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A matched filter (MF) is one of the most widely used detectors for the
detection of chemical agent (CA) clouds in the passive hyperspectral
imaging system. To improve the detection performance of the MF, a
linear cooperation scheme that allocates cooperation coefficients to the
spectra of the neighbouring pixels is proposed. The optimal cooperation
coefficients, which removes noise signatures whilst minimising the dis-
tortion of CA signatures, are acquired by finding the maximum likeli-
hood estimator of the cooperation coefficients. It is proved that a moving
average scheme that assigns the same coefficients is the optimal coop-
eration scheme. Finally, a cooperative MF with the optimal cooperation
scheme is designed. It is demonstrated that the proposed cooperative
MF is capable of robust detection performance via outdoor experiments
with actual CA data measured by a Bruker HI-90 instrument.

Introduction: A Fourier transform infrared (FTIR)-based passive hyper-
spectral imaging system (HIS) becomes one of the key technologies for
the detection of chemical agent (CA) clouds. The FTIR-based passive
HIS sensor can measure the spectrum in each pixel for the instantaneous
corresponding field of view at a standoff distance without an additional
light source and can detect CA clouds in the atmosphere [1]. Many algo-
rithms have been proposed to detect the CA signature by analysing spec-
tra in the hyperspectral image (HSI) and to visualise the CA cloud [1–5].
Among the many detection algorithms developed thus far, the matched
filter (MF) is considered to be a simple and powerful detection algorithm
[2]. However, given the small light received at each pixel, the spectrum
of each pixel has a low signal-to-noise ratio (SNR). As a result, the per-
formance of these detection algorithms is limited.

In the HIS, the spectra of adjacent pixels have similar spectral data but
different noise signatures. By combining spectra of neighbouring pixels,
noise signatures in each spectrum can be reduced, and then the SNR
can be improved. Several schemes that cooperate with spectra of neigh-
bouring pixels have been proposed. There are two types of cooperation
schemes, the hard and the soft cooperation schemes. The hard coopera-
tion scheme, which merges the detection results of neighbouring pixels,
is easy to implement [6]. The OR-rule, AND-rule, and majority rule be-
long to the hard cooperation scheme. But performance improvements
are limited since each detection result is distorted by noise signatures in
each pixel.

On the other hand, the soft cooperation scheme, which fuses the spec-
tral data of neighbouring pixels, shows improved detection performance
because it mitigates noise signatures in the spectra. The Gaussian fil-
ter (GF) and maximum noise fraction (MNF) are typical soft cooper-
ation schemes [7, 8]. The GF is a soft cooperation scheme that assigns
weights to spectra of neighbouring pixels according to the Euclidean dis-
tances between the centre and neighbouring pixels. The MNF is also a
soft cooperation scheme, which reduces noise signatures by projecting
the spectra into a less noisy subspace obtained using spectra of neigh-
bouring pixels. However, given that these soft cooperation schemes only
focus on removing the noise, they cause distortion of the CA signature.
Therefore, it is necessary to retain the CA signature as well as minimise
the noise signature.

In this study, we propose a linear cooperation scheme that assigns co-
operation coefficients to neighbouring pixels. To optimise cooperation
coefficients that minimise the noise signature whilst conserving the CA
signature, we acquire the maximum likelihood estimator (MLE) of the
cooperation coefficients. Then, we prove that the optimal linear coopera-

tion scheme is a moving average scheme, which allocates identical coop-
eration coefficients to the spectra of adjacent pixels. Finally, we design
a cooperative MF. We conduct outdoor experiments with actual CA data
measured by a Bruker HI-90 instrument. These experiments demonstrate
the more accurate detection capabilities of the cooperative MF compared
to those of other cooperation schemes.

