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ABSTRACT

This paper presents a new edge relaxation algorithm that
enhances the noisy boundary informations in image. The
proposed algorithm employs relaxation process that reduces
or even eliminates ambiguities of derivative operator
response via contextual informations. The contextual
informations are the neighborhood patterns of a central
edge which are estimated using fuzzy pattern matching
technique. The algorithm is developed on crack edges.
Experimental results show that the proposed scheme is
effective even for noisy images or low contrast images.

- INTRODUCTION

Basically, an idea underlying most edge detection
techniques is to convolve an image with a local derivative
operator that evaluates the derivative of image intensity
within local neighborhood. A variety of derivative operators
have been defined in the literature (refer to [1-3] for
review). Ideally, derivative operator should strongly
respond to only pixels lying on the object boundary,
changes in surface orientation or material properties. In
practice, noise contained in input scene or texture internal
to a region makes the relationship between a derivative
operator response and the existence of an edge element
ambiguous. That is, strong response may occur when no
boundary segment is present, and vice versa. To overcome
the problem, decisions regarding the existence of boundary
segments should not be made purely at the local level, but
instead should be delayed until contextual information can
be brought to bear on the decision, thus reducing
ambiguities sufficiently.

An ambiguity-reduction operation, which is called a
relaxation process, was formulated by Rosenfeld, Hummel
and Zucker[4]. They showed that ambiguities can be
reduced, or even eliminated by using contextual
information. Since the formulation of this relaxation
process, many different relaxation techniques have been
applied to various areas, such as scene labelingf4], line
detection{5], region merging[6] and template matching(7].
Zucker, Hummel and Rosenield[5] applied the relaxation
process to detect smooth lines and curves in noisy, real
world image. the algorithm has a drawback in that the
proportionality relationships between the compatibility
coefficients, which are defined between the labels, must be
dramatically changed to favor the specific circumstances in
particular applications. Hanson and Riseman[6] proposed
an edge relaxation technique that attempts to overcome the
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above limitation. They generalized the notion of a label to
that of a pattern defined over the neighborhood, not to that
of a neighboring edge. The approach gives a significant
improvement over earlier approaches. Prager(8] deveIoPed
an alternative edge relaxation algorithm that is a moditied
form of Hanson and Riseman's scheme. It has a difficulty in
that the updatin% constant k should be well tuned
considering that a large value for k gives fast convergence,
but does not permit information to propagate far, and vice
versa. Leung and Li[9] presented several parallel aigorithms
for edge relaxation on array processors with different
numbers of processing elements connected by a mesh or
hypercube network. %‘he schemes make modifications to
Prager's scheme so that no multiplications are employed
and only integer operations are required. It is a common
drawback in the aforementioned techniques that the
classification of neighborhood pattern is performed through
the approaches based on probabilistic theory or two—valued
logic, even if the notion of an neighborhood pattern is not
defined precisely.

This paper presents a new edge relaxation algorithm that
enhances boundary informations. The motives of the
proposed algorithm are in the classification of neighborhood
pattern using fuzzy technique, and its application to edge
enhancement. There are two reasons for usin% fuzzy
technique in estimating the neighborhood patterns. First, it
provides a convenient mechanism for roughly representing
the concept of an object using natural language. Typically
each vertex type can be described by using imprecise
linguistic terms, even if it is impossible to accurately
characterize the vertex type. Secondly, it is also
computationally simple because it requires only simple
operations, maximum, minimum and complement.

To investigate the validity of the proposed algorithm, a
series of experiments are conducted for the images
contaminated with noise. Section 2 provides some
considerations in edge representation for relaxation. Section
3 proposes the fuzzy rule-based relaxation algorithm.
Section 4 exhibits the experimental results and discusses.
Finally, a conclusion is presented in Section 5.

D TATIO

The standard technique for edge detection is differentiation
of intensity in local area that is to convolve edge masks
with the image. The resulting outputs, edge strengths
and/or directions, are usually associated with the central
pixel in the local window. An edge represented in this way
exhibits the following characteristics (Consider the Kirsch



derivative operator with eight possible orientations and
placements of an edge as standard operator):

]; An edge passes through a pixel.

