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Genomic footprints of activated telomere
maintenance mechanisms in cancer
Lina Sieverling 1,2, Chen Hong 1,2, Sandra D. Koser1,2, Philip Ginsbach3, Kortine Kleinheinz3,4,

Barbara Hutter 1, Delia M. Braun 2,5, Isidro Cortés-Ciriano 6,7,8, Ruibin Xi 9, Rolf Kabbe3,

Peter J. Park 6,8, Roland Eils3,4, Matthias Schlesner 10, PCAWG-Structural Variation Working Group,

Benedikt Brors1,11, Karsten Rippe 5, David T.W. Jones11,12,13, Lars Feuerbach1* & PCAWG Consortium

Cancers require telomere maintenance mechanisms for unlimited replicative potential. They

achieve this through TERT activation or alternative telomere lengthening associated with

ATRX or DAXX loss. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes

(PCAWG) Consortium, we dissect whole-genome sequencing data of over 2500 matched

tumor-control samples from 36 different tumor types aggregated within the ICGC/TCGA

Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium to characterize the genomic

footprints of these mechanisms. While the telomere content of tumors with ATRX or DAXX

mutations (ATRX/DAXXtrunc) is increased, tumors with TERTmodifications show a moderate

decrease of telomere content. One quarter of all tumor samples contain somatic integrations

of telomeric sequences into non-telomeric DNA. This fraction is increased to 80% prevalence

in ATRX/DAXXtrunc tumors, which carry an aberrant telomere variant repeat (TVR) dis-

tribution as another genomic marker. The latter feature includes enrichment or depletion of

the previously undescribed singleton TVRs TTCGGG and TTTGGG, respectively. Our sys-

tematic analysis provides new insight into the recurrent genomic alterations associated with

telomere maintenance mechanisms in cancer.
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Telomeres are nucleoprotein complexes at the ends of
chromosomes that prevent DNA degradation and genome
instability1. The typically 10–15 kb long chromosome ter-

mini are composed of long stretches of TTAGGG (t-type) repeat
arrays with an increasing number of variants toward proximal,
subtelomeric regions, the most common being TGAGGG (g-
type), TCAGGG (c-type), and TTGGGG (j-type) repeats2,3.

Telomeres play an important role in cellular aging, as they are
shortened with each cell division and finally trigger a DNA damage
response resulting in senescence4,5. To avoid this permanent growth
arrest, cells with unlimited proliferative potential need to extend
their telomeres. In humans, telomeric DNA is synthesized by tel-
omerase, an enzyme that is composed of the reverse transcriptase
TERT and the RNA template TERC. This complex is active in the
germline and stem cells, but absent in most somatic cells6. Telo-
merase is upregulated in ~85% of human cancers by different
genetic aberrations, including TERT amplifications7, rearrange-
ments8, or mutations in the TERT promoter9,10. The remaining
tumors employ an alternative lengthening of telomeres (ALT)
pathway, which is based on DNA recombination of telomeric
sequences11. Details on the ALT mechanism remain elusive, but
it has been associated with loss-of-function mutations in the
chromatin remodeling genes ATRX (α-thalassaemia/mental retar-
dation syndrome X-linked) and DAXX (death domain-associated
protein)12. Telomeres of ALT cells characteristically have hetero-
geneous lengths and contain a range of telomere variant repeats
(TVRs)13–15. Other hallmarks of ALT include ALT-associated
promyelocytic leukemia nuclear bodies, abundance of extra-
chromosomal telomeric repeats of various forms (such as C-circles),
and genome instability11,16.

While normally located at the chromosome termini, telomere
sequences are also found within chromosomes. As such, inter-
stitial telomeric sequences with large blocks of telomere repeats
exist in humans and other species, which probably arose from
ancestral genome rearrangements or other evolutionary events17.
Recently, also ALT-specific, targeted telomere insertions into
chromosomes have been described that lead to genomic instabil-
ity18. Another source for unexpected telomere repeat occurrence is
the stabilizing function of telomeres at broken chromosomes.
After a double-strand break, telomeres can be added de novo to
the unprotected break sites (“telomere healing”)19,20 or acquired
from other chromosomal positions (“telomere capture”)21,22.

The here presented study was conducted within the scope of
the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes
(PCAWG) Consortium, which aggregated whole-genome
sequencing (WGS) data from 2658 cancers across 38 tumor
types generated by the ICGC and TCGA projects. This data was
reanalyzed with standardized, high-accuracy pipelines to align to
the human genome (reference build hs37d5), and identify
germline variants and somatically acquired mutations, as descri-
bed in ref. 23.

Here, we characterize the telomere landscape of 2519 tumor
samples from 36 different tumor types using the WGS align-
ments, somatic mutation, and chromothripsis calls provided by
the PCAWG Consortium23,24. Besides determining telomere
content and searching for mutations associated with different
telomere maintenance mechanisms (TMMs), we systematically
detect 2683 somatic telomere insertions and show that different
TMMs are associated with the enrichment of previously unde-
scribed singleton TVRs.