Conventional MF: We briefly introduce the MF widely used for the re-
mote detection of CA clouds. The FTIR-based passive HIS sensor mea-
sures light radiated from the background and that passes through the CA
cloud and the atmosphere. Then, it generates HSI data with a spectral
resolution of p channels and a spatial resolution of m × n pixels. From
the linear mixing model [1], the spectrumx ∈ R

p of a pixel in the mea-
sured HSI can be represented:

H0 : x = v,

H1 : x = Sg + v.
(1)

where H0 and H1 correspond to hypotheses stipulating the absence
and presence of target CA clouds, respectively.

In Equation (1), S = [s1, . . . , sNr ] ∈ R
p×Nr is the CA signature ma-

trix, which consists of the CA signature vector sr ∈ R
p, for r = 1, …,

Nr. Here, Nr is the number of target CAs and p is the number of channels.
In the experiment, the number of target CAs is set to seven, Nr = 7. The
target CAs are sulfur hexafluoride (SF6), freon, tabun, sarin, mustard
gas, methanol and triethyl phosphate. Each standard absorption spec-
trum of each target CA, which is established in the National Institute of
Standard and Technology [11], is used as the target CA signature vector.
The CA intensity vector is g = [g1, . . . , gNr ]

T ∈ R
Nr . The background

clutter v ∈ R
p, which represents the summation of the background sig-

nature and noise follows a multivariate Gaussian distribution with mean
m ∈ R

p and covariance C ∈ R
p×p, i.e., v ∼ N(m, C). Using the gener-

alised likelihood ratio test (GLRT), the test statistic TMF(x) of the MF is
given as follows [2]:

TMF (x) = [
(x − m)T C−1S

] [
ST C−1S

]−1 [
ST C−1(x − m)

]
. (2)

Conventional matched filter: We introduce a linear cooperation scheme
that assigns cooperation coefficients to the spectra of neighbouring pix-
els. Let X = [x1, . . . , xk] ∈ R

p×k be the cooperation spectrum set,
which consists of the spectrum x1 of the centre pixel and k − 1 spec-
tra of pixels adjacent to the centre pixel. Let Xa represent a cooperation
spectrum, which is a linear combination of the spectrum set X. Here,
a = [a1, . . . , ak]T ∈ R

k is a cooperation coefficient vector. Because
the spectra of adjacent pixels have similar spectral data in the HSI, we
assume that if the spectrum x1 is the CA spectrum, adjacent spectra are
also CA spectra. Otherwise, they are all background spectra.

Proposition 1. If the cooperation coefficient vector a satisfies the equa-
tion a1 + ��� + ak = 1T a = 1, the cooperation spectrum Xa|Hi, for
i = 0, 1 follows a Gaussian distribution as expressed below.

Xa|H0 ∼ N (m, aT aC), (3)

Xa|H1 ∼ N (Sg + m, aT aC). (4)

Proof: Since the background clutter v is a Gaussian random vector
with mean m and covariance C, all spectra in X are Gaussian random
vectors with mean mi, for i = 0, 1, and covariance C. Here, m0 is m,
and m1 is Sg + m. Then, Xa follows a Gaussian distribution due to the
central limit theorem. If a satisfies a1 + ��� + ak = 1T a = 1, the mean
vector mXa|Hi of Xa|Hi is obtained as

mXa|Hi = (a1 + · · · + ak )E(xk |Hi) = mi. (5)

Assuming that each spectrum in X is independent and identically dis-
tributed, the covariance matrix CXa|Hi of Xa|Hi is also obtained as

CXa|Hi = E (Xa − mi|Hi) (Xa − m|Hi)
T

= (
a2

1 + · · · + a2
k

)
C = aT aC. (6)
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The likelihood function of Xa under Hi, for i = 0, 1 is represented
as

P( Xa| H0) = ρ exp

[
− 1

2aT a
(Xa − m0)T C−1 (Xa − m0)

]
,

P( Xa| H1) = ρ exp

[
− 1

2aT a
(Xa − m1)T C−1 (Xa − m1)

]
,

(7)

where |C| is the determinant of C and ρ =
√

1/(2πaT a)p|C| .

