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Abstract
We first construct Siegel invariants of some CM-fields in terms of special values of
theta constants, which would be a generalization of Siegel–Ramachandra invariants
of imaginary quadratic fields. We further describe Galois actions on these invariants
and provide a numerical example to show that this invariant really generates the ray
class field of a CM-field.

Keywords Abelian varieties · Class field theory · CM-fields · Shimura’s reciprocity
law · Theta constants

Mathematics Subject Classification Primary 11R37 · Secondary 11F46, 11G15,
14K25

The third author was supported by the National Research Foundation of Korea (NRF) Grant funded by the
Korea government (MSIP) (2017R1A2B1006578), and by Hankuk University of Foreign Studies
Research Fund of 2019. The fourth (corresponding) author was supported by a two-year Research Grant
of Pusan National University.

B Dong Sung Yoon
dsyoon@pusan.ac.kr

Ja Kyung Koo
jkgoo@kaist.ac.kr

Gilles Robert
gilles.rbrt@gmail.com

Dong Hwa Shin
dhshin@hufs.ac.kr

1 Department of Mathematical Sciences, KAIST, Daejeon 34141, Republic of Korea

2 Laboratoire de Mathématiques, Institut Fourier, B.P. 74, 38402 Saint-Martin-d’Hères, France

3 Department of Mathematics, Hankuk University of Foreign Studies, Yongin-si, Gyeonggi-do
17035, Republic of Korea

4 Department of Mathematics Education, Pusan National University, Busan 46241, Republic of Korea

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11139-019-00223-3&domain=pdf


262 J. K. Koo et al.

1 Introduction

Let K be a number field andOK be its ring of integers. For a proper nontrivial ideal f of
OK we denote by Cl(f) and Kf the ray class group of K modulo f and its corresponding
ray class field, respectively (see [4]). Suppose that there is a family {�f(C)}C∈Cl(f) of
algebraic numbers, which we shall call a Siegel family, such that

(R1) each �f(C) belongs to Kf,
(R2) �f(C)σf(D) = �f(CD) for all D ∈ Cl(f), where σf : Cl(f) → Gal(Kf/K ) is

the Artin reciprocity map for f.

Then, as is well known, every algebraic number �f(C) becomes a primitive generator
of Kf over K if

∑

C∈Cl(f)
χ(C) ln |�f(C)| �= 0 (1)

for any nontrivial character χ of Cl(f) [11, Theorem 3 in Chapter 22], which motivates
this paper. In particular, if K is an imaginary quadratic field, then the Siegel–
Ramachandra invariants form such a Siegel family having the properties (R1) and (R2)
(see Sect. 2). Furthermore, they also satisfy (1) in most cases by the second Kronecker
limit formula. These invariants are defined by the special values of certain modular
units, Siegel functions, which can be expressed in terms of theta constants. However,
before this work, relatively little was known for other types of number fields other than
imaginary quadratic. For CM-fields, Shimura established the theory of complex mul-
tiplication and showed that abelian extensions over CM-fields are closely connected
with complex abelian varieties. He also constructed class fields over CM-fields by
using a Kummer variety, but it’s too abstract to use in practice [18, Main Theorem 2
in §16].

In this paper, we shall construct a concrete example of a Siegel family over CM-
fields. Let K be a CM-field and f be a proper nontrivial ideal of OK satisfying the
conditions of Assumption 5.1 below. We shall first construct a meromorphic Siegel
modular function of level N (≥ 2), which would be a multi-variable generalization
of the Siegel function, by making use of theta constants (Definition 4.2 and Proposi-
tion 4.5). Furthermore, we shall assign the special value�f(C) of this function to each
ray classC in Cl(f), and call it the Siegel invariant modulo f atC (Definition 5.3). This
value depends only on f and the class C (Propositions 5.5 and 5.6 ), essentially by the
fact that the Siegel modular variety is a moduli space for principally polarized abelian
varieties. Finally, we are able to show by applying Shimura’s reciprocity law that the
Siegel invariant �f(C), as a possible ray class invariant (Conjecture 6.4), satisfies the
transformation formula (R2), that is,

�f(C)σf(D) = �f(CD) for all D ∈ Cl(f)

(Theorem 6.3). By making use of the mathematical software Maple, we also present
a numerical example with a non-imaginary quadratic CM-field K for which Kf is
generated by �f(C) over K (Example 6.5).
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2 Siegel–Ramachandra invariants

Let v =
[
r
s

]
∈ Q2 \ Z2. The Siegel function gv(τ ) on the complex upper half-plane

H = {τ ∈ C | Im(τ ) > 0} is given by the infinite product

gv(τ ) = −qB2(r)/2eπ is(r−1)(1 − qr e2π is)
∞∏

n=1

(1 − qn+r e2π is)(1 − qn−r e−2π is), (2)

where B2(x) = x2 − x + 1/6 is the second Bernoulli polynomial and q = e2π iτ .
If N (≥ 2) is a positive integer so that Nv ∈ Z2, then gv(τ )12N is a meromorphic
modular function of level N which has neither a zero nor a pole on H [6, Theorem 1.2
in Chapter 2].

Let K be an imaginary quadratic field. Let f be a proper nontrivial ideal ofOK , let
N be the smallest positive integer in f, and let C ∈ Cl(f). Take any integral ideal c in
C , and let ω1, ω2 ∈ C and a, b ∈ Z be such that

fc−1 = Zω1 + Zω2 with ω = ω1/ω2 ∈ H,

N = aω1 + bω2.

The Siegel–Ramachandra invariant gf(C) modulo f at C is defined as

gf(C) = g[ a/N
b/N

](ω)12N . (3)

This value depends only on f and the class C , not on the choices of c and ω1, ω2[6,
Chapter 11, §1]. Furthermore, it lies in Kf and satisfies

gf(C)σf(D) = gf(CD) (D ∈ Cl(f))

[6,Theorem1.1 inChapter 11]. In [14],Ramachandra constructed aprimitive generator
of Kf over K as a high power product of Siegel–Ramachandra invariants and singular
values of themodular discriminant	-function. In this direction, the first and the fourth
author proved the following.

Proposition 2.1 Let f = ∏
p | f pep be the prime ideal factorization of f, and let

Gp = (OK /pep)×/{μ + pep | μ ∈ O×
K }.

If |Gp| > 2 for every p | f, then any nonzero power of gf(C) generates Kf over K .

