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Abstract— We consider the distributed detection problem with a
large number of identical sensors deployed over a region where the
phenomenon of interest (POI) has different signal strength depending on
the location. Each sensor makes a decision based on its own measurement
of the spatially varying signal and the local decision of each sensor is sent
to a fusion center through a multiple access channel. The fusion center
decides whether the POI has occurred in the region, under a global
size constraint in the Neyman-Pearson formulation. Assuming that the
initial distribution of sensors is a homogeneous spatial Poisson process,
we show that the Poisson process of ‘alarmed’ sensors satisfies the locally
asymptotic normality (LAN) condition as the number of sensor goes to
infinity and derive a new asymptotically locally most powerful detector
for the spatially varying signal. We show that (1) an optimal test statistic
is a weighted sum of local decisions, (2) the optimal weight function is
the shape of the spatial signal, and (3) the exact value of the spatial
signal is not required. For the case of independent, identical distributed
(i.i.d.) sensor observation, we show that the counting-based detector is
also asymptotic locally optimal.

I. INTRODUCTION

Recently large-scale sensor networks have been proposed in many
applications such as environmental monitoring, scientific research,
and surveillance. A large number of sensors are expected to be
deployed over a region, to measure the phenomenon of interest (POI)
and to transmit their local data via wireless channels to a central
site which performs global processing. For these large-scale sensor
networks, the number of sensors is envisioned to be 10,000 to 100,000
and the sensors cover a geographically wide area. Hence, sensors
must be cheap, and be manufactured in a massive volume, so that
data from any one sensor may be unreliable. In this paper, we consider
a detection problem based on local sensor data in such a large-scale
sensor network.

Distributed detection using multiple sensors and optimal fusion
rules has been widely investigated, see, e.g., [10]. Many authors have
derived optimal fusion rules based on different sets of assumptions
[11], [12], [13]. However, most fusion rules are obtained under the
assumption that the hypotheses of the underlying phenomenon are
simple, i.e., discrete and finite; further, these approaches require the
knowledge of the false alarm and detection probability of each sensor
decision under each of the M possible hypotheses. However, in
applications such as the detection of biological/chemical agents or
radioactivity in a certain area, it is difficult to determine the local
detection probability beforehand at each sensor, and to formulate the
detection problem in a simple hypotheses testing framework since
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the signal strength of POI is continuous and unknown beforehand.
In [14], the authors considered the detection of an unknown signal
via multilevel quantization and simple fusion rules. In addition to
the unknown signal strength, for a large-scale sensor network, it is
reasonable to assume that POI has different signal strength over the
area, and that the observation of each sensor depends on its location
and is not identically distributed since sensors are deployed over a
geographically large area.

We consider the optimal fusion problem in such large-scale sensor
networks in the Neyman-Pearson context as the number of sensors
goes to infinity within a fixed geographical area; each sensor observes
an unknown spatially-varying signal. Asymptotic performance of
distributed (as the number of sensors goes to infinity) detection was
analyzed by several authors [15], [16]. Their analyses are based on the
error exponent or convergence rate of the error probability to zero.
However, when the number of observation samples is sufficiently
large so that the error probability of reasonable detectors is already
very close to zero, the convergence rate may not be a proper measure
in the asymptotic regime. We consider a different criterion - asymp-
totic local optimality for such a large-sensor network. Assuming that
the initial spatial distribution of sensors is a homogeneous Poisson
process and that only the spatial variation of the signal is known,
we derive an asymptotically local optimal detector; we also derive
an optimal way to utilize the spatial information with the theory of
locally asymptotic normality (LAN).

The paper is organized as follows. The data model of the sensor
system that we consider is described and a brief summary of Poisson
processes and LAN theory is introduced in section II. In section
II1, the asymptotically locally optimal detector is proposed under the
Poisson assumption for the sensor distribution, and an estimation of
spatial information is discussed.

II. SYSTEM MODEL

We consider a large-scale sensor network with identical binary
sensors deployed over a wide area; we want to decide whether POI
has occurred in the area. Each sensor makes a decision based on
its own observation and the local decisions are collected through a
multiple access channel (MAC) at a central station or fusion center
where a global decision is made under a size (PFA) constraint.