Cooperative matched filter: The goal here is to find the optimal cooper-
ation coefficient vector that mitigates the noise signature of the cooper-
ation spectrum whilst minimising the distortion of CA signatures. Since
the optimal cooperation coefficient vector maximises likelihood proba-
bility, we obtain the MLE, which maximises the likelihood probability
P(Xa|H1) of the cooperation spectrum vector Xa under H1.

Proposition 2. The optimal cooperation coefficient vector is â = 1/k.
Proof: Define Q as the log-likelihood probability of the cooperation

spectrum under H1. We find the MLEs of g and a, which maximise Q.
Given that the cooperation coefficient vector a satisfies the equation
1Ta = 1, we define the following optimisation problem as

max
g,a

Q = lnP( Xa| H1)

subject to1T a = 1.

(8)

We can solve the Equation (8) using the Karush—Kuhn–Tucker con-
ditions, which are necessary conditions for a solution to an optimisation
problem [9].

First, we set the Lagrangian function for Equation (8) as follows:

L (g, a, v) = − 1

2aT a
(Xa − Sg − m)T C−1 (Xa − Sg − m)

− p

2
ln(2π ) − p

2
ln(aT a) − 1

2
ln|C| − v(1T a − 1),

(9)

where ν is a dual variable. Then, we obtain ν̂, ν̂ and â satisfying ∂L
∂g =

0, ∂L
∂ν

= 0, and ∂L
∂a = 0. From ∂L

∂g = 0,ĝ is determined as

ĝ = (ST C−1S)−1ST C−1(Xa − m). (10)

Next, the equation 1Ta = 1 is derived from ∂L
∂ν

= 0.
Finally, we substitute ĝ into ∂L

∂a = 0 as follows:

∂L

∂a
= − a

(aT a)2 mT A (Xa − m) − pa

aT a
− v · 1 = 0, (11)

where A = C−1 − C−1S(STC−1S)−1STC−1. By multiplying aT by Equa-
tion (12), the optimal dual variable ν̂ is determined as follows:

v̂ = mT Am − paT a − mT AXa

aT a
. (12)

By substituting ν̂ into Equation (12), we acquire the following equa-
tion:

1

aT a

( a

aT a
− 1

) (
mT Am − paT a − mT AXa

) = 0. (13)

There are two solutions for Equation (13): Singular and regular solu-
tions. The singular solution, which makes ν̂ = 0, is a vector a that sat-
isfies both mTAm − paTa − mTAXa = 0and 1Ta = 1. However, the
singular solution is the minimum solution for Q. The regular solution,
which is a solution of a

aTa − 1 = 0, is a = 1/k. Given that the regular
solution is the maximum solution for Q, the optimal cooperation coeffi-
cient vector â is 1/k.

Proposition 2 implies that the optimal linear cooperation scheme is a
moving average scheme, which allocates identical weights to all spectra
in the cooperation spectrum set. At this point, we design the cooperative
MF with the optimal cooperation scheme. Applying the GLRT to the

Fig 1 Charge-coupled device image of hyperspectral image used in experi-
ment

Table 1. Average log-likelihood probability, Q

Single Gaussian filter
Maximum noise
fraction

The proposed cooperation
matched filter

Q − 409.51 − 351.46 − 336.60 − 307.92

cooperation signal model, we derive the test statistic TCoMF(X) of the
cooperative MF as follows:

TCoMF (X) = 1

k

[
(X · 1 − km)T C−1S

] [
ST C−1S

]−1

· [ST C−1 (X · 1 − km)
]
.

(14)

If TCoMF(X) exceeds the detection threshold λ, the pixel correspond-
ing to the centre spectrum x1 in the cooperation spectrum set is classified
as a CA cloud pixel. Otherwise it is determined as a background pixel.