Proof See [9, Theorem 4.6]. ��
Remark 2.2 This result is obtained by utilizing the second Kronecker limit formula
[20, Theorem 9 in Chapter II] or [11, Theorem 2 in Chapter 22].
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264 J. K. Koo et al.

3 Actions on Siegel modular functions

In this section we shall briefly recall the action of an idele group on the field of
meromorphic Siegel modular functions due to Shimura.

For a positive integer g and a commutative ring R with unity, we let

GSp2g(R) =
{
α∈GL2g(R) | αT Jα=ν J for some ν ∈ R×} where J =

[
O −Ig
Ig O

]
,

Sp2g(R) =
{
α ∈ GL2g(R) | αT Jα = J

}
.

Here,αT stands for the transpose of thematrixα. Observe that the relationαT Jα = ν J
implies det(α) = νg [19, (1.11)]. If α belongs to either GSp2g(R) or Sp2g(R), then
αT also belongs to the same group [19, p. 17].

The symplectic group Sp2g(Z) acts on the Siegel upper half-space

Hg =
{
Z ∈ Mg(C) | ZT = Z , Im(Z) is positive definite

}

by

γ (Z) = (AZ + B)(CZ + D)−1 (γ ∈ Sp2g(Z), Z ∈ Hg), (4)

where A, B,C, D are g × g block matrices of γ =
[
A B
C D

]
(see e.g. [5, Proposition

1 in §1]). For a positive integer N let

(N ) = {
γ ∈ Sp2g(Z) | γ ≡ I2g (mod N · M2g(Z))

}
.

We call a holomorphic function f : Hg → C a Siegel modular form of weight k and
level N if

(M1) f (γ (Z)) = det(CZ + D)k f (Z) for every γ =
[
A B
C D

]
∈ (N ),

(M2) f is holomorphic at every cusp when g = 1.

Every Siegel modular form f can be expressed as

f (Z) =
∑

β

c(β)e(tr(βZ)/N ) (c(β) ∈ C),

where β runs over all g × g positive semi-definite symmetric matrices with non-
diagonal entries in 1

2Z and diagonal entries in Z, and e(x) = e2π ix (x ∈ R) [5, p. 44].
Here, we call c(β) the Fourier coefficients of f . For a subfield F of C we set

Mk((N ), F) = the F-vector space of all Siegel modular forms of weight k

and level Nwith Fourier coefficients in F,
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On Siegel invariants of certain CM-fields 265

Mk(F) =
∞⋃

N=1

Mk((N ), F),

A0((N ), F) = the field of all meromorphic Siegel modular functions

of the form g/h,with g ∈ Mk(F) and h ∈ Mk(F) \ {0} for some k,

which are invariant under the group (N ),

A0(F) =
∞⋃

N=1

A0((N ), F).

In particular, let

FN = A0((N ), Q(ζN )),

F =
∞⋃

N=1

FN ,

where ζN = e(1/N ). For a number field K , let Kab be the maximal abelian extension
of K , and K×

A
be the idele group of K . By class field theory, every element x of K×

A

acts on Kab as an automorphism. We denote this automorphism by [x, K ].
On the other hand, we let

G = GSp2g(Q),

G+ = {α ∈ G | αT Jα = ν J for some ν > 0},
GA = the adelization of G with G0 and G∞

the non-archimedean part and the archimedean part, respectively,

GA+ = G0G∞+, where G∞+ is the identity component of G∞.

Shimura presented in [19, Theorem 8.10] a group homomorphism

τ : GA+ → Aut(F)

satisfying the following properties: Let f ∈ F .

(A1) f τ(α) = f ◦ α for all α ∈ G+, where α acts on Hg by the same way as in (4).

(A2) f τ(ι(s)) = f [s,Q] for all s ∈ ∏p Z×
p , where ι(s) =

[
Ig O
O s−1 Ig

]
. Here, the action

of [s, Q] on f is understood as the action of it on the Fourier coefficients of f
(see also [16, Theorem 5]).

Note that the mapping s �→ [s, Q] yields an isomorphism of
∏

p Z×
p onto Gal(Qab/Q)

[19, § 8.1]. Then, FN coincides with the fixed field of F by the subgroup

Q× · {α ∈ GA+ | αp ∈ GL2g(Zp), αp ≡ I2g (mod N · M2g(Zp)) for all primes p}

of GA+ [16, Theorem 3] or [19, Theorem 8.10 (6)].
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266 J. K. Koo et al.

4 Siegel modular functions in terms of theta constants

Let g and N be positive integers, and let r, s ∈ (1/N )Z
g . The (classical) theta constant

θ
([r

s

]
, Z
)
is defined by

θ

([
r
s

]
, Z

)
=

∑

n ∈ Zg

e

(
1

2
(n + r)TZ(n + r) + (n + r)Ts

)
(Z ∈ Hg). (5)

For a matrix E ∈ Mg(Z) we mean by {E} the g-vector whose components are the
diagonal entries of E .

Lemma 4.1 We have the following properties of theta constants.

(i) θ
([r

s

]
, Z
)
is identically zero if and only if r, s ∈ (1/2)Zg and e(2rTs) = −1.

(ii) θ
(

−
[r
s

]
, Z
)

= θ
([r

s

]
, Z
)
.

(iii) If a,b ∈ Z
g , then θ

([r
s

]
+
[a
b

]
, Z
)N = θ

([r
s

]
, Z
)N

.

(iv) If γ =
[A B
C D

]
∈ Sp2g(Z), then

θ

([
r
s

]
, γ (Z)

)4N

= ζ(γ )2N det(CZ + D)2N

×e
(
2N (rTs − (r′)Ts′)

)
θ

([
r′
s′
]

+ 1
2

[{ATC}
{BTD}

]
, Z

)4N

,

where
[r′
s′
]

= γ T
[r
s

]
and ζ(γ ) is a 4-th root of unity which depends only on γ .

(v) The function θ
([r

s

]
, Z
)
/θ
([0

0

]
, Z
)
belongs to F2N2 . Furthermore, if α ∈

GA+ ∩∏p GL2g(Zp) is such that αp ≡
[Ig O
O t Ig

]
(mod 2N 2 · M2g(Zp)) for

all rational primes p with a positive integer t , then

⎛

⎜⎜⎝

θ

([
r
s

]
, Z

)

θ

([
0
0

]
, Z

)

⎞

⎟⎟⎠

τ(α)

=
θ

([
r
ts

]
, Z

)

θ

([
0
0

]
, Z

) .

