiskit implementation of11 and a non-optimized version of the algorithm10 
available at the GitHub repository. For each input size we generated a random vector used for all methods. In 
these first two set of experiments we used qiskit version 0.14.1 and python version 3.7.7.

In “Hierarchical quantum classifier” section, simulations of the hybrid classification algorithms were per-
formed using Xanadu’s Pennylane26 default qubit plugin state simulator. We used 2/10 of the datasets as a test set, 
2/10 as a validation set, and the remaining as a training set. As preparation for qubit encoding, each data vector 
element of all datasets was re-scaled within the range of [0,π ] . Also, for amplitude encoding and divide-and-
conquer encoding, the data vectors were normalized. Our simulation employs the Adaptative Moment Estimation 
(Adam) for the optimization process27 with a learning rate of 0.1 and a batch size of 1/10 of the training set size. 
Training stops when validation set accuracy does not increase for 30 consecutive tests or 200 iterations is reached.

Table 2.   Mean test accuracy and one standard deviation for TTN classifiers with ten different random 
parameter initializations. Three binary datasets were extracted from the original Iris dataset.

Dataset Classes

Encoding

Qubit Amplitude Divide-and-conquer

Haberman 0 or 1 60.33 ± 2.02 59.02 ± 0.00 59.02 ± 0.00

Banknote 0 or 1 91.28 ± 3.11 87.15 ± 0.74 87.45 ± 1.12

Pima 0 or 1 77.19 ± 2.08 70.78 ± 1.88 71.11 ± 1.79

Iris

0 or 1 100 ± 0.00 100 ± 0.00 100 ± 0.00

0 or 2 100 ± 0.00 100 ± 0.00 100 ± 0.00

1 or 2 98.50 ± 2.42 93.00 ± 2.58 93.00 ± 2.58

Figure 7.   The transpiled circuit of the divide-and-conquer state preparation circuit in Fig. 5b in accordance 
with the physical qubit layout of the ibmq_rome device. The gates U1 , U2 , and U3 are physical single-qubit 
gates of IBM Quantum Experience that take in one, two, and three parameters, respectively. The measurement 
outcomes are stored in classical registers denoted by c[0] and c[1].



11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:6329  | https://doi.org/10.1038/s41598-021-85474-1

www.nature.com/scientificreports/

Data availibility
The site https://​www.​cin.​ufpe.​br/​~ajsil​va/​dcsp/ contains all the data and software generated during the current 
study.

Received: 24 September 2020; Accepted: 2 March 2021

References
	 1.	 Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).
	 2.	 Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).
	 3.	 Aaronson, S. Read the fine print. Nat. Phys. 11, 291–293. https://​doi.​org/​10.​1038/​nphys​3272 (2015).
	 4.	 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
	 5.	 Dong, Y. et al. Stochastic quantization for learning accurate low-bit deep neural networks. Int. J. Comput. Vis. 127, 1629–1642 

(2019).
	 6.	 Yang, C.-C. & Cong, G. Accelerating data loading in deep neural network training. In 2019 IEEE 26th International Conference on 

High Performance Computing, Data, and Analytics (HiPC), 235–245 (IEEE, 2019).
	 7.	 Wootters, W. K. & Zurek, W. H. A single quantum cannot be cloned. Nature 299, 802–803 (1982).
	 8.	 Preskill, J. Quantum computing in the nisq era and beyond. Quantum 2, 79 (2018).
	 9.	 Hughes, R. J., James, D. F., Knill, E. H., Laflamme, R. & Petschek, A. G. Decoherence bounds on quantum computation with trapped 

ions. Phys. Rev. Lett. 77, 3240 (1996).
	10.	 Möttönen, M., Vartiainen, J. J., Bergholm, V. & Salomaa, M. M. Transformation of quantum states using uniformly controlled 

rotations. Quant. Inf. Comput. 5, 467–473 (2005).
	11.	 Shende, V. V., Bullock, S. S. & Markov, I. L. Synthesis of quantum-logic circuits. IEEE Trans. Comput.-Aided Design Integr. Circuits 