2) An edge has an ambiguous location and orientation
on array of pixels.

33 There are multiple indications of a single local edge.

4) Competition between edges causes an interesting edge
to be suppressed by another edge in the vicinity.

These complexities are overcome by the choice of interpixel
representation of horizontal and vertical edge, which is
called crack edge, depicted in Fig.l (See Fﬁ] for more
detailed discussions). This representation has been used in
some early works on edge relaxation[8] and region
growing(6]. In this representation, the possible locations of
edges are clearly defined and each edge has a unique
position and orientation with respect to the pixels from
which they are obtained. Thus, this greatly facilitates
further processing, such as relaxation and curve fitting.

To generate the crack edge, let S(i,j) denote the strength of
crack edge at position %i,j). The strength of an edge is
determined by computing the absolute difference in average
i}l}t‘ensity levels between two local areas sharing each other.

en,

S(i,j+1) = |A(L) - A(i,i+2)]
and S(i+1,5) = |A(L,j) - AG+2.j)|

are the strength of a horizontal edge and a vertical edge
respectively. Herein, G(i,j) denotes a grey level of intensity
at position (i,j), and average intensity level A(i,j) is defined
as follows:

A(L,)) = {G(1,)+G(i+1,)+G(1,j+1)+G(i+1,j+1)} /4.
Fig.2 depicts the detailed procedure for generating crack

edges. The proposed edge relaxation algorithm, which will
be described in next section, operates on this crack edge.
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Fig.1. Representation of the crack edges (horizontal line

and vertical line between pixels denote crack edges :
horizontal edge and vertical edge respectively).
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Fig.2. Generation of the crack edges

3 EDGE RELAXATION ALGORITHM

3.1. A brief review of relaxation process

A brief review of key ideas of relaxation processes will be
given in this subsection (refer to [4,6,10] for more detailed
discussions). Relaxation operates on objects with labels
attached to them. Some labels are strengthened and some
are weakened or eliminated through the use of
approximately defined compatibility relationships between
labels. Let a = {ay,aa," " -,an} be a set of objects. Let A =
{A1, A2, - -, An} be a set of labels which indicate possible
interpretations for these objects. A probability Pj(Ax) is
attached to each label where Ay is the correct label for the
object a;j. The relaxation process updates the estimated
probabilities in an iterative manner. Pi(Ay) will be
increased (or decreased) by label X, if the labels are
compatible (or incompatible), where the effect of this
change is weighted by Pj(A1). Compatibility is defined in
terms of a function rjj:
Tij{ Ak, A1) > 0 if Ax and Ay are compatible,
< 0 if Ax and Aj are incompatible,

Tii{ Ak, A1
o = 0 if Ax and A; are independent.

Tij( Ak, A1

The updating process can now be expressed in'terms of
these compatibility functions. Let Q;t(Ax) represent the
correction applied to P;t(Ak) in the (t+1)st iteration to
obtain Pi“l(/\k):

Pit(Ag)[1+Qit(Aw)]
Pivl(,\k) =

B PeOWI+Q]

where the correction is defined as follows:
Qit(W) = B[ £ risu Py

The coefficients dj; weight the total influence that object a;
can have on a;, subject to £di; = 1. The relaxation process
operates in this way until limiting values are obtained for
the label probabilities.

Now we will look at the application of this relaxation
process to edge enhancement. Let us consider the crack
edge representation. The relaxation is very much simplified
as a result of this representation. There will be only two
labels at each edge position, "edge" and "noedge". The two
labels may be regarded as competing at each edge position
during relaxation. To determine the probability of both
labels, only a single probability, Pi(edge), is necessary since
Pi(noedge{ = 1 — P;{edge). Now let Pjt represent P;t(edge).
Then we can derive the following equation for computing
Pitrt:

Pit{1+Qi]
14PQt

Pt =

where Q;t is the correction for an edge at the position i.