Experimental results: We describe the experiments conducted to com-
pare the proposed cooperation scheme with other cooperation schemes
on real HSI data measured by an HI-90 equipment manufactured by
the Bruker Corporation. The HI-90 equipment provides HSI data with
a spectral resolution of 3.2 cm−1 from 903 cm−1 to 1264 cm−1 with 128
channels and a spatial resolution of 128 × 128 pixels [10]. The exper-
imental scenario is one in which the SF6 gas was sprayed into the air
with a grass field as the background. Figure 1 shows the charge-coupled
device image of the HSI used in the experiment. The blue box shows the
area of the HSI, and the red pixels represent the area in which the SF6

cloud exists. The SF6 gas area was obtained by applying several detec-
tion algorithms [1− 5] to the HSI and eliminating some outlier pixels.
The background statistics, that is, mean m and covariance C, are calcu-
lated from the HSI data measured before the spraying of the SF6 gas.

To evaluate how noise signatures are removed whilst minimising dis-
tortion of CA signatures, we obtain the average log-likelihood probabil-
ities Q for the cooperation spectra of the SF6 pixels according to several
cooperation schemes as shown in Table 1. There are four cooperation
schemes: A non-cooperation scheme (single), a GF, an MNF and the pro-
posed cooperation scheme. When all cooperation schemes are applied,
a 3 × 3 window, which maximises the effect of cooperation schemes, is
used. The single represents a non-cooperation scheme.

As shown in Table 1, the log-likelihood probabilities of the GF and
MNF are higher than that of the non-cooperation scheme because the
GF and MNF suppress noise signatures. The proposed cooperation
scheme has the highest log-likelihood probability since it minimises the
distortion of the SF6 signature. To compare the detection performances
of the MFs with several cooperation schemes applied, we present images
of the test statistics of the MFs with these schemes in Figure 2. The
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Fig 2 Images of test statistics. (a) Single matched filter (MF), (b) MF with
Gaussian filter, (c) MF with maximum noise fraction, (d) the proposed coop-
erative MF

Fig 3 Receiver operating characteristic curves of MFs with several cooper-
ation schemes

accurate detection algorithm results in a greater difference between
the test statistics of the background pixels and those of the SF6 pixels.
As shown in Figure 2(a), there is a slight difference between the test
statistics of the background and the SF6 pixels because the test statistics
of the SF6 pixels are not increased due to noise signatures. As shown
in Figures 2(b)—(d), the test statistics of the SF6 spectra are increased
considerably.

For a more objective-detection performance comparison, we obtain
the receiver operating characteristic curves of the MFs with several co-
operation schemes as shown in Figure 3. The majority rule is a hard
cooperation scheme that gathers the detection results for all spectra
in the 3 × 3 window and determines whether the centre spectrum is
the SF6 cloud spectrum or the background spectrum according to a
majority vote. As shown in Figure 3, the single MF shows poor de-
tection performance. The majority rule performs as well as the MNF.
The detection performance of the proposed cooperative MF is better
than those of the other schemes, which is in agreement with the re-
sults from the test statistics images shown in Figure 2. The experimental
results confirm that the proposed cooperative MF improves the detec-
tion performance by mitigating noise signatures whilst preserving SF6

signatures.

Conclusion: To improve an MF, which is one of the most popular al-
gorithms for detecting CA clouds, we proposed a linear cooperation
scheme that integrates the spectral data of neighbouring pixels. In the
proposed cooperation scheme, the optimal cooperation coefficient vec-
tor, which mitigates the noise signature and minimises the distortion
of the CA signature, was computed by maximising the log-likelihood
probability. It is proved that the optimal cooperation scheme is a mov-
ing average scheme, which allocates the identical cooperation coeffi-
cients. Finally, we designed the cooperative MF using the optimal coop-
eration scheme. The experimental result confirmed that the cooperative
MF has better detection performance than other cooperation schemes.
The cooperative MF can be widely adopted in various detection fields in
which conventional MFs can be applied. The future research is to study
schemes tracking CA clouds in sequentially measured HSIs for which
more complex cooperation schemes considering a time-varying condi-
tion like in [12, 13].
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