Proof (i) See [3, Theorem 2].
(ii) This is immediate from the definition (5).
(iii) See [17, p. 676 (13)].
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On Siegel invariants of certain CM-fields 267

(iv) See [1, Theta Transformation Formula 8.6.1]. Here, one can show that

ζ(γ ) = κ(γ −1)2,

where κ(γ −1) is a 8-th root of unity [1, p. 229] given in [1, Theta Transformation For-
mula 8.6.1].
(v) See [17, Proposition 1.7]. ��

Let

S− =
{[

a
b

]
| a,b ∈ {0, 1/2}g such that e(2aTb) = −1

}
,

S+ =
{[

c
d

]
| c,d ∈ {0, 1/2}g such that e(2cTd) = 1)

}
.

ByLemma4.1 (i) and (iv), each element γ =
[A B
C D

]
∈ Sp2g(Z) induces a permutation

of the set S− (and S+) by the map

[
a
b

]
�→ γ T

[
a
b

]
+ 1

2

[{ATC}
{BTD}

]
(mod Z

2g
).

Definition 4.2 We define a function

�

([
r
s

]
, Z

)
= 24Ne

(
−2gN (2g − 1)(2g + 1)rTs

)

×
∏[

a
b

]
∈S−

θ

([
a
b

]
−
[
r
s

]
, Z

)4N (2g+1)

∏[
c
d

]
∈S+

θ

([
c
d

]
, Z

)4N (2g−1)
(Z ∈ Hg).

Remark 4.3 (i) One can easily check that

|S−| = 2g−1(2g − 1) and |S+| = 2g−1(2g + 1).

Hence we have

lcm(|S−|, |S+|) = 2g−1(2g − 1)(2g + 1) = |S−|(2g + 1) = |S+|(2g − 1).

(ii) When g = 1, let N ≥ 2 and
[r
s

]
∈ (1/N )Z2 \ Z2. By using Jacobi’s triple

product identity [2, (17.3)] which reads

∑

n∈Z
anqn

2/2 =
∞∏

n=1

(1 − qn)(1 + aqn−1/2)(1 + a−1qn−1/2) (a ∈ C×),
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268 J. K. Koo et al.

one can justify

�

([
r
s

]
, τ

)
= g[ r

s

](τ )12N (τ ∈ H).

This shows that the function in Definition 4.2 would be a multi-variable gen-
eralization of the Siegel function described in (2).

Lemma 4.4 We have the following transformation formulas for �
([r

s

]
, Z
)
.

(i) �
([a

b

]
+
[r
s

]
, Z
)

= �
([r

s

]
, Z
)
for all a,b ∈ Z

g .

(ii) �
([r

s

]
, γ (Z)

)
= �

(
γ T
[r
s

]
, Z
)
for all γ ∈ Sp2g(Z).

(iii) If α ∈ GA+ ∩∏p GL2g(Zp) is such that αp ≡
[Ig O
O t Ig

]
(mod 2N 2 ·M2g(Zp))

for all rational primes p with a positive integer t , then

�(
[ r
s
]
, Z)τ(α) = �(

[ r
ts
]
, Z).

Proof (i) This is immediate from Lemma 4.1 (iii) and Definition 4.2.

(ii) Let γ =
[A B
C D

]
∈ Sp2g(Z). For x, y ∈ Qg , we set

[
x′
y′
]

= γ T
[
x
y

]
=
[
AT x + CT y
BT x + DT y

]
.

Here we observe that

∏[
a
b

]
∈S−

e
(
2N (2g + 1)((a − r)T(b − s) − (a′ − r′)T(b′ − s′))

)

∏[
c
d

]
∈S+

e
(
2N (2g − 1)(cTd − (c′)Td′)

)

= e
(
2gN (2g − 1)(2g + 1)(rTs − (r′)Ts′)

)

×
∏[

a
b

]
∈S−

e
(
2N (aTb − (a′)Tb′)

)

∏[
c
d

]
∈S+

e
(− 2N (cTd − (c′)Td′)

)

= e
(
2gN (2g − 1)(2g + 1)(rTs − (r′)Ts′)

)

×
∏[

a
b

]
∈S−

e
(− 2N (aTABTa + bTCDTb)

)

∏[
c
d

]
∈S+

e
(
2N (cTABTc + dTCDTd)

)

because ADT + BCT = Ig + 2BCT

= e
(
2gN (2g − 1)(2g + 1)(rTs − (r′)Ts′)

)
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×
∏

[
a
b

]
∈{0,1/2}2g

e
(− 2N (aTABTa + bTCDTb)

)

because S+ = {0, 1/2}2g \ S−
= e

(
2gN (2g − 1)(2g + 1)(rTs − (r′)Ts′)

)

×
∏

a∈{0,1/2}g
e
(− 2g+1N (aT(ABT + CDT)a)

)

= e
(
2gN (2g − 1)(2g + 1)(rTs − (r′)Ts′)

)
.

Hence we derive

�

([
r
s

]
, γ (Z)

)

= 24Ne
(− 2gN (2g − 1)(2g + 1)rTs

)
∏[

a
b

]
∈S−

θ

([
a
b

]
−
[
r
s

]
, γ (Z)

)4N (2g+1)

∏[
c
d

]
∈S+

θ

([
c
d

]
, γ (Z)

)4N (2g−1)

= 24Ne
(− 2gN (2g − 1)(2g + 1)((r′)Ts′)

)

×
∏[

a
b

]
∈S−

θ

(
γ T
[
a
b

]
+ 1

2

[{ATC}
{BTD}

]
−
[
r′
s′
]

, Z

)4N (2g+1)

∏[
c
d

]
∈S+

θ

(
γ T

[
c
d

]
+ 1

2

[{ATC}
{BTD}

]
, Z

)4N (2g−1)
by Lemma 4.1 (iv)

= 24Ne
(− 2gN (2g − 1)(2g + 1)((r′)Ts′)

)
∏[

a
b

]
∈S−

θ

([
a
b

]
−
[
r′
s′
]

, Z

)4N (2g+1)

∏[
c
d

]
∈S+

θ

([
c
d

]
, Z

)4N (2g−1)

by Lemma 4.1 (iii) and the fact that γ is a permutation of S− (and S+)

= �

([
r′
s′
]

, Z

)
.

(iii) Since t is odd,
[a
b

]
�→

[ a
tb

]
(mod Z

2g
) gives rise to a permutation of S− (and

S+). Furthermore, it follows from [19, §8.1] that

e(1/N )τ(α) = e(t/N ).