Results
Telomere content across cohorts. Due to the repetitive nature of
telomere sequences, short sequencing reads from telomeres can-
not be uniquely aligned to individual chromosomes. However, a

mean telomere content for the tumor as a whole can be estimated
from the number of reads containing telomere sequences25. Here,
we extracted reads containing at least six telomere repeats per 100
bases, allowing the canonical telomere repeat TTAGGG and the
three most common TVRs TCAGGG, TGAGGG, and TTGGGG.
The telomere content was defined as the number of unaligned
telomere reads normalized by sequencing coverage and GC
content. Of the 2583 high-quality tumor samples available in
PCAWG, we selected those from donors with a single tumor
sample. From each donor, a control sample was available. In most
cases this consisted of a blood sample, but could also stem from
tumor-adjacent or other tissue23. The telomere content was
determined for the remaining 2519 tumor samples and matched
controls from 36 different tumor types. Several of these tumor
types were not covered in a recent pan-cancer overview of telo-
mere lengths26, including medulloblastoma, pilocytic astro-
cytoma, chronic lymphocytic leukemia, pancreatic endocrine
cancers, benign bone cancer, and osteosarcoma. All relevant
donor information and results used in this study are summarized
in Supplementary Data 1.

Telomere content of the controls anticorrelated with age
(r=−0.36, Spearman correlation; Supplementary Fig. 1a). How-
ever, this age effect only has a low contribution to the strong
correlation between the telomere content of the tumor and
control samples (r= 0.47 and rpartial= 0.46 given the patient age,
Spearman correlation, Supplementary Fig. 1b). Thus, the
association of tumor and control telomere content must mainly
be caused by other genetic27,28, environmental29, or technical
factors26. We normalized for these contributions by computing
the ratio of tumor and control telomere content per individual.

Most tumor samples had a lower telomere content than the
matched control (Fig. 1a). However, there were systematic
differences between the different tumor types. Among those with
the highest telomere content increase were osteosarcomas and
leiomyosarcomas (median telomere content tumor/control
log2 ratios= 0.7 and 0.6, respectively). A particularly low
telomere content was found in colorectal adenocarcinoma and
medulloblastoma (median telomere content tumor/control log2
ratios=−1.0).

Prevalence of TMM-associated mutations. Different types of
mutations in ATRX or DAXX, and at the TERT locus have been
associated with ALT and telomerase activation, respectively. We
therefore searched for these types of somatic mutations to infer
the active TMM in a given tumor. Somatic mutations in ATRX,
DAXX, or TERT were found in 16% of tumor samples. In total,
64 tumor samples had truncating ATRX (n= 53) or DAXX
alterations (n= 11), and are referred to as ATRX/DAXXtrunc in
the following analysis. Of note, 10 of the 11 DAXX alterations
were found in pancreatic endocrine tumors, while ATRX muta-
tions were seen in a wider variety of entities. An additional
46 samples had nontruncating ATRX/DAXX simple nucleotide
variants. TERT alterations (TERTmod) were detected in 270 of
the 2519 tumor samples (11%). The latter group comprised 198
activating C228T or C250T promoter mutations (of which 132
were obtained from the PCAWG simple nucleotide variant
consensus calls and the remaining were detected with a targeted
approach), 11 amplifications leading to at least six additional
TERT copies, 55 structural variations within 20 kb upstream of
TERT (TERTpSV), and 6 samples with more than one of these
modifications. Additionally, 18 tumor samples had both ATRX/
DAXX truncating or other missense mutations and TERT
alterations.

“Enhancer hijacking” near the TERT transcription start site (TSS)
has been described in neuroblastoma8 and has recently been
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Fig. 1 Telomere content is increased in ATRX/DAXXtrunc samples. a Overview of the telomere content distribution of all analyzed tumor types. The
number of samples in each tumor type is indicated. Cohorts with sample sizes <15 are not shown. b TMM-associated mutations in different tumor types.
c Telomere content in samples with different TMM-associated mutations. d TERT expression in samples with different TMM-associated mutations. The
center lines of the boxplots are the medians, the bounds of the boxes represent the first and third quartiles, the upper and lower whiskers extend from
the hinge to the largest or smallest value, respectively, no further than 1.5 × IQR from the hinge (where IQR is the interquartile range, or distance between
the first and third quartiles). ****p < 0.0001, Wilcoxon rank-sum tests.
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indicated in further cancer types26. In our data set, the strikingly
focal distribution of structural variations upstream of the TERT TSS
also points to this phenomenon (Supplementary Fig. 2). Further
evidence is given by the direct overlap of 40% (n= 25/62) of the
juxtaposed positions within 20 kb upstream of the TERT TSS with
enhancers from the dbSUPER database30. In contrast, only 13%
(n= 9/69) of the juxtaposed positions between 20 and 1000 kb
corresponded to a predicted super-enhancer. Besides in melanoma
(13% prevalence), chromophobe renal cell (9%), hepatocellular
(9%), bladder transitional cell (4%), biliary (3%), and renal clear cell
carcinoma (3%), previously undescribed TERTpSV in osteosarcoma
(9%) and stomach adenocarcinoma (1%) were found. Moreover, the
subtype-specific histological classification available in this study
showed that TERTpSV were more frequent in liposarcoma (32%)
than in leiomyosarcoma (7%).

The tumor types with the highest prevalence of ATRX/
DAXXtrunc mutations were liposarcomas (32%), adult lower grade
gliomas (28%), pancreatic endocrine tumors (23%), and osteosar-
coma (17%; Fig. 1b and Supplementary Fig. 3a, b), all of which have
previously been associated with ALT12,31. TERTmod were most
prevalent in transitional cell bladder cancer (70%), glioblastoma
(67%), lower grade gliomas (61%), and melanoma (51%).