3.2. The proposed edge relaxation algorithm

We propose a new edge relaxation algorithm which utilizes
fuzzy logic for estimating the neighborhood patterns. This
algorithm was designed to operate on crack edge, but can
be easily extended to some different types of edge
representation. First, the edge strengths are normalized by
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the maximum value over an entire image. Then, the edge
strengths are always in the range [0,I]. We regard the
strength of edge at position (i,j) as the probability or
confidence Pj; that the edge exists at the position. The
overall strategy is to update the probability, or the edge
strength, in an iterative manner based on the recognition of
some local neighborhood patterns. Fig.3 shows the overall
configuration of the proposed scheme. The smallest
meaningful neighborhood for an edge is shown in Fig.4,
where e denotes the strength of a central edge, and
ab,cfghuyv denote the strengths of the neighboring
edges, tespectively. We will generate the algorithm on the
basis of the neighborhood defined, as shown in the figure.
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Fig.3. Overall configuration of the proposed scheme
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Fig.4. Local neighborhood (A thick line denotes a central
edge, and its strength is represented by e.)

Definition of vertex types

Every edge position has two endpoints, or vertices at which
the edge could continue. Each edge endpoint will be
classified as one of four vertex types, as shown in Fig.5.
The vertex type is denoted by an integer p in the range
0-3, representing the number of strong neighboring edges.
A vertex type is considered equivalent no matter which of
the three possible edge position that they take.

Estimation of vertex type based on fuzzy technique

The vertex types of the endpoints of the edge position
under examination determine how the edge strength is to
be updated. Each edge is associated with a numerical value

(2} Type 0 — =
i
|
{b) Type t -—lzl - I:J
H !
4
(c) Type 2 —I:: ~I:| -
i I i
(d) Type 3 —l|::
1
Notation : ------ no edges
w  edge

= central edge to be updated

Fig.5. Vertex types of central edge (Three cases in (b) and
(c) are considered equivalence classes, respectively.)

in the ranlge of [0,1], representing the probabilities of the
presence of an edge. The vertex types would be determined
as a function of the probabilities of three edges to either
side. However, there does not a universal formulation
capable of precisely classifying the vertex types since the
notion of vertex type dose not permit a precise definition.
Therefore, the conceptual structure of the theory of fuzzy
sets may well provide a more natural formulation for the
vertex type classification than the traditional approach
based on two—valued logic. This is a motive from which we
utilize the fuzzy logic as a technique for estimating the .
confidence of the vertex being each vertex type. In
particular, we employ a fuzzy pattern matching technique.
Suppose one of the vertices of a central edge has three
neighboring edges with its strengths a,b and ¢ in Fig.4.
Perpendicular continuation is treated equivalent to
stra{)ghtline continuation. Therefore, we can assume that
a2b2c.

First, in order to account for the natural imprecision
inherent to the edge strengths, linguistic representations
are used for the edge strengths. In a word, we consider the
three edge strengths a,b,c as linguistic variables. Note that
the three edge strengths are normalized by the following
scaling factor m before the fuzzification of them:

m = MAX(a,q)

where MAX(-) is 2 maximum value of the variables inside
the parenthesis and q is a lower bound for m. This
operation will anchor m to some minimum value q when all
incident edges have very low strengths. Each linguistic
variable is assigned fuzzy membership functions which are
fuzzy subsets. Two membership functions of these linguistic
variables are defined as depicted in Fig.6. All the
membership functions are defined in the universe of
discourse ranging over [0,1], which is assumed to be
continuous. They are named as "BIG" and "SMALL",
respectively, to denote the notion of edge strength.