Hence we see by Lemma 4.1 (v) that

�

([
r
s

]
, Z

)τ(α)
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270 J. K. Koo et al.

= 24Ne
(− 2gt N (2g − 1)(2g + 1)rTs

)
∏[

a
b

]
∈S−

θ

([
a
tb

]
−
[
r
ts

]
, Z

)4N (2g+1)

∏[
c
d

]
∈S+

θ

([
c
td

]
, Z

)4N (2g−1)

= 24Ne
(− 2gN (2g − 1)(2g + 1)rT(ts)

)
∏[

a
b

]
∈S−

θ

([
a
b

]
−
[
r
ts

]
, Z

)4N (2g+1)

∏[
c
d

]
∈S+

θ

([
c
d

]
, Z

)4N (2g−1)

by Lemma 4.1 (iii)

= �

([
r
ts

]
, Z

)
. ��

Proposition 4.5 The function �
([r

s

]
, Z
)
belongs to FN .

Proof Since |S−|(2g +1) = |S+|(2g −1), we have�
([r

s

]
, Z
)

∈ F2N2 by Lemma 4.1

(v).
For any γ ∈ (N ) we see that

�

([
r
s

]
, γ (Z)

)
= �

(
γ T
[
r
s

]
, Z

)
by Lemma 4.4 (ii)

= �

([
r
s

]
, Z

)
by the fact γ T

[
r
s

]
≡
[
r
s

]
(mod Z

2g
)

and Lemma 4.4 (i).

This claims that �
([r

s

]
, Z
)
lies in A0((N ), Q(ζ2N2)).

Let s be an element of
∏

p Z×
p such that [s, Q] is the identity on Q(ζN ). Take a

positive integer t for which

ι(s) =
[
Ig O
O s−1 Ig

]
≡
[
Ig O
O t Ig

]
(mod 2N 2 · M2g(Zp)) for all rational primes p.

Since sp ≡ 1 (mod N · Zp) for all rational primes p, we have t ≡ 1 (mod N ). We
then obtain

�

([
r
s

]
, Z

)[s,Q]
= �

([
r
s

]
, Z

)τ(ι(s))

by (A2)

= �

([
r
ts

]
, Z

)
by Lemma 4.4 (iii)

= �

([
r
s

]
, Z

)
by the fact t ≡ 1 (mod N ) and Lemma 4.4 (i).
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On Siegel invariants of certain CM-fields 271

This implies that every Fourier coefficient of �
([r

s

]
, Z
)
lies in Q(ζN ).

Therefore, we conclude that �
([r

s

]
, Z
)
belongs to FN . ��

5 Siegel invariants

Let n be a positive integer and K be a CM-field with [K : Q] = 2n, that is, K is a
totally imaginary quadratic extension of a totally real number field of degree n. Fix a
set {ϕ1, . . . , ϕn} of embeddings of K into C such that ϕ1, . . . , ϕn, ϕ1, . . . , ϕn are all
the embeddings of K into C, which is called a CM-type of K . Take a finite Galois
extension L of Q containing K and set

S = {σ ∈ Gal(L/Q) | σ |K = ϕi for some 1 ≤ i ≤ n},
S∗ = {σ−1 | σ ∈ S},
H∗ = {γ ∈ Gal(L/Q) | γ S∗ = S∗}.

Let K ∗ be the subfield of L corresponding to the subgroup H∗ of Gal(L/Q) and
{ψ1, . . . , ψg} be the set of all the embeddings of K ∗ intoC obtained from the elements
of S∗. Then

K ∗ = Q

(
n∑

i=1

aϕi | a ∈ K

)

and it is also a CM-field with a (primitive) CM-type {ψ1, . . . , ψg} [18, Proposition 28
in §8.3]. Here, K ∗ and {ψ1, . . . , ψg} are called the reflex field and the reflex type of
(K ; {ϕi }ni=1), respectively. We define an embedding

� : K ∗ → C
g

a �→
⎡

⎢⎣
aψ1

...

aψg

⎤

⎥⎦ .

For an element c of K ∗ which is purely imaginary, define an R-bilinear form Ec :
C
g × C

g → R as

Ec(u, v) =
g∑

j=1

cψ j (u jv j − u jv j )

⎛

⎜⎝u =
⎡

⎢⎣
u1
...

ug

⎤

⎥⎦ , v =
⎡

⎢⎣
v1
...

vg

⎤

⎥⎦ ∈ C
g

⎞

⎟⎠ .
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Then we know that

Ec(�(a),�(b)) = TrK ∗/Q(cab) for all a, b ∈ K ∗.

Assumption 5.1 For the remainder of the paper we assume that the following two
conditions hold:

(C1) The complex torusC
g
/�(OK ∗) can be given a structure of a principally polar-

ized abelian variety.
(C2) (K ∗)∗ = K .

Remark 5.2 (i) It is well known that a complex torus can be equipped with a
structure of an abelian variety if and only if there is a non-degenerate Riemann
form on the torus in the sense of [18, §3.1]. See also [1, §4.2].

(ii) The assumption (C1) is equivalent to saying that there is an element ξ of K ∗
satisfying the following properties:

(P1) ξψi lies on the positive imaginary axis for every 1 ≤ i ≤ g.

(P2) The map Eξ yields a Riemann form on C
g
/�(OK ∗).

(P3) δ−1
K ∗ = ξOK ∗ , where δK ∗ is the different ideal of K ∗.

See [18, Theorem 4 in §6.2]. In this case, we call the pair (C
g
/�(OK ∗), Eξ ) a

principally polarized abelian variety. If the narrow class number of themaximal
real subfield F of K ∗ is one, then the assumption (C1) is always true. Indeed,
one can choose an element ζ of K ∗ such that K ∗ = F(ζ ) and ζψ j lies on
the positive imaginary axis for every 1 ≤ j ≤ g [18, p. 43]. Note that the
different ideal δK ∗/F of K ∗ over F is generated by the elements α − α for
α ∈ OK ∗ . Since ζ = −ζ , we see that ζ(α −α) ∈ F for every α ∈ OK ∗ . Hence
ζ−1δ−1

K ∗ = (ζ δK ∗/F )−1δ−1
F is generated by an ideal of F . Since the narrow

class number of F is one, ζ−1δ−1
K ∗ = xOK ∗ for some totally positive element

x of F×. Then ξ = xζ satisfies (P1)–(P3).
(iii) The assumption (C2) holds if and only if (K ; {ϕi }ni=1) is a primitive CM-type,

that is, the abelian varieties of this CM-type are simple [18, §8.2, Proposition
26].