The telomere content in TERTmod samples differed signifi-
cantly from that in ATRX/DAXXtrunc samples (p= 1.1 × 10−9,
Wilcoxon rank-sum test; Fig. 1c, a detailed overview is shown in
Supplementary Fig. 4a). On average, telomere content was gained
in ATRX/DAXXtrunc (mean telomere content tumor/control log2
ratio= 0.3), while telomere sequences were lost in TERTmod

samples (mean telomere content tumor/control log2
ratio=−0.4). Samples with nontruncating ATRX/DAXX simple
nucleotide variants had a similar telomere content as TERTmod

samples (p > 0.05, Wilcoxon rank-sum test), suggesting that most
of the nontruncating ATRX/DAXX mutations are passenger
events. In TERTmod samples and samples with unknown TMM,
the telomere content correlated with TERT expression (r= 0.20,
Pearson correlation; p= 4.1 × 10−10, significance of fitted linear
regression model) and TERT expression was significantly higher
in TERTmod samples than in ATRX/DAXXtrunc samples (p=
1.3 × 10−9, Wilcoxon rank-sum test; Fig. 1d, detailed overviews
are shown in Supplementary Figs. 3c and 4b).

High amount of telomere insertions in ATRX/DAXXtrunc

tumors. To find insertions of telomeres into nontelomeric regions
of the genome, we searched for tumor-specific discordant paired-
end reads, where one end maps to the chromosome and the other
end is telomeric. Exact positions of the insertions were deter-
mined from reads spanning the junction site and visual inspec-
tion (Fig. 2).

Overall, 2683 telomere insertions were detected. These were
distributed unevenly between samples and different tumor types
(Fig. 3a). Telomere insertions were found in 27% of the tumor
samples, with counts ranging between 1 and 228 telomere
insertion events. The tumor types with the highest amount of
telomere insertions per tumor sample were liposarcoma,
leiomyosarcoma, and osteosarcoma, all of which also had a
relatively high mean telomere content. In fact, the number of
telomere insertions positively correlated with the telomere
content (r= 0.19, Spearman correlation). Moreover, the number
of telomere insertions was associated with the number of genomic
breakpoints in the sample (r= 0.38, Spearman correlation). To
test for a synergistic effect, linear models that predict telomere
insertions from telomere content and breakpoint abundance with
and without an interaction term were computed. The models with
the interaction term (p= 8.8 × 10−234) performed substantially
better than purely additive models (p= 5.8 × 10−90).

There was clearly a higher percentage of samples with telomere
insertions in ATRX/DAXXtrunc tumors (80%) than TERTmod

tumors (28%; Fig. 3b). As expected, ATRX/DAXXtrunc samples
also had a higher number of breakpoints (mean= 733) than
TERTmod samples (mean= 291; Fig. 3c). Overall, the fraction of
genomic breakpoints overlapping with telomere insertion sites
was significantly higher in ATRX/DAXXtrunc than TERTmod

samples (p= 1.7 × 10−20, Wilcoxon rank-sum test; Fig. 3d). In
agreement with the high breakpoint frequency, chromothripsis
(numerous chromosomal rearrangements occurring in a single
event)32 was more prevalent in the ATRX/DAXXtrunc samples
(59%) compared to TERTmod samples (34%) and samples
without ATRX/DAXXtrunc and TERTmod mutations (29%).
Similarly, ATRX/DAXXtrunc samples were more likely to have
an autosomal breakage-fusion-bridge (BFB) event (44%) than the
remaining samples (TERTmod: 31%, other: 32%). In ATRX/
DAXXtrunc samples, autosomal chromosome arms that showed
evidence for BFB cycles and chromothripsis had the highest
incidence of telomere insertions (Supplementary Fig. 5).

Correlation analysis of telomere insertions and mutations in
telomere maintenance-associated genes from the TelNet data-
base33 [http://www.cancertelsys.org/telnet] revealed significant
association with TP53 (q= 1.9 × 10−42), ATRX (q= 2.6 × 10−6),
PLCB2 (q= 7.8 × 10−4), MEN1 (q= 0.017), TSSC4 (q= 0.017),
RB1 (q= 0.018), DAXX (q= 0.019), and ABCC8 mutations (q=
0.04, Wilcoxon rank-sum tests after Benjamini–Hochberg
correction). Most of these genes have been implicated in the
maintenance of telomere length or structure in humans
(Supplementary Table 1). The exceptions are PLCB2 and ABCC8,
whose homologues have so far only been reported in association
with telomere length regulation in yeast34,35.

The detected telomere insertions were scattered across different
chromosomes and regions within the chromosome (Supplemen-
tary Fig. 6). No clear preferential insertion sites were identified,
but several de novo telomere junctions occurred at the
chromosome ends (5% within 50 kb of the first or last
chromosomal segment). A total of 44% of the telomere insertions
were in genes, and 8% of these disrupted exons. Several tumor
suppressor genes were affected, e.g., CHEK1 encoding for a
protein involved in cell cycle arrest upon DNA damage36

(Fig. 2a).
Of note, patterns of microhomology were observed in 79% of

telomere insertions with t-type repeats at the junction site
(Supplementary Fig. 7).

Frequent copy number losses at telomere insertion sites. Most
of the telomere insertions were one-sided (98%), i.e., telomere
sequences were only attached to one side of the breakpoint
(Fig. 2a). Telomere insertions were defined as two-sided, if there
was a second telomere insertion event downstream in the
opposite orientation (Fig. 2b). Two-sided telomere insertions can
occur via a telomere sequence that bridges two chromosome
fragments or, alternatively, telomere sequences are independently
fused to both ends of the chromosome break. Reads supporting
the first scenario were found in 14 of the 25 two-sided telomere
insertions pairings. For the other cases, the inserted repeat
sequence was too long to distinguish between the two scenarios.