Syst. 25, 1000–1010 (2006).
	12.	 Iten, R., Colbeck, R., Kukuljan, I., Home, J. & Christandl, M. Quantum circuits for isometries. Phys. Rev. A 93, 032318 (2016).
	13.	 Park, D. K., Petruccione, F. & Rhee, J.-K.K. Circuit-based quantum random access memory for classical data. Sci. Rep. 9, 1–8 (2019).
	14.	 Park, D. K., Sinayskiy, I., Fingerhuth, M., Petruccione, F. & Rhee, J.-K.K. Parallel quantum trajectories via forking for sampling 

without redundancy. New J. Phys. 21, 083024. https://​doi.​org/​10.​1088/​1367-​2630/​ab35fb (2019).
	15.	 Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C. Introduction to algorithms (MIT press, 2009).
	16.	 Hoare, C. A. R. Algorithm 64: quicksort. Commun. ACM 4, 321 (1961).
	17.	 Gentleman, W. M. & Sande, G. Fast fourier transforms: for fun and profit. In Proceedings of the November 7-10, 1966, fall joint 

computer conference, 563–578 (1966).
	18.	 Mottonen, M., Vartiainen, J. J., Bergholm, V. & Salomaa, M. M. Transformation of quantum states using uniformly controlled 

rotations. Quant. Inf. Comput. 5, 467–473 (2005).
	19.	 Aleksandrowicz, G. A. et al. Qiskit: An Open-source Framework for Quantum Computing, https://​doi.​org/​10.​5281/​zenodo.​25621​

11 (2019).
	20.	 Grant, E. et al. Hierarchical quantum classifiers. npj Quant. Inf.4, 65. https://​doi.​org/​10.​1038/​s41534-​018-​0116-9 (2018).
	21.	 Cohen, N. & Shashua, A. Convolutional rectifier networks as generalized tensor decompositions. Int. Conf. Mach. Learn. 955–963, 

(2016).
	22.	 Levine, Y., Sharir, O., Cohen, N. & Shashua, A. Quantum entanglement in deep learning architectures. Phys. Rev. Lett. 122, 065301. 

https://​doi.​org/​10.​1103/​PhysR​evLett.​122.​065301 (2019).
	23.	 Dua, D. & Graff, C. UCI machine learning repository (2017).
	24.	 Rossi, R. A. & Ahmed, N. K. The network data repository with interactive graph analytics and visualization. In Proceedings of the 

Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15, 4292–4293 (AAAI Press, 2015).
	25.	 Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006).
	26.	 Bergholm, V. et al. Pennylane: Automatic differentiation of hybrid quantum-classical computations (2020). 1811.04968.
	27.	 Kingma, D. P. & Ba, J, (A method for stochastic optimization, Adam, 2017) ((1412.6980)).

Acknowledgements
This research is supported by CNPq (Grant No. 308730/2018-6), CAPES- Finance Code 001 and FACEPE (Grant 
No. IBPG 0834-1.03/19), the National Research Foundation of Korea (Grant Nos. 2019R1I1A1A01050161 and 
2018K1A3A1A09078001), the Ministry of Science and ICT, Korea, under an ITRC Program, IITP-2019-2018-
0-01402, and the South African Research Chair Initiative of the Department of Science and Innovation and 
National Research Foundation (UID: 64812). We acknowledge use of IBM Q for this work. The views expressed 
are those of the authors and do not reflect the official policy or position of IBM or the IBM Q team.

Author contributions
A.J.S. devised the divide-and-conquer state preparation strategy, performed the proof-of-concept experiments 
and wrote a first version of the manuscript. D.K.P. suggested the way to make ancillary states orthogonal, and 
conceived the combination of swap test with the divide-and-conquer state preparation to calculate metrics 
between two datasets. I.F.A. performed the experiments with the variational quantum circuits and extended the 
algorithm to complex input vectors. All authors reviewed and discussed the analyses and results, and contributed 
towards writing the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to F.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://www.cin.ufpe.br/%7eajsilva/dcsp/
https://doi.org/10.1038/nphys3272
https://doi.org/10.1088/1367-2630/ab35fb
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.1038/s41534-018-0116-9
https://doi.org/10.1103/PhysRevLett.122.065301
www.nature.com/reprints


12

Vol:.(1234567890)

Scientific Reports |         (2021) 11:6329  | https://doi.org/10.1038/s41598-021-85474-1

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

http://creativecommons.org/licenses/by/4.0/

	A divide-and-conquer algorithm for quantum state preparation
	Transformation of quantum states
	Divide-and-conquer loading data
	Loading complex data. 
	Orthonormal ancillary. 
	Experiments. 
	Proof of concept with a NISQ device. 
	Circuit depth. 

	Example applications. 
	Hierarchical quantum classifier. 
	Swap test. 


	Discussion
	Methods
	References
	Acknowledgements


