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Environments
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Abstract—Indoor navigation is a representative application of an indoor positioning system that can use a variety of equipment,
including smartphones with various sensors. Many indoor navigation systems utilize Wi-Fi signals, as well as a variety of inertial
sensors, such as a 3D accelerometer, digital compass, gyroscope, and barometer, to improve the accuracy of user location tracking.
The inertial sensors are vulnerable to changes in the surrounding environments and sensitive to users behavior, but little research has
been conducted on sensor fusion under these conditions. In this paper, we propose a dynamic sensor fusion framework (DSFF) that
provides accurate user tracking results by dynamically calibrating inertial sensor readings in a sensor fusion process. The proposed
method continually learns the errors and biases of each sensor due to the changes in user behavior patterns and surrounding
environments. The learned patterns are then dynamically applied to the user tracking process to yield accurate results. The results of
experiments conducted in both a single-story and a multi-story building confirm that DSFF provides accurate tracking results. The
scalability of the DSFF will enable it to provide more accurate tracking results with various sensors, both existing and under
development.

Index Terms—Error correction, indoor navigation, sensor fusion.

F

1 INTRODUCTION

THE recent evolution of the various sensors installed
in smartphones has enabled hybrid indoor positioning

that integrates various signals and sensor readings for more
accurate user tracking. In a hybrid indoor positioning sys-
tem, a fundamental issue is how to combine the various
sensor data while controlling for the noise contained in
those data. In particular, whether to attribute equal or dif-
ferentiated reliability to each sensor for positioning is open
to debate because it is difficult to distinguish the reliabil-
ity of each sensor precisely. Moreover, the data from self-
contained sensors such as magnetometers and barometers
include errors and biases caused by the dynamically chang-
ing environment, further confusing the determination of the
weight of each sensor. If the sensor error patterns affected
by this dynamic environment were properly interpreted
and the reliability of each sensor revealed, a more accurate
tracking result could be realized by a more sophisticated
fusion of multiple sensors.

Many researchers have already proposed user tracking
estimation that focuses on sensor fusion methods [1], [2],
[3], [4], [5], [6], [7], in which the sensors independently de-
termine the user’s position. One widely used sensor fusion
methods is the Kalman filter, which is a typical loosely
coupled method [8], [9], [10]. Obviously, there are very
sophisticated tightly coupled [28] and deeply coupled [29]
Kalman filters that can be applied to GNSS. The Kalman
filter enables composite user tracking relatively easily using
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a weighted average of the sensor positioning result. The
particle filter [11], [12], [13] and Hidden Markov Model
(HMM) [14], [15], [16] are fusion techniques for probability
models. The particle filter predicts the current position by
a stochastic integration of each weighting function and
motion model so that more sophisticated fusion is possi-
ble. HMM-based fusion is a tightly coupled fusion tech-
nique, where emission and transition probabilities are used
to describe the sensor data obtained while a user walks
around. The signal emission probability is calculated based
on the distribution of the RF signals of each location, and
transition probabilities are generated from inertial sensor
readings. Human movement in a trace has successfully been
described by the HMM and its variations [17].

The studies above, however, have not properly con-
sidered irregular sensor readings due to individual and
environmental diversity, especially when handling inertial
measurement unit (IMU) sensor readings. Each person has
a different height, weight, and movement style, and all
of these features can yield different readings from IMU
sensors. Environmental factors, such as the material of walls
and the size of a space, also affect sensor readings. Research
has been conducted on the effects of environmental [33],
[43], [44] and individual [34] diversity on sensors. However,
it is not easy to calibrate sensor readings to reflect such
environmental and user-specific factors because they are so
diverse. Therefore, individual and environmental diversity
is usually ignored, and the statistically or empirically most-
likely values are used to calibrate the sensors. These values
are static in most cases, which makes it difficult to inte-
grate sensors into a fusion system with flexible reliability.
The error pattern of the IMU sensor varies because of the
changes in user movement patterns and their surrounding
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environment while tracking, so it cannot be properly inter-
preted in a real-time tracking system without considering
its variable reliability. If the error pattern of the IMU sensor
is not properly interpreted and corrected, the noise and
biases in the sensor readings are used to derive the tracking
result, and overlooking these errors eventually lowers the
tracking accuracy. Consequently, ignoring individual and
environmental diversity and real-time changes leads to in-
accurate tracking results. Therefore, there is a need for a
model that can calculate reliability more accurately accord-
ing to individual movement patterns and changes in the
surrounding environment. In addition, given the reliability
model developed, a fusion policy is needed to accommodate
dynamically changing reliabilities.

In this paper, we propose a dynamic sensor fusion
framework that can dynamically learn the pattern of errors,
bias, and reliability of each sensor at run-time to adapt to
a user’s tracking environment and individual movement
pattern. The proposed framework provides reliable position
information using the dynamic sensor fusion (DSF) method.
The main idea of this method is that the aggregate result of
multiple sensors is more accurate than each result from a
single sensor, so the erroneous result of each sensor can be
corrected by referring to the aggregate result. By considering
the aggregate result as the correct answer, the DSF method
learns the error and bias of each sensor, and continuously
adapts to their changes. In the early stages of learning, the
DSF method assigns high weight to a sensor with known
reliability and low weight to a sensor that is not reliable.
In the latter case, the unknown reliability and error pattern
adjusts the given weight by learning unknown factors as
time progresses.