Because so many breakpoints were one-sided, we investigated
the fate of the corresponding broken fragment using comple-
mentary information from copy number changes and structural
variation annotation (Fig. 3e). As expected, one-sided telomere
insertions coincided most frequently with copy number loss of
the adjacent segment (46%, Fig. 2c). In contrast, copy number
gains of the fragment were rare (6%). Surprisingly, telomere
insertions were frequently located at copy-number neutral sites
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(42%). Overlaps with regions of chromothripsis were found for
25% and structural variations without chromothripsis overlap
(including telomere insertions) were detected near the insertion
site for 28% of the copy-number neutral cases (Fig. 2d, e). The
remaining telomere insertions at copy-number neutral sites are
likely to be subclonal (Supplementary Fig. 8a) or have undetected
structural variations nearby (Supplementary Fig. 8b).

Occasional TERRA expression at telomere insertions. ALT-
positive tumors have been associated with elevated levels of long
noncoding telomeric repeat-containing RNA (TERRA)16. We
searched for TERRA expression in the RNA-sequencing data of
867 tumor samples. In line with the results of Barthel et al.26,
TERRA levels were higher in ATRX/DAXXtrunc compared to
TERTmod samples (p= 5.0 × 10−7, Wilcoxon rank-sum test,
Supplementary Fig. 9). In 16 samples, evidence for TERRA
expression at telomere insertion sites was found. For most of
these, the number of split reads supporting TERRA expression
was low (between 1 and 8 reads). However, 146 TERRA reads
expressed from only two telomere insertion sites were detected in
an ATRX/DAXXtrunc liposarcoma sample, making up almost 6%
of its total TERRA read count. This percentage is likely to be
notably higher, as the short read length does not allow assignment
of the total number of TERRA reads stemming from these telo-
mere insertions. Thus, TERRA is not exclusively transcribed from
TSSs in the subtelomeric region but can also arise from telomere

insertions. Of note, these telomere insertion transcripts do not
always contain the canonical UUAGGG repeat but can also be
composed of the reverse complement CCCUAA.

Enrichment of singleton TVRs in ATRX/DAXXtrunc samples.
It has previously been shown that ALT leads to an increased
integration of TVRs into telomeres, the most common ones being
hexamers of the type NNNGGG15. To detect differences in the
telomere composition of ATRX/DAXXtrunc and TERTmod

tumors, we therefore searched for NNNGGG repeats in telomere
reads. The most frequent TVRs across all tumor samples were
TGAGGG, TCAGGG, and TTGGGG (Supplementary Fig. 10),
which are known to be enriched in proximal telomeric regions2,3.

These and the seven other most frequent TVRs (TAAGGG,
GTAGGG, CATGGG, TTCGGG, CTAGGG, TTTGGG, and
ATAGGG) were chosen to search for common telomere repeat
combinations. For this, the neighboring 18 base pairs on either
side of the TVRs were determined (Supplementary Data 2). Most
TVRs were surrounded by many different pattern combinations
(e.g., TTGGGG). Others were dominated by a certain repeat
context, which was similar in ATRX/DAXXtrunc and TERTmod

tumors (e.g., CATGGG or ATAGGG). However, TTCGGG stood
out, as 41% of the TVRs in ATRX/DAXXtrunc samples were
surrounded by canonical t-type repeats, whereas this context was
observed for only 4% of TTCGGG TVRs in TERTmod tumors.
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Following up on this observation, we compared variant
hexamers surrounded by at least three t-type repeats on either
side (“singletons”) to TVRs in an arbitrary sequence context. This
revealed that singletons are generally well suited to distinguish
ATRX/DAXXtrunc from TERTmod samples (Fig. 4a, an overview
of all patterns is shown in Supplementary Fig. 11). The remaining
variant analysis therefore focused on such TVR singletons.
CATGGG was excluded as it did not occur as singletons. For the
other TVRs, the median of absolute counts varied between 12 and
100, but counts in individual tumor samples reached >10,000
(Supplementary Fig. 12).

As expected, normalized singleton repeat counts generally rose
with increasing telomere content (Fig. 4b, an overview of all

patterns is shown in Supplementary Fig. 13). However,
TGAGGG, TCAGGG, TTGGGG, and TTCGGG singletons had
significantly higher counts than expected in ATRX/DAXXtrunc

compared to TERTmod samples (p= 7.3 × 10−11, 7.9 × 10−6,
5.6 × 10−4, and 5.8 × 10−13, respectively, Wilcoxon rank-sum test
after Bonferroni correction; Fig. 4c). Especially, TGAGGG and
TTCGGG seemed to be highly interspersed in a subset of ATRX/
DAXXtrunc tumors. In contrast, TTTGGG singletons were
observed less frequently in ATRX/DAXXtrunc tumors (p= 3.8 ×
10−12, Wilcoxon rank-sum test after Bonferroni correction).

This seemingly ALT-specific TVR enrichment or depletion
occurred in different tumor types, with the highest prevalence in
leiomyosarcomas (60%), pancreatic endocrine tumors (42%),
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liposarcomas (37%), osteosarcomas (29%), and lower grade
gliomas (28%; Supplementary Table 2). In the ATRX/DAXXtrunc

samples, singleton TVR occurrences correlated with each other
(Supplementary Fig. 14). The strongest correlations were between
TGAGGG occurrence and TTCGGG and TTGGGG singletons
(r= 0.57 and r= 0.58, respectively, Spearman correlation).