Since very many sensors are distributed over a wide area, we as-
sume that POI has spatially-varying strength over the area. We assume
that the exact value of the signal is unknown but the information of
the relative signal strength with respect to location is available, if the
phenomenon were to occur. For the example of detecting hazardous
chemicals or radioactivity in a region, the strength of the phenomenon
is highest at the center of the phenomenon and decays as the location
becomes far from the center. We assume that the spatial signal is
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deterministic and denote the strength of the signal by
Y(x) = 0s(x), (1)

. A .
where x denotes the location, § € © = [0,00) is an unknown
amplitude, and s(x) is a known function which incorporates the
information about the spatial variation of the underlying phenomenon.

A. Single Sensor

We assume that sensors make their local decisions independently
without collaborating with other sensors. Since the exact value of
the signal strength is unknown, we design each sensor to detect the
following hypotheses

Ho: ~(x)=0,

Hqy: ~(x)>0, @

with local size constraint of «g. The hypotheses (2) is equivalently

expressed by
HO 0= O,
Hy: 6>0. )

The local decision of each sensor S;, located at x, is denoted by

if Ho selected,

0
= { 1 otherwise. @)
S
y(x) Y; N u; =1or0
@ Y <T

T N; ~ N(0,00)

Fig. 1. Sensor located at x

One possible sensor observation model is the additive Gaussian

noise model shown in Fig. 1, where the sensor input Y; is given by
Y;:’Y(X)+Nla NZNN(0700)7 ©)

where V; is the independent sensor input noise. In this case, the local
decision rule for (3) at each sensor is the UMP detector given by

>Hy

Y; <H, To, (6)

where 70 = 00Q ™ (w)'. We define the following probability

A

p(x) = Pr{u; = 1}. )
Then, p(x) is a function of the signal strength at x and is given by
p(x) = g((z)). ®
For the additive Gaussian observation model, p(x) is expressed as

To—v(x)
Q(=5=).
B. Parametric Poisson Model

Consider that a large number of the sensors described in II-A are
deployed uniformly and randomly over a space A; each sensor makes
its binary decision u; depending on the signal strength at its location
and then transmits the local decision to a fusion center through a
MAC where some sensor data can be lost.

We assume that the initial distribution of sensors over the space
is a homogeneous Poisson process with intensity Aj. Since each
sensor decision is independent and based on the signal strength at

1.2
[ ez at.

'Q(x) denotes the tail probability Q(x) = \/%

IEEE Communications Society

its location, the local decision making of each sensor can be viewed
as a location-dependent thinning procedure of the original sensor
distribution with probability p(x) and the distribution of the alarmed
sensors forms a nonhomogeneous spatial Poisson process. We also
model the data collection through the MAC as another thinning that
is uniform over the space with probability p,, which reflects the data
lost during the transmission period through multiple access channel
to the collector.

Sensors with u; =1

© - .
= Sensors with u; =0

Fig. 2. (a) Initial sensor deployment over area (b) Signal strength of
underlying phenomenon (c)Local decisions of sensors

Hence, the distribution of alarmed sensors, i.e., sensors with u; = 1,
at the final data collector or fusion center, is a nonhomogeneous
Poisson process whose local intensity is given by

A(x) = Anpmp(x) = Anpmg(0s(x))- Q)

When the function g(-) is linear or € is in a small neighborhood of
0 = 0, the Poisson distribution of alarmed sensors is described by a
nonhomogeneous intensity model parameterized by amplitude 6 and
is given by

AMO,x) = 0f(x) + Xo, (10)

where
F(%) = Xupmg' (0)s(x), and Ao = Arpmg(0). (11

The Poisson assumption on the initial sensor distribution effectively
changes the global detection problem to that of of deciding from
which intensity model the spatial distribution of alarmed sensors has
occurred. Notice that the intensity variation f(x) of alarmed sensors
is a scaled version of the spatial signal shape s(x).