Second, the characteristic of each vertex type is described
using the predefined sets of linguistic variables. The rules
used to describe each vertex type in our problem are as
follows:

Rulel : if (a is SMALL and b is SMALL and c is SMALL)
then (class of vertex is type 0)

Rule2 : if (a is BIG and b is SMALL and c is SMALL)
then (class of vertex is type 1)

Rule3 : if (a is BIG and b is BIG and ¢ is SMALL)
then (class of vertex is type 2)
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Rule4 : if (a is BIG and b is BIG and c is BIG)
then (class of vertex is type 3)

Finally, we compute the degrees to which the input pattern
of a vertex is similar to the standard patterns about each
vertex. We will introduce ps(-) and up(-) to represent the
degree of membership of the linguistic variables inside the
parentheses to the membership functions "SMALL" and
"BIG", respectively. If we let D; denote the degree of
similarity between the input pattern of vertex and the
standard pattern about vertex type i, then the Dj's are
estimated by the above four rules, respectively, in the
following manner:

Do = MIN(us(a ,usﬁb%,usﬁc
Dy = MIN(pbla),us(b),pus(c
Dy = MIN(pp(a ,ﬂbib;,l‘s(c))
D3 = MIN((a),un(b),pn(c))

where MIN(+) is a minimum vale of the variables in the

parenthesis. The same procedures are employed for
computing the dj's of the other vertex.

| [ sMaL  BIG

Hy, Ks

edge strength "

Fig.6. Membership functions for strengths of neighboring
edges (a,b,c,f,g and h)

Computation of contextual patierns

Since the goal of our study is to extract continuous
boundary segments, the patterns should focus on those
conditions which support or inhibit the assumptions that
the central edge is a part of a global boundary. The
probability of a central edge will be updated via contextual
informations which are represented by neighborhood
patterns. Let us use the notation i—j to denote the
neighborhood pattern where the vertex types at both
endpoints of a central edge are i and j, respectively.

As a matter of convenience i~j and j-1 will be considered as
an equivalence class. Then, only cases 0-0 through 3-3
shown in Fig.7 are the possible neighborhood patterns. If
we use the notation P) to represent the confidence of an i-j
vertex pair where index 1 denotes the serial number of i-j
vertex pair, then Py is computed in the following manner:

P, = MIN(D;,D;)  forl=1,---,10.

Note that i < j when the index i is changed from 0 to 3.

Updating of edge probabilities

Now, it only remains to update edge probabilities through
the modified relaxation process. The compatibility
coefficients are between the labels of 1th neighborhood
pattern and the labels of central edge. Thus, rj; is replaced
by a weight wj which determines the effect that the pattern
1 should have on central edge. A w) is assigned a value
ranging over [-1,1] determined according to the edge
semantics, as shown in Fig.7. Fig.7(a) should be inhibited,

i.e.,, in the absence of any additional information, the
probability of a central edge should be reduced. Fig.7(b)
and Fig.7(c) should be also inhibited so that unnecessary
spurious lines do not grow out. In Fig.7(d) no updating
should take place because it is dependent on a wider
context. It is clear that Figs.7(e)—(g) support e. The
clearest case is for 1-1 case, where e is necessary for good
line continuation. The last three Figs.7(h)—(j) should not be
inhibited or supported because the presence or the absence
of e does not affect good line continuation. For supporting
cases wy should aptproach 1, for inhibiting cases wj should
approach -1, and for uncertain case w) should be near 0.
Now total contribution, or the correction, Q is defined as a
linearly weighted sum of the confidence of the n patterns:

Q= lnglt = ]glmpl‘

Finally, we obtain a new probability of a central edge, Pt*1,
in the following manner:
PY1+Q1

1+PtQt

P+t

This approach could be generalized to larger neighborhood.
There is one more condition that must be considered:
parallel edge suppression. Wide gradients give rise to
multiple paraliel indications of the same edge. A simple
technique for eliminating these unwanted edges is a
nonmaximal suppression: All but strongest are eliminated.
The relaxation is performed after this parallel edge
suppression is finished.

In summary, the proposed edge relaxation algorithm can be
described as follows:

step 2) t = 1.

step 3) Compute confidence of each vertex type based on
strengths of neighboring edges.

step 43 Compute confidence of each neighborhood pattern.

step 5) Update the edge strengths through relaxation

step 1% Obtain initial edge strengths.

rocess.

step ﬁg If a maximum number of iterations is reached, or
all edge strengths converge to 0 or 1, then stop.
Otherwise, increment t to t+1 and go to step 3).