ALT prediction. ALT has several different hallmarks with which
it can be reliably identified11. However, most of these are not
detectable in short-read WGS data. Using ATRX/DAXXtrunc as
indicators of ALT, we have shown several possible TMM classi-
fication features based on WGS. Most ATRX/DAXXtrunc samples
are already separated well from TERTmod samples by non-
supervised clustering of normalized TGAGGG, TCAGGG,
TTGGGG, TTCGGG, and TTTGGG singleton repeat counts
(Supplementary Fig. 15). As expected, the clusters of ATRX/
DAXXtrunc samples had a high telomere content and a high
number of telomere insertions relative to the total number of
breakpoints. These features were further used to build a random
forest classifier distinguishing ATRX/DAXXtrunc from TERTmod

samples (area under the curve: 0.95; sensitivity: 0.73; specificity:
0.99; all after 10-fold cross-validation). The variables with the
highest importance for the classification were the divergence of
observed TTTGGG and TTCGGG singleton TVRs from the
expected count, the number of breakpoints and the number of
telomere insertions (Supplementary Table 3). It may be pivotal for
further understanding of this mechanism to determine the causal
relationship between these features and the ALT phenotype.

The scores resulting from the classifier can be interpreted as an
ALT probability. As expected, ATRX/DAXXtrunc had a high ALT
probability (mean= 0.91), while TERTmod samples had a low
ALT probability (mean= 0.13, Supplementary Fig. 16). A total of
17 samples without ATRX/DAXXtrunc mutations had an ALT
probability of over 0.9, of which three had nontruncating ATRX/
DAXX mutations and one sample had a frameshift insertion in
ATRX and a TERT amplification (11 TERT copies, triploid).
Across the entire dataset, most samples had a low ALT probability
(Supplementary Fig. 17), suggesting that their TMM is telomerase
based. This included some samples with ATRX/DAXX
missense mutations, suggesting that the mutations in those
samples may be more of a passenger event than functionally
relevant. Tumor types with a high ALT probability were
leiomyosarcoma, osteosarcoma, pancreatic endocrine tumors,
and liposarcomas, in keeping with the known high prevalence of
ALT in these entities37–39.

Discussion
In this study, we have shown that the presence of ALT-associated
mutations in tumors correlates with increased telomere content,
enrichment of isolated TVRs in t-type context (singletons), a
higher number of genomic breakpoints, and intrachromosomal
telomere insertions (Fig. 5). In contrast, tumors with mutations
associated with a possible telomerase activation showed moderate
decrease of telomere content and increased TERT expression.
Hence, TERT reactivation may not suffice to fully counteract the
telomere loss associated with high proliferation and/or occur when
advanced telomere attrition increases the selective pressure to
activate telomere maintenance. The observed telomere content
increase in ATRX/DAXXtrunc versus the decrease in TERTmod

samples is in agreement with the recent findings of Barthel et al.26.
The higher telomere content in ATRX/DAXXtrunc tumors indi-
cates that the negative feedback loop that constrains telomere
elongation to a physiological level in healthy telomerase-expressing
cells40,41 is bypassed by the ALT process, while it seems to remain
intact in telomerase-positive tumors. In addition to telomere

elongation, the increase of telomere content in ALT-positive
tumors detected by sequencing-based methods may partly stem
from aberrant intrachromosomal telomere insertions18 or extra-
chromosomal telomeric DNA42. Although almost all tumors must
maintain their telomeres43, we only detected somatic mutations
highly associated with ALT or telomerase activation in a subset of
the samples. In tumors arising from tissues with high rates of self-
renewal, telomerase is likely to already be epigenetically activated in
the cell of origin44,45. Thus, telomere maintenance activating
mutations occur more frequently in tumors derived from slowly
replicating cells46. In line with this assumption, we observed high
rates of TMM-associated mutations in brain, liver, bladder, and
kidney tumors and TERT expression despite lack of TMM-
associated mutations in lymphomas, tumors of the gastrointestinal
tract, and female reproductive system. The exceptions were pilo-
cytic astrocytoma, pancreatic, and prostate adenocarcinoma, which
all originate from slowly replicating tissues, but had almost no
TMM-associated alterations. In pancreatic and prostate cancer,
TERT activity has been detected47,48, suggesting other means of
telomerase activation. In pilocytic astrocytoma, neither telomerase
expression/activity nor ALT was observed, but preALT character-
istics have been reported49,50. Therefore, a TMM may only be fully
activated upon progression of this slow-growing tumor type.
Medulloblastoma samples only had a TERTmod frequency of 14%
and one of the lowest average telomere contents in our study.
While TERTpmut tend to occur in older patients of the SHH
subgroup, the TERT promoter is frequently methylated in younger
SHH patients and other medulloblastoma subgroups51. Interest-
ingly, SHH medulloblastomas are thought to arise from granule
neuron precursor cells52. This is a cell type with an extremely high
rate of turnover during development and infancy, which may
explain the TERT promoter methylation in younger SHH patients.
In agreement with data suggesting that TERT expression is higher
in TERTpmut than in TERT promoter methylated medullo-
blastomas51, we found that the telomere content was significantly
higher in medulloblastomas with TERTmod than in those without
(p= 0.0045, Wilcoxon rank-sum test).

In our study, we systematically mapped telomere insertions into
nontelomeric genomic regions using WGS data. They were most
frequently accompanied by a loss of the adjacent chromosomal
segment or located at copy-number neutral sites. Surprisingly, the
latter telomere insertions were rarely two-sided and chromothripsis
or other structural variations in the adjacent genomic regions
occurred only in about half of the cases. As broken chromosome
ends are highly unstable, the remaining segments must have
undetected structural rearrangements, such as subclonal copy
number changes or undetected DNA fusions. Taken together, the
results suggest that we observe telomere healing or capture20,21

rather than telomere insertions followed by chromosomal instabil-
ities18,53. As microhomology around telomere insertion sites was
frequent, the sequences were probably inserted by nonhomologous
end-joining54 or a microhomology-mediated mechanism55.