(iv) Throughout this paper, we fix an element ξ of K ∗ satisfying (P1)–(P3) so that
(C

g
/�(OK ∗), Eξ ) becomes a principally polarized abelian variety.

By Assumption 5.1 (C2), one can define a group homomorphism

ϕ : K× → (K ∗)×

a �→
n∏

i=1

aϕi ,

and extend it naturally to a homomorphism of idele groups ϕ : K×
A

→ (K ∗)×
A
. It is

also known that for a fractional ideal a of K there exists a fractional ideal ϕ(a) of K ∗
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such that

ϕ(a)OL =
n∏

i=1

(aOL)ϕi (6)

[18, Proposition 29 in §8.3].
For a number field F and a nonzero integral ideal a of F letNF (a) be the absolute

norm of a, namely, NF (a) = |OF/a| (so, NF/Q(a) = NF (a)Z). In general, for a
fractional ideal b of F with prime ideal factorization b = ∏

p p
ep we defineNF (b) =∏

pNF (p)ep . Furthermore, let DF/Q(b) be the discriminant ideal of b and dF/Q(b)
be its positive generator in Q. We then have the relation

dF/Q(b) = NF (b)2dF/Q(OF )

[10, Proposition 13 in Chapter III].
Let K0 be the fixed field of L by the subgroup

〈σ ∈ Gal(L/Q) | σ |K = ϕi for some i〉

of Gal(L/Q). One can readily check that K0 becomes either an imaginary quadratic
subfield of K and K ∗, or Q. In particular, we see from the assumption (C2) that
K0 = Q when g ≥ 2 [13, Remark (1) in p. 213] or [18, Theorem 3 in §6.2].

From now on, we let f = f0OK for a proper nontrivial ideal f0 of OK0 . Let C be a
given ray class in Cl(f). For an integral ideal c in C we set

mc = g
√
NK ∗((f∗)−1ϕ(c)),

where f∗ = f0OK ∗ . Let d0 = 2/[K0 : Q]. Then we get

mc = g
√
NK ∗(f∗f∗)−1/2NK ∗(ϕ(c)ϕ(c))1/2

= g
√
NK ∗(NK0(f0)

d0OK ∗)−1/2NK ∗(NK (c))1/2

= NK0(f0)
−d0NK (c).

(7)

Since f∗f∗ = NK0(f0)
d0OK ∗ , one can deduce from [7, Lemma 5.3] that

Pc = (C
g
/�(f∗ϕ(c)−1), Eξmc)

is also a principally polarized abelian variety. Let {b1, . . . ,b2g}be a symplectic basis of
Pc, and let y1, . . . , y2g be elements of f∗ϕ(c)−1 satisfying b j = �(y j ) (1 ≤ j ≤ 2g).
As is well known [1, Proposition 8.1.1], the g × g matrix

Z∗
0 = [

bg+1 · · · b2g
]−1 [b1 · · · bg

]
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belongs to Hg and we call it a CM-point. Since the smallest positive integer N in
f = f0OK also belongs to f∗ϕ(c)−1 = f0ϕ(c)−1, we can express N as

N =
2g∑

j=1

r j y j for some unique integers r1, . . . , r2g. (8)

Definition 5.3 We define the Siegel invariant �f(C) modulo f at C by

�f(C) = �

⎛

⎜⎝

⎡

⎢⎣
r1/N

...

r2g/N

⎤

⎥⎦ , Z∗
0

⎞

⎟⎠ .

Remark 5.4 When g = 1, Assumption 5.1 always holds and �f(C) becomes the
Siegel–Ramachandra invariant modulo f at C described in (3).

This invariant �f(C) is well defined, independent of the choices of a symplectic
basis of Pc and an integral ideal c in C as follows:

Proposition 5.5 �f(C) does not depend on the choice of a symplectic basis of Pc.

Proof Let {̃b1, . . . , b̃2g} be another symplectic basis ofPc and let Z̃∗
0 be the associated

CM-point in Hg . Then we have

[̃
b1 · · · b̃2g

] = [
b1 · · · b2g

]
β for some β =

[
A B
C D

]
∈ Sp2g(Z), (9)

and

Z̃∗
0 = βT(Z∗

0) (10)

[7, Proposition 6.1].
Let ỹ1, . . . , ỹ2g be elements of f∗ϕ(c)−1 such that b̃ j = �(ỹ j ) (1 ≤ j ≤ 2g).

Together with (8) we can express N as

N =
2g∑

j=1

r j y j =
2g∑

j=1

r̃ j ỹ j for some unique integers r̃1, . . . , r̃2g.

Applying the embedding � in the previous equation and using (9), we see that

�(N ) = [
b1 · · · b2g

]
⎡

⎢⎣
r1
...

r2g

⎤

⎥⎦ = [̃
b1 · · · b̃2g

]
⎡

⎢⎣
r̃1
...

r̃2g

⎤

⎥⎦ = [
b1 · · · b2g

]
β

⎡

⎢⎣
r̃1
...

r̃2g

⎤

⎥⎦ ,
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from which we have

⎡

⎢⎣
r̃1
...

r̃2g

⎤

⎥⎦ = β−1

⎡

⎢⎣
r1
...

r2g

⎤

⎥⎦ . (11)

We then derive that

�

⎛

⎜⎝

⎡

⎢⎣
r̃1/N

...

r̃2g/N

⎤

⎥⎦ , Z̃∗
0

⎞

⎟⎠ = �

⎛

⎜⎝β−1

⎡

⎢⎣
r1/N

...

r2g/N

⎤

⎥⎦ , βT(Z∗
0)

⎞

⎟⎠ by (10) and (11)

= �

⎛

⎜⎝ββ−1

⎡

⎢⎣
r1/N

...

r2g/N

⎤

⎥⎦ , Z∗
0

⎞

⎟⎠ by the fact βT ∈ Sp2g(Z)

and Lemma 4.4 (ii)

= �

⎛

⎜⎝

⎡

⎢⎣
r1/N

...

r2g/N

⎤

⎥⎦ , Z∗
0

⎞

⎟⎠ .

This completes the proof. ��
Proposition 5.6 �f(C) does not depend on the choice of an integral ideal c in C.

Proof Let c′ be another integral ideal in the class C , and so

c′ = νc for some ν ∈ K× such that ν ≡∗ 1 (mod f)

([4, § IV.1]).
Then we may write ν as

ν = 1 + x for some x ∈ fc−1.