C. Review of Poisson Process

The Poisson distribution X 4 in space A is expressed in a simple
manner by the counting measure notation which is given by [8]

Xa(B)= Y e(B), VBCA, (12)
it X, €EA
where x;,7 = 1,..., N4 are random points in A, N4 is a Poisson
distributed random variable with mean A(A), and
A 1, x; € B
€x;(B) = { 0. i ¢ B VB C A. (13)
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We define the stochastic integral for a given function f as

1(5) 2 /A FeOXalda) = 3 flx).

it x; €A

(14)

We denote the probability density of a realization X4 of Poisson
process with intensity A(6,x) by dPg(X ) which is given by [7]

dPy(X4) = exp ( /A log A(0, x) X 4 (dx) — /A A(G,x)dx) .
(15)

D. Sequence of Statistical Experiments and Locally Asymptotic Nor-
mality (LAN)

The theory of locally asymptotic normality (LAN) was first intro-
duced by Le Cam [1]. In this section, we briefly introduce the LAN
theory and its application in asymptotic detection. The LAN theory
provides conceptual simplifications of asymptotic statistics via the
existence of a randomized statistic in a limit Gaussian experiment
using convergence in distribution of loglikelihood ratios. It makes
it possible to establish a minimax bound for the risk of arbitrary
estimators and to construct asymptotically locally most powerful
criteria for composite hypothesis tests [1][2].

We define a statistical experiment as a statistical model (2, X', P)
where P = {Py,0 € O©}. That is, the probability distribution of an
event X € X belongs to the family of distributions P = {Pg,0 €
O} where the true parameter 6 is unknown. The statistical experiment
is simply denoted by {P»,0 € ©}. We consider the sequence of
statistical experiments (Q™), X PM)) where PV = {Pg(")7 0 e
O} with the same parameter space © for all n.

Definition 1: The sequence of statistical experiments {Pé")7 0 €
O} is locally asymptotically normal (LAN) at 6 if there exist matri-
ces rp (6o) and Ip, and random vectors A,, g, such that £L(Ay ¢, |600)
= N(0,1,) and for every h

dap
60+rn(60)h  (n)y _ T (n) 1. 7
log ————————— (X =h" A X — —h Iy h 1),
og dPéz) ( ) .6 ( ) 5 00 +°Pé;‘)( )

where £(An,9,|00) = N(0,Iy,) denotes that A, g, converges in
distribution to A (0, Is,) under Pé: and o ,n) (1) represents a term
%0

that converges to zero in P;:) probability.

Here, A, 4, is called the central sequence and Iy, is called the
Fisher information matrix (FIM) which actually coincides with the
conventional definition of the FIM for smooth parametric families.
The i.i.d. drawings of random variables Xi,..., X, where X; ~
Py 2N (6,1) provides a good example of a LAN family where
Py =Py, rn(0) = = Anp = —= S, (Xi—0),and © =R.

When the sequence of experiments satisfies the LAN conditions,
we can construct an asymptotic local upper bound on the power
(detection probability), and a sequence of tests that achieves the
bound [1][2].

Theorem 1: Let {¢,} be any sequence of asymptotic a-tests for
hypothesis (3). That is,

limsup En 0¢n < a.

n— oo

Suppose that {Pé"),Q € © = [0,00)} is LAN at # = 0 with
normalizing sequence 7,(0) — 0, central sequence A, o, and FIM
Io. Then, for any M > 0,

lim sup sup

[En‘egbn - Q(2a — rn(O)*lelé/z)] <0. (16)
nTe0 0<ry (0)Tlo<M
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where E,, ¢ denotes the expectation under PG(") probability. Fur-
thermore, the following procedure is an asymptotic a-test for the
hypotheses (3) that achieves the bound
Take Ho if
Take H1 if

a7
(18)

151/2An,0 S Zow
IO_I/QAn,O > Za,

where A, ¢ is the central sequence and z, = Q@' ().

