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ABSTRACT Although the intrinsic variability in nanoelectronic devices has been a major obstacle and
has prevented mass production, this natural stochasticity can be an asset in hardware security appli-
cations. Herein, we demonstrate a true random number generator (TRNG) based on stochastic carrier
trapping/detrapping processes in randomly distributed carbon nanotube networks. The bitstreams collected
from the TRNG passed all the National Institute of Standards and Technology randomness tests without post-
processing. The random bit generated in this study is sufficient for encryption applications, particularly those
related to the Internet of Things and edge computing, which require significantly lower power consumption.

INDEX TERMS Carbon nanotube network, random number generator, stochastic carrier trapping.

I. INTRODUCTION
Random number generators are a requisite in many areas,
including key generation, simulation, and secure communi-
cations. A software-based random number generator, also
called a pseudo-random number generator, is preferred in
many applications because of its simplicity of implemen-
tation; however, it is vulnerable to a wide range of secu-
rity threats owing to its predictable algorithm. By contrast,
hardware-based true random number generators (TRNGs)
can generate a random bitstream using the intrinsic stochas-
ticity in physical variables—such as thermal noise [1], tele-
graph noise [2], and oxide breakdown [3] which enables
superior encryption. Energy-efficient TRNGs are essential
components in applications that require very low power
consumption—such as the Internet of Things (IoT) or edge
computing [4].

Recently, the intrinsic variation of memristors has been
exploited to demonstrate a TRNG in which unavoidable
cycle-to-cycle variation could be intentionally used as a
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physical source to generate random bitstreams [5], [6].
However, they required an additional post-processing step
(i.e., Von Neumann correction) to pass the National Institute
of Standards and Technology (NIST) randomness tests owing
to their lack of true randomness; consequently, they suffered
from drawbacks in terms of scalability, circuit complex-
ity, and power consumption. Subsequently, more advanced
TRNGs have been proposed based on the stochastic delay
or relaxation time of volatile memristors which have passed
all the NIST tests without any post-processing steps [7]–[9].
Nevertheless, the driving current of prior volatile mem-
ristors exceeded 1 µA [7], which lead to inevitably high
TRNG power consumption, while an additional periph-
eral circuit (e.g., a nonlinear feedback shift register cir-
cuit [8], [9]) is required to achieve a high bit generation
rate. Furthermore, the high endurance performance (>1010)
required from the TRNG cannot yet be fully guaranteed
using volatile memristors [10]. Moreover, most silver-based
volatile memristors have poor compatibility with the conven-
tional complementary metal oxide semiconductor (CMOS)
technology [7], [11], which prevents co-integration with
existing digital circuits.
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FIGURE 1. Temporal ID response in the CNT network transistor. (a) Schematic of the CNT network transistor, and atomic microscope image of the CNT
network. (b) Schematics of the trapping/detrapping of holes at the interface/surface traps. (c) Sudden ID enhancement and gradual decay when a single
VG pulse (Vhigh = 10 V, Vlow = −2 V) is applied, which is primarily attributed to the slow hole diffusion process at the surface trap. (d) Sudden ID
enhancement and fast recovery when a single VG pulse (Vhigh = 2 V, Vlow = −10 V) is applied, which is primarily attributed to the fast hole tunneling
process at the interface trap.

Herein, we demonstrate a TRNG based on a solution-
processed carbon nanotube (CNT) network by employing a
transistor structure, as the CNT is a well-known material
that is compatible with the CMOS process [12]. Similar
CNT-based TRNGs have already been reported; however,
a number of device groups (crossbar array [13], static random
access memory circuits [14], or a couple of device [15]) were
required to generate a random bitstream, thereby limiting
scalability. We overcame this limitation by implement a sin-
gle CNT transistor-based TRNG in this study. The stochastic
carrier trapping/detrapping process between the CNT channel
and the traps in the gate insulator is a source of randomness,
which is further enhanced by the randomly distributed CNT
networks. The electronic process attributed to carrier trap-
ping/detrapping enables lower power consumption and better
reliability than the ionic switching used in previous volatile

memristors. A bit generation rate of 5 kb s−1 was achieved
without using complex peripheral circuits, and finally our
TRNG passed all 15 NIST randomness tests. This work
presents a promising methodology for improving security in
low-power-consumption systems.