Let

b′
j = �(ϕ(ν−1)y j ) =

⎡

⎢⎢⎢⎣

ϕ(ν−1)ψ1 0 · · · 0
0 ϕ(ν−1)ψ2 · · · 0
...

...
. . .

...

0 0 · · · ϕ(ν−1)ψg

⎤

⎥⎥⎥⎦ b j for 1 ≤ j ≤ 2g.

It then follows from the proof of [7, Proposition 6.3] that {b′
1, . . . ,b

′
2g} is a symplectic

basis of Pc′ , and the associated CM-point is

[
b′
g+1 · · · b′

2g
]−1 [b′

1 · · · b′
g
] = [

bg+1 · · · b2g
]−1 [b1 · · · bg

] = Z∗
0 .
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Since K0 is the subfield of K fixed by the subgroup 〈σ ∈ Gal(L/Q) | σ |K =
ϕi for some i〉 of Gal(L/Q), we have (fOL)ϕi = (f0OL)ϕi = f0OL = f∗OL . Hence
we see from the fact x ∈ fc−1 that

ϕ(ν) =
n∏

i=1

(1 + x)ϕi ∈ K ∗ ∩ (1 + f∗ϕ(c)−1OL) = 1 + f∗ϕ(c)−1. (12)

Since N ∈ f∗ϕ(c′)−1 and {ϕ(ν−1)y1, . . . , ϕ(ν−1)y2g} is a Z-basis for f∗ϕ(c′)−1, one
can express N as

N =
2g∑

j=1

r ′
jϕ(ν−1)y j for some integers r ′

1, . . . , r
′
2g.

Hence we have

ϕ(ν) =
2g∑

j=1

(r ′
j/N )y j ,

which implies by (8) and (12)

⎡

⎢⎣
r ′
1/N
...

r ′
2g/N

⎤

⎥⎦ ∈
⎡

⎢⎣
r1/N

...

r2g/N

⎤

⎥⎦+ Z
2g

.

Therefore, the proposition follows from Lemma 4.1 (iii). ��

6 Galois conjugates of Siegel invariants

Finally, we shall show that under Assumption 5.1 the Siegel invariant �f(C) lies in
the ray class field Kf and satisfies the natural transformation formula via the Artin
reciprocity map for f.

Let h : K ∗ → M2g(Q) be the regular representation with respect to the Q-basis
{y1, . . . , y2g} of K ∗, that is, h is the map given by the relation

h(a)

⎡

⎢⎣
y1
...

y2g

⎤

⎥⎦ = a

⎡

⎢⎣
y1
...

y2g

⎤

⎥⎦ (a ∈ K ∗). (13)

We naturally extend h to the map (K ∗)A → M2g(QA), and also denote it by h.
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Proposition 6.1 (Shimura’s Reciprocity Law) Let f ∈ F . If f is finite at Z∗
0 ∈ Hg,

then f (Z∗
0) belongs to Kab. Moreover, if s ∈ K×

A
, then we get h(ϕ(s)) ∈ GA+ and

f (Z∗
0)

[s,K ] = f τ(h(ϕ(s)−1))(Z∗
0).

Proof See [19, Lemma 9.5 and Theorem 9.6]. ��
Remark 6.2 Observe that we are assuming (K ∗)∗ = K .

Theorem 6.3 If �f(C) is finite, then it lies in Kf. Furthermore, it satisfies

�f(C)σf(D) = �f(CD) for all D ∈ Cl(f),

where σf is the Artin reciprocity map for f.

Proof Since �f(C) ∈ Kab by Propositions 4.5 and 6.1, there is a positive integer M
such that 2N 2 | M and �f(C) ∈ Kg, where g = MOK . We can take integral ideals
c ∈ C and d ∈ D which are relatively prime to g by using the surjectivity of the
natural map Cl(g) → Cl(f). Let {b1, . . . ,b2g} and {d1, . . . ,d2g} be symplectic bases
of Pc and Pcd, respectively. Furthermore, let y1, . . . , y2g and z1, . . . , z2g be elements
of f∗ϕ(c)−1 and f∗ϕ(cd)−1, respectively, such that b j = �(y j ) and d j = �(z j ) for
1 ≤ j ≤ 2g.

Since f∗ϕ(c)−1 ⊆ f∗ϕ(cd)−1 = f∗ϕ(c)−1ϕ(d)−1, we have

⎡

⎢⎣
y1
...

y2g

⎤

⎥⎦ = δ

⎡

⎢⎣
z1
...

z2g

⎤

⎥⎦ for some δ ∈ M2g(Z) ∩ GL2g(Q), (14)

and hence

[
b1 · · · b2g

] = [
d1 · · · d2g

]
δT.

If we let Z∗
0 and Z

∗
1 be the CM-points associatedwith {b1, . . . ,b2g} and {d1, . . . ,d2g},

respectively, then we obtain

Z∗
1 = δ−1(Z∗

0). (15)

We also obtain
[
O −Ig
Ig O

]
= [

Eξmc(bi ,b j )
]
1≤i, j≤2g

= δ
[
Eξmc(di ,d j )

]
1≤i, j≤2g δT

= δ
[
mcm

−1
cd Eξmcd(di ,d j )

]
1≤i, j≤2g

δT

= mcm
−1
cd δ

[
O −Ig
Ig O

]
δT.
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This shows that

δ ∈ M2g(Z) ∩ G+ with det(δ) = (m−1
c mcd)

g = N (d)g by (7). (16)

Let s = (sp)p be an idele of K such that

{
sp = 1 if p | M,

sp(OK )p = dp if p � M .
(17)

If we denote by D̃ the ray class in Cl(g) containing d, then we get by (17) that

[s, K ]|Kg = σg(D̃),

ϕ(s)−1
p (OK ∗)p = ϕ(d)−1

p for all rational primes p.
(18)

By (13)–(18), we deduce that for each rational prime p, the components of each of
the vectors

h(ϕ(s)−1)p

⎡

⎢⎣
y1
...

y2g

⎤

⎥⎦ and δ−1

⎡

⎢⎣
y1
...

y2g

⎤

⎥⎦

form a basis of f∗ϕ(cd)−1
p = f∗ϕ(c)−1ϕ(d)−1

p . Thus there is a matrix u = (u p)p ∈∏
p GL2g(Zp) satisfying

h(ϕ(s)−1) = uδ−1. (19)