A detector that achieves the asymptotic local upper bound with
the asymptotic size o is called the asymptotically locally most
powerful (ALMP) detector with size «. The meaning of ALMP can
be described as as follows. Suppose that the alternative hypothesis
is bounded away from zero, § > 6; > 0. As the sample size of
the observations goes to infinity, the two sequences of distributions
{P{"} and {Pé’l")} become asymptotically entirely separated for
most interesting cases and the power of any reasonable detector
approaches unity as the sample size becomes large (with possibly
different convergence rate). Suppose that we have two such detectors
and a sufficiently large number of samples. Then, the powers of
two detectors are already very close to unity, and the convergence
rate is no longer a proper measure for assessing the performance of
detector in the asymptotic regime. (This is the case for the large-scale
sensor network we consider this paper.) Hence, a different asymptotic
criterion is used to find an optimal detector in an asymptotic situation.
The detection is focused on the alternative which is very close
to the null hypothesis & = 0 where the distribution of null and
alternative hypotheses are still nonseparable. Here, the interesting
range for the alternative hypothesis is 8 € (0, 7,(0)M). Since 8 is the
amplitude parameter, the asymptotic criterion is the very low signal-
to-noise ratio (SNR) range in our case. For the one-sided detection
problem, the ALMP detector is most powerful not only in the local
neighborhood of the null parameter but also in the entire parameter
space © = [0, c0) [3].

III. DETECTION OF SPATIALLY-VARYING SIGNAL

In Section II-B, we assumed that the initial sensor distribution
is Poisson, and showed that the original detection problem using
identical binary sensors, deployed over a space with a spatially-
varying signal, is converted to the problem of detecting a Poisson
process with different intensities. In this section, using the LAN
theory, we derive an asymptotically locally most powerful detector
for the problem (3) as the number of sensors goes to infinity, in a
fixed space and under the Poisson assumption.

We construct a sequence of statistical experiments of Poisson
processes of alarmed sensors under the Poisson assumption on the
initial sensor locations. An asymptotic scenario of infinite number of
sensors is easily described by increasing the initial intensity Ap of
sensor deployment.

Model 1 (Fixed area and infinite sensor model): The intensity of
Poisson process of initial sensor distribution over the space A with
finite area is given by

19)

Then, for each n > 1, the local intensity of Poisson process of the
alarmed sensors is given using (10, 11) by

>\h = n)\hOA

A™ (6, x) = Onf(x) + nAo, (20)

and the sequence of experiments {Pé")ﬁ € [0,00)} is given by
(15). X fqn) is the realization of Poisson processes of alarmed sensors
on area A with probability P,
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Theorem 2: For Model 1, suppose that f(x) satisfies the following
conditions

(C1) f(x)>0, z€A,

(C2) supyey f(x) < oo,
C€3) [, fx)dx > 0.

Then, the statistical model {Pé"), 6 €O} is LAN at 6 = 0:

()
dP . oy
ap

where the central sequence and normalizing sequence are given by

_ —1/2 /'\(n)(o’x) (n) (n)
An,O*/A 7 (0) (W [XA (dx) — Ay (dx)},
(22)
A (0, %)

0 =207 50 = [ (300 e,

)'\(n)(a7 x) = %)\(")(Ua x)|v=0, A(()")(dx) = )\(n)(o7 x)dx.

Proof may be found in [17], and is omitted here due to space
limitations.

n 1
log (X)) = hAno — 5h2 +opem (1), @D

n

The conditions (C.1)-(C.3) are general enough to incorporate
various spatial variations including a step function, a linear decay,
or an exponential decay

s(zy)=e ", r= a2 +y2

Theorem 3: For model 1, let the conditions (C.1)-(C.3) be satis-
fied. Then, the spatial function s(x) provides an optimal weight under
the Poisson assumption on the initial sensor distribution in the sense
that it achieves the asymptotic local upper bound of the power under
given size constraint as the number of sensors goes to infinity.

Proof:

(23)

AP0,x)  nf(x)
A (0,x) — Onf(x) + nio

—1/2
r;1/2(0) = n71/2)\é/2 </ f2(x)dx) .
A

lo=o = /\Slf(X),

Ao :r#WmAﬂwwme—&me (24)

. —1/2
= p A2 (/ 52(x)dx)
A

( Z s(xi) — nAo/ s(x)dx). (25)
it x; €A A
|

Notice that the asymptotic optimal test statistic is the weighted
sum of alarmed sensors. The weight s(x) is related to the shape
of underlying spatial signal y(x). Since A, o is normalized to have
a limit distribution of N'(0, 1), any scaling of s(x) is irrelevant in
forming the test statistic. Hence, the exact value of the spatial signal
is not necessary. The relative strength of the signal over the location
is enough for the global detection with a given size.