II. RESULTS AND DISCUSSION
Fig. 1a presents the schematic of our CNT network transistor
(see Methods) [16]–[18] The solution processing method
yields randomly distributed single-walled semiconducting
CNTs, which serve as the channel of the transistor. Our previ-
ous studies [16]–[18] have demonstrated that CNT transistors
have a drain current (ID) hysteresis based on the gate voltage
(VG) sweep (Fig. S1a). Although the cause of the hysteresis
is still debatable, the hysteresis can be attributed to the trap-
ping/detrapping of holes at the traps [19] (see Fig. S1 and

91342 VOLUME 9, 2021



S. Kim et al.: Low-Power TRNG Based on Randomly Distributed Carbon Nanotube Networks

FIGURE 2. Stochasticity of the temporal ID response. (a) Three examples of temporal ID responses under the same VG pulse condition. The inset shows
the measurement setup where a series resistor (RS ) is connected to the source electrode that converts ID (current) to Vtemp (voltage). (b) The collected
Vtemp from 12000 trial measurements.

Supporting Information Note 1 for a more detailed expla-
nation). When a negative VG is applied, the trapped holes
bend the energy band of the CNT downward, resulting in the
suppression of ID owing to the enlarged Schottky barrier at
the drain/CNT junction (left inset of Fig. S1a). By contrast,
a positive VG leads to ejection of the trapped holes, and the
consequent upward band bending leads to ID enhancement
(right inset of Fig. S1a). Notably, the hysteresis is attributed to
two different types of traps: the interface trap and the surface
trap (Fig. 1b) [19]. The interface trap is adjacent to the CNT
channel; thus, the holes can move between them relatively
quickly and easily through the tunneling process. Conversely,
the diffusion of holes through the surface trap in the lateral
direction is relatively slow and difficult. Considering the
contact area between the CNT channel and the gate insulator,
it is clear that the surface trap is much larger than the interface
trap, allowing the surface trap to act as a hole reservoir. The
different timescales of the hole movement at the interface and
surface traps enable a temporal ID change in the CNT network
transistor.

Fig. 1c and Fig. 1d depict the transient ID response fol-
lowing the application of a single VG pulse. We designed
two different conditions for the VG pulses. In case #1, all
traps were initially filled with holes by applying a negative
VG bias (−6 V for 1 s). The VG pulse was designed such
that the low level of the pulse (Vlow) was negative (−2 V),
and the high level of the pulse (Vhigh) was positive (+10 V).
The magnitude of Vlow was sufficiently small to prevent
any hole trapping/detrapping processes. When this VG pulse
(−2 V to +10 V) was applied for 50 ns, the trapped holes at
the interface trap were ejected through the tunneling process
(case #1 in Fig. 1b). The emptied interface trap was then re-
filled gradually from holes at the surface trap through the

diffusion process. As a result, ID increased suddenly and then
gradually decreased to its initial state (Fig. 1c). In case #2, all
the traps were initially emptied by applying a positive VG bias
(+6 V for 1 s). In this case, we designed the VG pulse to have
Vlow = −10 V and Vhigh = +2 V. When this VG pulse was
applied—from +2 V to −10 V—the interface trap was filled
with holes through the tunneling process (case #2 in Fig. 1b).
However, because these trapped holes were easily ejected
again through the tunneling process, the temporal ID enhance-
ment returned to its initial state as soon as the pulse ended
(Fig. 1d). Consequently, a gradual and temporal ID change
could be obtained in the CNT network transistor by exploiting
the different time responses of the hole trapping/detrapping
process at the interface and surface traps.

The stochastic hole trapping/detrapping process has an
intrinsic cycle-to-cycle variation. Because the tunneling and
diffusion processes do not occur in a single CNT but in an
entangled CNT network, the temporal ID response to the same
VG pulse is not identical in every trial. Fig. 2a presents an
example of the cycle-to-cycle variation in the temporal ID
responses (here, a resistor (Rs) is serially connected with the
source electrode to convert the ID value into the voltage value
(Vtemp), as shown in the inset of Fig. 2a). Despite applying
the VG pulse under the same conditions, differences occur
among the measured ID responses. Fig. 2b presents the Vtemp
from 12000 trials, where Vtemp was sampled 10 µs after
the applied VG pulse. The collected Vtemp data are close
to a uniform distribution, which implies that the stochastic
hole movement in the CNT network exhibits true random-
ness and is not determined by a specific physical mecha-
nism. Therefore, the intrinsic cycle-to-cycle variation of the
temporal ID response can be used as a physical source of
randomness for TRNG implementation. The driving current
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FIGURE 3. Implementation of the TRNG. (a) Schematics of the measurement setup. (b) Circuit diagram of the TRNG. (c) Timing
information of the VG pulse train, clock signal, and output of the TRNG. (d) The result of the NIST randomness test, where all tests
were passed.

required for a temporal ID switching (of the order of sev-
eral tens of nanoamperes, as shown in Fig. 1c) is smaller
than that required by prior volatile memristors (typically
exceeding 1 µA [7], [11]), thereby exhibiting great potential
for low-power TRNG implementation. In addition, volatile
memristors have poor thermal stability because temperature
critically affects ion movement [20]; however, the electronic
process attributed to the hole trapping/detrapping in the CNT
network exhibits better thermal stability and higher relia-
bility [9], [21]. Furthermore, the CNT network is formed
by a simple solution process and offers excellent CMOS
compatibility.