On the other hand, there exists a matrix γ ∈ Sp2g(Z) such that

δ ≡
[
Ig O
O N (d)Ig

]
γ (mod M · M2g(Z)) (20)

by (16) and the surjectivity of the reduction Sp2g(Z) → Sp2g(Z/MZ) [15]. Since
h(ϕ(s)−1)p = I2g for all p | M by (17), we achieve u p = δ for all p | M by (19).
Hence we obtain by (20) that

u pγ
−1 ≡

[
Ig O
O N (d)Ig

]
(mod M · M2g(Zp)) (21)

for all rational primes p.
If we write

N =
2g∑

j=1

r j y j for some integers r1, . . . , r2g,
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then we see by (14) that

N = [
r1 · · · r2g

]
⎡

⎢⎣
y1
...

y2g

⎤

⎥⎦ = ([
r1 · · · r2g

]
δ
)
⎛

⎜⎝δ−1

⎡

⎢⎣
y1
...

y2g

⎤

⎥⎦

⎞

⎟⎠

= ([
r1 · · · r2g

]
δ
)
⎡

⎢⎣
z1
...

z2g

⎤

⎥⎦ . (22)

Letting v =
⎡

⎢⎣
r1/N

...

r2g/N

⎤

⎥⎦ we derive that

�f(C)σg(D̃) = �f(C)[s,K ] by (18)

= �(v, Z∗
0)

[s,K ] by Definition 5.3

= �(v, Z)τ(h(ϕ(s)−1))|Z=Z∗
0

by Proposition 6.1

= �(v, Z)τ(uδ−1)|Z=Z∗
0

by (19)

= �(v, Z)τ(uγ −1)τ (γ )τ (δ−1)|Z=Z∗
0

= �

([
Ig O
O N (d))Ig

]
v, Z

)τ(γ )τ (δ−1)

|Z=Z∗
0

by (21) and Lemma 4.4 (iii)

= �

(
γ T
[
Ig O
O N (d)Ig

]
v, Z

)τ(δ−1)

|Z=Z∗
0

by Lemma 4.4 (ii)

= �(δTv, Z)τ(δ−1)|Z=Z∗
0

by (20) and Lemma 4.4 (i)

= �(δTv, δ−1(Z∗
0)) owing to the fact δ ∈ G+ and (A1)

= �f(CD) by (15), (22) and Definition 5.3.

In particular, if D is the identity class of Cl(f) then σg(D̃) leaves �f(C) fixed. There-
fore, we conclude that �f(C) lies in Kf as desired. ��

Lastly, we expect from Proposition 2.1 and [18, Main Theorem 2 in §16] that under
the Assumption 5.1 the following conjecture will turn out to be affirmative.

Conjecture 6.4 The Siegel invariant �f(C) discussed here is a primitive generator of
the fixed field of ker(ϕ̃) in the ray class field Kf of a CM-field K , where ϕ̃ : Cl(f) →
Cl(f∗) is the natural homomorphism induced from the map ϕ defined in (6). Here,
Cl(f∗) is the ray class group of K ∗ modulo f∗.

Example 6.5 Let � be an odd prime and g = (� − 1)/2. Let K = Q(ζ�) with ζ� =
e2π i/�. Then [K : Q] = 2g. For each 1 ≤ i ≤ g, let ϕi be the element of Gal(K/Q)

determined by ζ
ϕi
� = ζ i� . Then (K ; {ϕ−1

1 , ϕ−1
2 , . . . , ϕ−1

g }) is a primitive CM-type and

its reflex is (K ; {ϕ1, ϕ2, . . . , ϕg}) [18, p. 64]. Furthermore, (C
g
/�(OK ), Eξ ) with
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ξ = (ζ� − ζ−1
� )/� becomes a principally polarized abelian variety, where �(a) =⎡

⎢⎣
aϕ1

...

aϕg

⎤

⎥⎦ for a ∈ K [8, pp. 817–818]. Hence it satisfies the Assumption 5.1.

Assume that the class number of K is 1. Let f = NOK for a positive integer N , and
let C ∈ Cl(f). Take an integral ideal c of K in C . Then c = λOK for some λ ∈ OK .
Let

x j =
{

ζ
2 j
� for 1 ≤ j ≤ g,∑ j−g
k=1 ζ 2k−1

� for g + 1 ≤ j ≤ 2g,

and ϕ(a) = ∏g
i=1 a

ϕ−1
i for a ∈ K . Then {Nϕ(λ)−1x j }2gj=1 is a free Z-basis of fϕ(c)−1

and

[
Eξmc(�(Nϕ(λ)−1xi ),�(Nϕ(λ)−1x j ))

]
1≤i, j≤2g =

[
O −Ig
Ig O

]
.

Thus {�(Nϕ(λ)−1x j )}2gj=1 is a symplectic basis of (C
g
/�(fϕ(c)−1), Eξmc) and the

corresponding CM-point is

Z∗
� = [

�(Nϕ(λ)−1xg+1) · · · �(Nϕ(λ)−1x2g)
]−1

× [�(Nϕ(λ)−1x1) · · · �(Nϕ(λ)−1xg)
]

= [
�(xg+1) · · · �(x2g)

]−1 [
�(x1) · · · �(xg)

]
. (23)

Note that Z∗
� does not depend on a ray class C . On the other hand, there exist integers

r1, r2, . . . , r2g such that

N =
2g∑

j=1

r j (Nϕ(λ)−1)x j ,

that is, ϕ(λ) = ∑2g
j=1 r j x j . Then we obtain

�f(C) = �⎡

⎢⎢⎣

r1/N
r2/N

...
r2g/N

⎤

⎥⎥⎦

(Z∗
� ). (24)

Now, consider the special case where K = Q(ζ5) and f = 7OK . One can readily
show that [Kf : K ] = 30 and

Cl(f) = 〈C1〉 ∼= Z/30Z,
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where C1 denotes the ray class in Cl(f) containing the ideal (3+ ζ5)OK . Here we note
that Kf is not a Kummer extension of K . Let Ck = Ck

1 for an integer k. Then we have

ϕ(3 + ζ5) = (3 + ζ5)(3 + ζ 3
5 )

= −6ζ5 − 9ζ 2
5 − 6ζ 3

5 − 8ζ 4
5 since

4∑

k=0

ζ k
5 = 0

≡ 5x1 + 6x2 + 0 · x3 + x4 (mod f),

where

x1 = ζ 2
5 , x2 = ζ 4

5 , x3 = ζ5, x4 = ζ5 + ζ 3
5 .