(. . | |
————— - - = _w-
| 1
(a) 0-0 (b) 0-2 {e) 0-3
Pt i1 i1
e — 1 - e [ I ==RE - CO s
P i | i l i l
{d) 0-1 {e) 1=t () 1-2 (g) 1-3
..... l:.l- -I:D: —lz: -
[ il
(h) 2-2 (i) 2-3 (i) 3-3

Fig.7. Neighborhood patterns
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4. EXPERIMENTS

4.1 Experimental setup

The experimental system comprises three units; a camera
set, an image frame grabber and a computer system. For
acquisition of images, we have used a CCD TV camera
with a resolution of 764 x 491 interlaced pixels. A lense
system with focal length of 16mm has been used. The video
signal from the CCD TV camera is sampled into 512 x 512
pixels and digitized into 8-bit number(256 grey levels)
using the image frame grabber FG-100-1024, which is a
single-board image processor. An IBM-AT 386 PC has
been used for reading the image data stored in the picture
memory of the frame grabber, performing image operations,
analyzing the processed informations and displaying the
results. The proposed algorithm has been implemented in
C-language and linked with ITEX 100, which is a library of
image processing subroutines written for use with the frame
grabber FS-100-1024.

4.2 Experimental results and discussions

The test is performed on the images with grey level
intensities and 128 x 128 pixels shown in Fig.8. Fig.8(a)
shows the original image used for evaluating the capability
of the proposed algorithm. Figs.8(b) and (c) represent the
image embedded in a white gaussian noise with zero mean.
In (b) and (c) of the figure, the signal to noise ratio(SNR},
defined as the ratio of the amplitude of the step to the
standard deviation of the noise at each pixel, are 0.2 and
0.4, respectively. The results of operation of the proposed
algorithm on the noisy images are represented in Figs.9 and
10. Fig.9 represents the enhancment results of Fig.S%b)
while Fig.10 represents those of Fig.8(c). Shown in Fig.9(a)
and Fig.10(a) is the crack edge image differentiated using 2
x 4 operator described in section 2 and thinned by
non-maximal suppression. Herein, the brightness of a pixel
encodes the strength of the edge which has been
normalized to a zero—one range by the maximum strength
edge over the entire image. The results after iterations,
several are shown in (b)—(d) of the figures, respectively.
The results show that the added white gaussian noise was
drastically reduced or even perfectly eliminated, while
preserving the useful boundary information.

(a) {b) {c)

Fig.8. Test images. (a) original image. (b) test image added
in white gaussian noise with SNR = 0.2. (c) test image
added in white gaussian noise with SNR = 0.4.

PN
L)
>/
(b)
(d)

Fig.9. Results of the relaxation on the test image shown in
Fig.8(b). (a) thinned and normalized edge image. b% result
after first iteration. (c) result after 3rd iteration. (d) result
after 7th iteration.

(d)

Fig.10. Results of the relaxation on the test image shown in
Fig.8(c). (a) thinned and normalized edge image. (b) result
after first iteration. (¢) result after 3rd iteration. (d) result
after 7rd iteration.

5. CONCLUDING REMARKS

This paper describes an edge enhancing method that
utilizes relaxation process and a fuzzy logic—based decision
making scheme to estimate neighborhood patterns of an
edge. The basic motivation behind this method lies in the
premise that ambiguities of edges can be reduced using
contextual information and the notion of fuzzy sets can well



characterize the neighborhood patterns, which are used as
contextual information in our study. In computing
neighborhood patterns, the fuzzy rules replace the
mathematical formulas based on two-valued logic.

The proposed algorithm has shown the ability to eliminate
the false edge resulted in derivative operator. In addition,
the algorithm is capable of detecting the weak edge on the
low contrast boundaries and bridging the small gap
between pixels on boundaries.
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