Fig. 3a presents our experimental setup, in which the
TRNG operation was implemented by integrating the CNT
network transistor with a simple circuit built on a breadboard.
The CNT network transistor crossbar array (see Methods
and Supporting Information Note 2) was connected to the
circuit through a switching matrix. The pulse generator gen-
erated the VG pulse and the clock signal, and the power
supply generated the reference voltage for the comparator.
The random bitstream output from the TRNG was monitored
using an oscilloscope. To demonstrate the TRNG operation,
we exploited a comparator and a shift register (Fig. 3b).
Because the Vtemp response to the VG pulse has an intrinsic
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variation (Fig 2b), a random bit of ‘‘0’’ (0 V) or ‘‘1’’ (5 V) can
be generated by comparing Vtemp with a specific reference
voltage (e.g., Vref = 1 V) via the comparator. As shown
in Fig. 3c, we designed the VG pulse train with a width
of 50 ns and a spacing of 0.2 ms (i.e., a frequency of 5 kHz).
The clock signal also had the same frequency as the VG pulse
train but was not in phase, with the rising edge being delayed
by 10 µs from each VG pulse. Consequently, a random bit
was determined by the sampled Vtemp value 10 µs after each
applied VG pulse. Subsequently, the shift register generated
a continuous random bitstream (VOUT) based on the rising
edge of the clock signal. To assess the randomness of the
generated bitstream, we performed the NIST randomness
test [22] for 50 sequences of 106 bits. Fig. 3d presents the
results of 15 NIST tests, where each test was considered to
have been ‘passed’ if the P-value was greater than 0.01 and
the pass rate exceeded the minimum value defined by NIST.
Notably, all 15 NIST tests were passed, and the bit gener-
ation rate obtained for our TRNG was 5 kb s−1, which is
sufficient for several encryption applications [23]. Our TRNG
achieved a generation rate (5 kb s−1) similar to those of pre-
vious volatile memristor-based TRNGs (bit generation rate=
16 kb s−1) [9] without the help of additional peripheral cir-
cuits (i.e., a nonlinear feedback shift register circuit), exhibit-
ing good potential for low-power TRNG implementation.

III. CONCLUSION
We demonstrated a TRNG using stochastic carrier trap-
ping/detrapping processes in a randomly distributed CNT
network. By appropriately biasing the CNT network transis-
tor to have a temporal ID response, stochastic cycle-to-cycle
variation was be exploited to generate a random bitstream.
Notably, this electronic process in the CNT network tran-
sistor exhibits lower power consumption and higher reli-
ability than previous memristor-based TRNGs. Moreover,
solution-processed CNT networks are compatible with exist-
ing CMOS technology. The output bits generated by the
TRNG passed all the NIST randomness tests without using
additional complex circuits. This study provides a pathway
for the development of low-cost and energy-efficient security
devices in the IoT era.

IV. EXPERIMETNAL SECTION
A. FABRICATION OF CNT TRANSISTOR CROSSBAR ARRAY
CNT transistors were fabricated on p-doped rigid silicon
substrates with a 50 nm thick thermally grown SiO2 layer.
To form the local back-gate used to modulate the channels
in the CNT transistors, a Ti layer with a thickness of 20 nm
was deposited via e-beam evaporation and patterned using
a subsequent lift-off process. An Al2O3 layer (thickness of
40 nm) and a SiO2 layer (thickness of 10 nm) were then
deposited sequentially by atomic layer deposition to form a
gate insulator. The top surface of the SiO2 layer was then
functionalized with a 0.1 g/mL poly-L-lysine solution for
20 min to form an amine-terminated layer which acted as
an effective adhesion layer for the deposition of the CNTs.

The CNT network channel was then formed by immers-
ing the chip into a 0.01 mg/mL 99% semiconducting CNT
solution (NanoIntegris, Inc.) for eight minutes at 100 ◦C.
The source/drain electrodes—consisting of Ti and Pd layers
(2 nm and 30 nm, respectively)—were then deposited and pat-
terned using conventional thermal evaporation and a lift-off
process, respectively. Thereafter, additional photolithography
and oxygen plasma etching steps were conducted to remove
the excess CNTs, i.e., those not in the channel area, thereby
isolating the devices from one another. Finally, to form the
crossbar array, Cu (thickness of 80 nm) and SiOx (thickness
of 150 nm) were sequentially deposited and patterned to form
the metal line and the dielectric interlayer, respectively.
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