Hence we see from (23), (24) and Lemma 4.4 (i) that

�f(C1) = �⎡

⎣
5/7
6/7
0
1/7

⎤

⎦
(Z∗

5) ≈ (3.63991 − 3.56536i) × 10−139,

where

Z∗
5 =

[
ζ5 ζ5 + ζ 3

5
ζ 2
5 ζ 2

5 + ζ5

]−1 [
ζ 2
5 ζ 4

5
ζ 4
5 ζ 3

5

]
.

In like manner, we obtain

�f(C2) = �⎡

⎢⎣
5/7
5/7
1/7
3/7

⎤

⎥⎦

(Z∗
5) ≈ (−8.08524 + 6.22260i) × 10−89,

�f(C3) = �⎡

⎢⎣
6/7
4/7
3/7
6/7

⎤

⎥⎦

(Z∗
5) ≈ (−2.33222 + 4.31812i) × 10−62,

�f(C4) = �⎡

⎣
4/7
0
1/7
2/7

⎤

⎦
(Z∗

5) ≈ (3.60113 + 1.64858i) × 10−93,

�f(C5) = �⎡

⎣
4/7
0
0
1/7

⎤

⎦
(Z∗

5) ≈ 6.72312 × 10−102,

�f(C6) = �⎡

⎣
6/7
0
2/7
1/7

⎤

⎦
(Z∗

5) ≈ (−1.10112 − 0.39890i) × 10−107,

�f(C7) = �⎡

⎢⎣
1/7
5/7
2/7
6/7

⎤

⎥⎦

(Z∗
5) ≈ (0.52715 + 3.21425i) × 10−98,
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�f(C8) = �⎡

⎣
0
5/7
1/7
1/7

⎤

⎦
(Z∗

5) ≈ (−8.08524 − 6.22260i) × 10−89,

�f(C9) = �⎡

⎣
5/7
2/7
0
4/7

⎤

⎦
(Z∗

5) ≈ (2.28063 + 4.81439i) × 10−117,

�f(C10) = �⎡

⎣
0
3/7
0
0

⎤

⎦
(Z∗

5) ≈ 9.88496 × 10−328,

�f(C11) = �⎡

⎣
0
4/7
4/7
1/7

⎤

⎦
(Z∗

5) ≈ (3.68776 + 3.68367i) × 10−155,

�f(C12) = �⎡

⎣
4/7
2/7
0
3/7

⎤

⎦
(Z∗

5) ≈ (−6.14912 + 0.77268i) × 10−86,

�f(C13) = �⎡

⎢⎣
5/7
1/7
6/7
6/7

⎤

⎥⎦

(Z∗
5) ≈ (0.52715 − 3.21425i) × 10−98,

�f(C14) = �⎡

⎢⎣
4/7
5/7
5/7
5/7

⎤

⎥⎦

(Z∗
5) ≈ (1.23513 + 0.77554i) × 10−99,

�f(C15) = �⎡

⎣
0
4/7
5/7
4/7

⎤

⎦
(Z∗

5) ≈ 6.12704 × 10−67,

�f(C16) = �⎡

⎢⎣
1/7
5/7
4/7
5/7

⎤

⎥⎦

(Z∗
5) ≈ (3.60113 − 1.64858i) × 10−93,

�f(C17) = �⎡

⎢⎣
1/7
4/7
2/7
5/7

⎤

⎥⎦

(Z∗
5) ≈ (−2.33675 + 8.05623i) × 10−90,

�f(C18) = �⎡

⎢⎣
4/7
1/7
6/7
2/7

⎤

⎥⎦

(Z∗
5) ≈ (−6.14912 − 0.77268i) × 10−86,

�f(C19) = �⎡

⎣
0
2/7
2/7
1/7

⎤

⎦
(Z∗

5) ≈ (3.63991 + 3.56536i) × 10−139,

�f(C20) = �⎡

⎣
0
0
5/7
2/7

⎤

⎦
(Z∗

5) ≈ 5.78483 × 10−283,
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�f(C21) = �⎡

⎢⎣
2/7
6/7
2/7
4/7

⎤

⎥⎦

(Z∗
5) ≈ (2.28063 − 4.81439i) × 10−117,

�f(C22) = �⎡

⎣
0
5/7
6/7
4/7

⎤

⎦
(Z∗

5) ≈ (−1.38020 − 2.93978i) × 10−89,

�f(C23) = �⎡

⎢⎣
3/7
6/7
5/7
2/7

⎤

⎥⎦

(Z∗
5) ≈ (−2.33675 − 8.05623i) × 10−90,

�f(C24) = �⎡

⎢⎣
6/7
5/7
4/7
6/7

⎤

⎥⎦

(Z∗
5) ≈ (−1.10112 + 0.39890i) × 10−107,

�f(C25) = �⎡

⎢⎣
6/7
1/7
2/7
6/7

⎤

⎥⎦

(Z∗
5) ≈ 8.93647 × 10−206,

�f(C26) = �⎡

⎢⎣
2/7
1/7
2/7
2/7

⎤

⎥⎦

(Z∗
5) ≈ (1.23513 − 0.77554i) × 10−99,

�f(C27) = �⎡

⎣
1/7
0
5/7
5/7

⎤

⎦
(Z∗

5) ≈ (−2.33222 − 4.31812i) × 10−62,

�f(C28) = �⎡

⎣
3/7
4/7
2/7
0

⎤

⎦
(Z∗

5) ≈ (−1.29271 − 0.48794i) × 10−71,

�f(C29) = �⎡

⎢⎣
1/7
5/7
1/7
4/7

⎤

⎥⎦

(Z∗
5) ≈ (3.68776 − 3.68367i) × 10−155,

�f(C30) = �⎡

⎣
6/7
0
0
0

⎤

⎦
(Z∗

5) ≈ 4.96289 × 10−453.

Here we estimate these values with the aid of Maple software [12]. Observe that

�f(C1) = �f(C19), �f(C2) = �f(C8), �f(C3) = �f(C27), �f(C4) = �f(C16),

�f(C6) = �f(C24), �f(C7) = �f(C13), �f(C9) = �f(C21), �f(C11) = �f(C29),

�f(C12) = �f(C18), �f(C14) = �f(C26), �f(C17) = �f(C23), �f(C22) = �f(C28),

and

�f(C5k) ∈ R for 1 ≤ k ≤ 6.
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Since all conjugates of �f(C1) are distinct, we get

Kf = K (�f(C)) for C ∈ Cl(f).
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