Telomere insertions were particularly frequent in ATRX/
DAXXtrunc tumors, in which the abundant extrachromosomal
telomeric DNA expands the telomere template pool for
microhomology-mediated double-strand repair. We speculate
that in this cellular environment, a high load of genomic break-
points subsequently leads to the observed disproportionately
increased number of telomere capture-like events. Due to the
stochastic nature of ALT, the likelihood of telomere crisis is
elevated, an event that can induce BFB cycles56,57 and chromo-
thripsis58. Nevertheless, ALT can also stabilize telomeres, which
has been shown to counteract genomic instability in certain
instances59. Either scenario may account for the higher pre-
valence of chromothripsis and BFB events in ATRX/DAXXtrunc

cases observed in this study. Together with the correlation of
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telomere insertions and mutations in TP53, RB1, MEN1, ATRX,
and DAXX, these findings suggest that genome instability and the
ALT phenotype are prerequisites for a high number of telomere
insertions. Mutations in TP53, RB1, and MEN1 have been asso-
ciated with impaired DNA damage response and repair60–62. This
may make telomere crisis and genomic rearrangements
more likely, while at the same time preventing apoptosis or
senescence. Supporting all of these associations, an increased
incidence of ALT in combination with chromothripsis was
observed in SHH medulloblastomas with TP53 germline or
somatic mutations59.

Telomere elongation by ALT or telomerase enriches distinct
TVRs15. Here, we report a stronger association of singleton TVRs
with ATRX/DAXXtrunc mutations than TVRs in an arbitrary
context. The increase of TVRs has been attributed to the inclusion
of subtelomeric regions during ALT via homologous recombi-
nation14. Whether telomeric sequences with lower TVR density
are under positive selection or regions with higher TVR density
are under negative selection remains to be clarified.

A possible function for TVRs has been reported in ALT-
positive cell lines, where TCAGGG repeats that recruit nuclear
receptors were enriched14,18. This enrichment was confirmed in a
subset of primary ATRX/DAXXtrunc tumor samples in our study.
However, we found a more pronounced enrichment of TTCGGG
or TGAGGG. While TGAGGG has previously been associated
with ALT14, the high prevalence of TTCGGG singletons in ALT
is a novel discovery. No proteins with strong affinity to these two
TVRs are currently known. This may indicate a more passive
mode of action, for instance deprotection of telomeres by shel-
terin displacement14, and/or alteration of the telomeric G-
quadruplex conformation15. Notably, we report for the first
time that TTTGGG singletons but not TTTGGG in arbitrary
context were depleted in ATRX/DAXXtrunc samples. This finding
underlines the necessity to consider the sequence context of

TVRs. None of the current models of ALT provide an explanation
for this specific TVR depletion.

The methodologies presented here expand the established tel-
omere content estimation from genomic sequencing by the
context-dependent analysis of TVRs and telomere insertions. By
applying them within a large-scale pan-cancer study, we provide a
valuable resource for the further characterization of different
TMMs in cancer cells based on WGS data.

Methods
Sequencing data. WGS and expression data were obtained from the ICGC/TCGA
PCAWG project23. The WGS reads of tumor and control samples were aligned
with bwa-mem by the PCAWG-tech group. Control samples were usually blood. In
a small number of cases, the controls were obtained from tumor-adjacent or other
tissue23. Tumors with multiple samples were excluded from this study, as well as
one sample pair with reads shorter than 30 bp. Expression data was in the format of
normalized RNA read counts per gene and only available for 1033 of 2519 patients.
RNA sequencing BAM files aligned with STAR by the PCAWG-tech group were
available for 867 tumor samples. To avoid confusion, we used the name “(central
nervous system) CNS-LGG” (lower grade glioma, i.e., grades II and III) for the
“CNS-Oligo” tumor type, because several samples in this cohort did not have the
genetic markers (i.e., 1p/19q co-deletions) for oligodendroglioma required by the
WHO63. A detailed overview of tumor type abbreviations with the included sub-
types is given in Supplementary Table 4.

Mutation data. Somatic simple nucleotide, structural variations, and copy num-
bers were obtained from the PCAWG consensus calls (Synapse IDs syn7364923,
syn7596712, and syn8042992, respectively). Structural variations were not available
for 24 tumor samples.

Telomere read extraction and computational telomere content estimation.
The telomere content of WGS samples was determined using the software tool
TelomereHunter64. In short, telomeric reads containing six nonconsecutive
instances of the four most common telomeric repeat types (TTAGGG, TCAGGG,
TGAGGG, and TTGGGG) were extracted. For the further analysis, only unmapped
reads or reads with a very low alignment confidence (mapping quality lower than
8) were considered. The telomere content was determined by normalizing the
telomere read count by all reads in the sample with a GC content of 48–52%.