The weighting of a local decision with the relative signal strength
at the sensor location in Theorem 3 can be considered as a matched
filtering in the spatial domain even though it is different from the
conventional matched filtering since the received signal is random
points with an intensity function rather than the distorted version of
the transmitted signal. The use of intensity function in the detection of
Poisson processes has been investigated. In [9], the author considered
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a binary on-off detection problem in optical transmissions. The author
assumed that the photon generation epochs were Poisson distributed
and showed that the optimal weight is related to the intensity of input
light under Bayesian formulation between two simple hypotheses.
However, the exact knowledge of the intensity of light is required
rather than the shape of intensity.

Corollary 1: For i.i.d. sensor observations over A, the counting-
based detector is asymptotically locally most powerful a-test under
the Poisson assumption on sensor distribution.

Proof: In this case, the spatial signal shape s(x) is given by
s(x) =1,
and the central sequence is given by

Ano = (nAo]A)"Y2(N™ (A) — nAo|A), (26)

where N(™)(A) is the number of alarmed sensors in space A and
|A] is the area of A. |

IV. NUMERICAL RESULTS

We considered a two dimensional space A which is circular with
radius one. The spatial signal shape we considered is the symmetric
exponential in (23) with different decaying rates. The average number
of sensors in A was chosen to be 1,000. For the local sensor
function, we first used the additive Gaussian noise model (5) and
the UMP detector with local size 0.1 described in Section II-A. We
also considered the linear model for the power function g(-) which
approximated the additive Gaussian input noise model.

For the simulation of power and false alarm probability, 10,000
Monte Carlo runs were executed. For each run, the following pro-
cedures were performed. The locations of sensors were randomly
generated according to a homogeneous Poisson process with the
given mean intensity [6]. For the additive Gaussian sensor model,
the local threshold was calculated from the local size constraint and
set to be the same for all sensors. A zero-mean Gaussian noise with
variance one was generated independently for each sensor and added
to the signal strength calculated from the location of sensor and the
amplitude parameter to form a sensor observation. The threshold
detection was made based on the sum of the signal and noise for
the local decision. The global decision was made based on the test
statistic A0 and the number of alarmed sensors for the ALMP
detector and the counting-based detector, respectively. The global
thresholds for both detectors were determined via the Gaussian limit
distribution. Throughout the simulations, the probability of successful
data collection from a sensor was set to one. The initial homogeneous
density A, the local false alarm probability, and the signal shape
were assumed to be known, and the true values were used for the
simulation.

Fig. 3 shows the analytic asymptotic upper bound in (16) and
simulated powers with respect to the false alarm probability. The
decay rate 7 for the exponential signal was 3. As shown in the figure,
the power of ALMP detector almost achieves the upper bound with
an average of 1000 sensors in the area.

Fig. 4 show the ROC of the proposed ALMP and the counting-
based detector for the additive Gaussian sensor model with local size
0.1. The spatial variation was chosen to be fast within the region
with n = 9. The ALMP detector utilizing the spatial information
drastically improves the detector performance over the counting-
based approach. The ROC for the linear sensor power model is
also plotted. It is shown that the power of the additive Gaussian
sensor model is actually larger than its linear approximation. This
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Fig. 3. ROC - analytic versus simulation.
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Fig. 4. ROC - additive Gaussian sensor model and 1 = 9 (solid line: ALMP
detector with the additive Gaussian noise model, dashed line 1(---): ALMP
detector with the linear sensor power model, dashed line 2(---): counting-based
detector).

is because the cumulative distribution function of Gaussian A/(0,1)
is convex when its value is less than 1/2, which is the case for the
selected local size. Hence, the power of each sensor for the Gaussian
model becomes larger than its linear approximation as the amplitude
0 increases. The global power increases correspondingly.

V. CONCLUSION

Assuming Poisson distribution of sensor locations and the availabil-
ity of location information, we proposed an efficient way of utilizing
the spatial variation of the underlying phenomenon to optimize the
global decision under Neyman-Pearson context. We obtained the
asymptotically locally optimal test for a large sensor network with
spatially varying sensor observation under the Poisson assumption.

2The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied,
of the Army Research Laboratory or the U. S. Government.
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