TTAGGG
TTCGGG
TGAGGG
TCAGGG
TTGGGG
TTTGGG

Telomeric DNA

Subtelomeric DNA

Two-sided

One-sided

Telomerase ALT

Fig. 5 Genomic footprints of telomerase-mediated telomere elongation and ALT. It is known that telomeres elongated by telomerase have a homologous
length with few TVRs in distal telomeric regions (left), while ALT telomeres have heterogeneous lengths with an increased amount of TVRs (right).
Moreover, ALT cells have abundant extrachromosomal telomeric sequences. From this study, we conclude that the chromosomes of ALT cells have a
higher number of aberrant interstitial telomere insertions, most of which are one-sided and accompanied by a loss of the adjacent chromosomal segment.
We also showed that several TVRs occurring as singletons are more abundant in ALT telomeres, while one singleton (TTTGGG) was more abundant in
telomerase-elongated telomeres. Please note that it is currently undetermined whether the different types of singletons are located in proximal or distal
telomeric regions.
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Determining TMM-associated mutations. Samples with a truncating ATRX or
DAXX alteration (frame-shift insertion/deletion, stop-codon gain, or structural var-
iation breakpoint within the gene) were defined as ATRX/DAXXtrunc, samples with
other simple nucleotide variants were defined as ATRX/DAXXnon-trunc. Deletions that
only affected intronic regions of ATRX were not considered. Of note, a frame-shift
deletion called in the tumor sample of donor SP112201 was excluded as a false
positive after visual inspection in the Integrative Genomics Viewer (IGV)65,66.
Samples with a structural variation breakpoint on the plus strand 20 kb upstream of
TERT the TSS were defined as TERTpSV. TERTamp samples had at least six additional
copies of the TERT gene compared to the mean ploidy of the sample. Tumor samples
with a C228T or C250T TERT promoter mutation were defined as TERTpmut. Due to
the low sequencing coverage at the TERT promoter, these mutations were called using
less stringent criteria (at least two reads with the mutated base, mutational frequency
of at least 20%) in addition to the PCAWG consensus single nucleotide variant (SNV)
calls (Synapse ID syn7364923). If multiple of these TERT modifications were present,
the sample was defined as TERTmult. Samples with these TERT alterations were
summarized as TERTmod. Samples without any of these alterations were defined as
“wild type”. If a sample had both a TERTmod alteration and an ATRX/DAXX
alteration, it was defined as “mixed”. For some analyses, ATRX/DAXXnon-trunc, mixed
and wild-type samples were summarized as “other”.

Overlap of juxtaposed positions upstream of TERT and predicted super-
enhancers. For the closest structural variation (SV) of each tumor sample to the
TERT TSS, the juxtaposed genomic coordinates were compared to 65,950 predicted
super-enhancers from the dbSUPER database30. Only SVs on the plus strand and
within 1 mb of the TERT TSS were considered. Overlaps of juxtaposed positions
with super-enhancer sites were defined as direct overlaps. Super-enhancer sites
within 1 mb of the juxtaposed position were defined as indirect overlaps.

Telomere insertion detection. To find insertions of telomeric sequences into
nontelomeric regions in the genome, we searched for tumor-specific discordant
paired-end reads, where one end was an extracted telomere read and the other end
was nontelomeric and uniquely mapped to a chromosome (mapping quality > 30).
In 1 kb regions containing at least three discordant reads in the tumor sample and
none in the matching control, exact positions of telomere insertions were defined
by at least three split reads spanning the insertion site. The split reads had to
contain at least one TTAGGG repeat. Regions with discordant read pairs in at least
15 control samples were excluded. Finally, the insertion sites were visualized using
IGV65,66 to identify and remove remaining false positives. A telomere insertion was
defined as two-sided if another telomere insertion in opposite orientation was
found in the downstream 10 kb of the reference genome with the same repeat on
the forward strand. Otherwise it was defined as one-sided.

Breakpoint detection. Breakpoints were obtained from the consensus breakpoint
list of structural and copy number variation calls (Synapse ID syn8042992). In
short, six copy number detection tools were run on all samples, including the
consensus structural variations breakpoints. From the obtained chromosomal
segments of the individual callers another set of consensus breakpoints was
calculated.

Chromothripsis detection. To identify chromothripsis events, we extended the set
of statistical criteria proposed by Korbel and Campbell67. The basic idea is to
determine whether there is a statistically significant number of interleaved struc-
tural variants in a contiguous genomic region. We did this by constructing a graph
whose nodes correspond to SVs and whose edges connect interleaved SVs. The
identified clusters of SVs were also tested for the presence of alternating copy
number and loss-of-heterozygosity patterns. The resulting chromothripsis calls
were validated visually. The full description of the methodology and the detailed
patterns of chromothripsis events in the genomes are described in a separate
study24. Only high-confidence chromothripsis calls were included in this analysis.

BFB detection. At least two fold-back inversions on the same chromosome arm
were defined as BFB events. Fold-back inversions had to fulfill the following
requirements adapted from Cheng et al.68: (1) the two breakpoints of the inversion
are less than 20 kb apart; (2) the inversion does not have a reciprocal partner, such
that inversion1_start < inversion2_start < inversion1_end < inversion2_end; and
(3) there is a copy number change at the inversion site.

Copy number changes at telomere insertion sites. Copy numbers of chromo-
somal segments were obtained from the PCAWG consensus calls (Synapse ID
syn8042992). Copy numbers reveal gains or losses of chromosomal segments based
on coverage and B-allele frequency, but were here limited to segments of at least
10 kb. The breakpoint estimations could differ from the actual site by up to 50 kb.
Therefore, telomere insertions were assigned to the closest breakpoint within 50 kb.
If there was no breakpoint within 50 kb or the copy numbers at either side of the
telomere insertion were the same, the copy number change at the telomere insertion
was defined as neutral.

Structural variations near telomere insertion sites. Structural variation anno-
tation was obtained from the PCAWG consensus calls (Synapse ID syn7596712),
which was based on discordant mate pairs and split reads, providing exact
breakpoints. Because copy number variations smaller than 10 kb were not detected
by copy number callers, small deletions next to the telomere insertion site may be
missed. We therefore searched for structural variations within 10 kb of a telomere
insertion to detect these cases.

Candidate gene selection for correlation analysis. A list of 1725 telomere
maintenance associated human genes was obtained from TelNet33 on February 20,
2017. After removing genes without a unique Ensembl IDs in the GENCODE69 v19
HAVANA annotation, the remaining 1686 genes were used for correlation of
telomere insertions and simple nucleotide variants.

TERRA detection. TelomereHunter was run on RNA-Seq BAM files to count
reads containing at least k nonconsecutive instances of the four most common
telomeric repeat types (TTAGGG, TCAGGG, TGAGGG, and TTGGGG). The
repeat threshold k was chosen depending on the read length: k= 7 for 45–50 bp,
k= 10 for 75–76 bp, and k= 14 for 99–101 bp. The resulting TERRA read counts
were normalized by the total number of reads in the sample. For better readability,
this number was multiplied by 1 Mio.

Detection of TVRs. TVRs were detected by searching for hexamers of the type
NNNGGG in the extracted telomere reads. Each base was required to have a base
quality of at least 20. The neighboring 18 bp on either side of the TVR were
determined. For further analysis, NNNGGG TVRs were once computed for arbi-
trary context and once for t-type context ((TTAGGG)3-NNNGGG-(TTAGGG)3,
also called “singletons”). The absolute counts were normalized to the total number
of reads in the sample. The expected pattern counts in arbitrary context were
calculated as: telomere content tumor/control log2 ratio. The expected singleton
counts at different telomere content tumor/control log2 ratios were taken from the
regression line through TERTmod samples. The singleton occurrence heatmap was
generated using the R package ComplexHeatmap70.

Classifier for predicting active TMMs. A random forest classifier to distinguish
ATRX/DAXXtrunc and TERTmod samples was built using the R packages “ran-
domForest”71 and “caret”72 with the following eight features: telomere content
tumor/control log2 ratio, number of telomere insertions, number of breakpoints,
and the distance of TGAGGG, TCAGGG, TTGGGG, TTCGGG, and TTTGGG
singletons (i.e., repeats in a t-type context) to their expected occurrence. To deal
with the imbalance in the data set (i.e., 266 TERTmod samples versus 63 ATRX/
DAXXtrunc samples without missing data), the model was trained with a down-
sampled training set. The performance was determined using 10-fold cross-
validation.

Statistics. Differences between ATRX/DAXXtrunc and TERTmod samples in terms of
telomere content, percent breakpoints with telomere insertions, and singleton repeat
abundance were tested using two-sided Wilcoxon rank-sum tests. Singleton repeat
abundance p-values were corrected for multiple testing using the Bonferroni method.
To reduce the influence of outliers, correlation coefficients were calculated with the
Spearman method. Correlation between control telomere content and age as well as
tumor and control telomere content was tested with linear regression. All statistical
analyses were carried out using R (R Foundation for Statistical Computing).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Somatic and germline variant calls, mutational signatures, subclonal reconstructions,
transcript abundance, splice calls, and other core data generated by the ICGC/TCGA
PCAWG Consortium is described here23 and available for download at [https://dcc.icgc.
org/releases/PCAWG]. Additional information on accessing the data, including raw read
files, can be found at [https://docs.icgc.org/pcawg/data/]. In accordance with the data
access policies of the ICGC and TCGA projects, most molecular, clinical and specimen
data are in an open tier which does not require access approval. To access potentially
identification information, such as germline alleles and underlying sequencing data,
researchers will need to apply to the TCGA Data Access Committee (DAC) via dbGaP
for access to the TCGA portion of the dataset, and to the ICGC Data Access Compliance
Office (DACO) for the ICGC portion. In addition, to access somatic SNVs derived from
TCGA donors, researchers will also need to obtain dbGaP authorization.

Derived data sets described specifically used in this manuscript are catalogued on
Synapse. Data access is possible via the ICGC data portal (DCC), were the original files
are split into ICGC and TCGA subsets due to different access regulations:

somatic simple nucleotide calls (syn7364923): and [https://dcc.icgc.org/releases/
PCAWG/consensus_snv_indel],

structural variation calls (syn7596712): and [https://dcc.icgc.org/releases/PCAWG/
consensus_sv],

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13824-9

10 NATURE COMMUNICATIONS |          (2020) 11:733 | https://doi.org/10.1038/s41467-019-13824-9 | www.nature.com/naturecommunications

https://dcc.icgc.org/releases/PCAWG
https://dcc.icgc.org/releases/PCAWG
https://docs.icgc.org/pcawg/data/
https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login
http://icgc.org/daco
https://www.synapse.org/#!Synapse:syn7364923
https://dcc.icgc.org/releases/PCAWG/consensus_snv_indel
https://dcc.icgc.org/releases/PCAWG/consensus_snv_indel
https://www.synapse.org/#!Synapse:syn7596712
https://dcc.icgc.org/releases/PCAWG/consensus_sv
https://dcc.icgc.org/releases/PCAWG/consensus_sv
www.nature.com/naturecommunications


copy number calls (syn8042992): and [https://dcc.icgc.org/releases/PCAWG/
consensus_cnv].

Code availability
The software TelomereHunter used for the in silico analysis of the genomic footprints of
activated TMMs is available from [https://www.dkfz.de/en/applied-bioinformatics/
telomerehunter/telomerehunter.html]. The core computational pipelines used by the
PCAWG Consortium for alignment, quality control, and variant calling are available to
the public at https://dockstore.org/search?search=pcawg under the GNU General Public
License v3.0, which allows for reuse and distribution.
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