In the proposed framework, we apply an algorithm that
adaptively determines the reliability of the latest data of
each sensor during user tracking. Because the error patterns
and biases change rapidly with the environment according
to a user’s trajectory, the DSF method needs to distinguish
data that has a greater impact on tracking results over time.
Through these procedures, the DSF method can accurately
determine the reliability and bias of each sensor so that its
signals can be combined a reliable result. In addition, the
DSF method is adaptable to environmental changes, envi-
ronmental conditions, and the typical movement patterns of
an individual user.

Moreover, the DSF framework (DSFF) provides a frame-
work in which various sensors can be integrated for user
positioning. To clarify the characteristics of the positioning
approach and the sensor readings used for positioning, we
divide the location information derived from smartphone
signal chipsets and sensors into two categories: absolute
position change and relative position change. The posi-
tioning approaches that use these types of information are
general approaches to user location estimation. Absolute
positioning is a method that calculates an object’s location as
fixed coordinates. The absolute position information can be
acquired using technologies such as Wi-Fi, a magnetome-
ter, GPS, wireless sensor network, cellular network, Blue-
tooth, RFID, and LEDs. In contrast, relative positioning is a
method that estimates the relative coordinates of the present
location based on a previous location. The accelerometer,
gyroscope, magnetometer, compass, barometer, and other

sensors can present the relative position change information.
The values of these sensors are interpreted using a stochastic
model, and the interpreted result is used for learning and
fusion. The DSFF outputs the user tracking result as an
alternating stochastic product of absolute and relative po-
sition information derived from various sensors. Therefore,
a sensor can be integrated into the DSFF by representing
the sensors readings or their distributions as a probabilistic
model.

2 RELATED WORK

An HMM is a statistical Markov model that has two
elements: hidden states and observable outputs. In this
model, the Markov process is hidden and only the out-
puts of the Markov process are available. In an HMM-
based framework for location tracking proposed by Xing
et al. [13], a graph structure is used to store fusion models
generated from multiple sensors in the offline phase, and
the data collected is fused using a multimodal particle filter
when performing tracking in the online phase. Hoang et al.
employed an HMM-based sensor fusion of Received Signal
Strength Indicator (RSSI) and inertial sensor information for
user tracking. They described a coarse grid of states for Wi-
Fi measurements that need to be taken during training and
introduce pseudo-states between the regular HMM states
to reduce quantization error [14]. Liu et al. presented a
smartphone indoor positioning engine that can be easily
integrated with a mobile Location Based System (LBS). Two
algorithms based on HMM problems, the grid-based filter
and the Viterbi algorithm were used as the central processor
for data fusion to resolve position estimation [15]. However,
the authors did not take into consideration the constantly
changing environment nor specify the parameters used for
tracking. In other words, they used static values derived
from mathematical calculations.

In addition to indoor positioning, HMM-based sensor
fusion methods have been studied in various fields. A cou-
pled HMM was used by Kumar et al. to fuse various sensors
for sign language recognition [5]. Bernardin et al. fused
two sensor inputs, dataglove-measured finger angles and
tactile information, in an HMM [6]. Dong et al. developed a
statistical methodology for multi-sensor equipment health
diagnosis and prognosis utilizing a hidden semi-Markov
model, which does not provide a complete observation in
the HMM but instead provides a segment of the observa-
tions [7]. The Kalman filter, which is a recursive Bayesian
estimator, is an algorithm that estimates the state of a
linear dynamical system. Chen et al. amalgamated a Wi-Fi-
based approach and the Pedestrian Dead Reckoning (PDR)
approach with landmarks by applying a Kalman filter [8].
Ligorio et al. used a linear Kalman filter for fusing tri-axial
gyroscope and tri-axial accelerometer data [9]. To fuse the
various sensors for robot movements, Rigatos et al. used
extended Kalman filtering [10]. For better robustness to
noise, Assa et al. developed the iterative adaptive unscented
Kalman filter, which is an extension of the iterative adaptive
extended Kalman filter [18]. However, if the noise does not
follow a Gaussian distribution, the Kalman filter performs
poorly.
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When the distribution of sensor values does not appear
to be Gaussian, a particle filter, which is known to be more
flexible than a Kalman filter, is usually applied. A particle
filter is also a recursive Bayesian estimator. It samples the
possible states of the target system as particles and updates
states using observations. For vehicle localization, Suhr et al.
used a particle filter to fuse a number of sensors including
an IMU, GPS, and a wheel speed sensor [11]. Meanwhile,
Wu et al. [12] developed their particle-filtering scheme fus-
ing a fingerprinting method and a PDR algorithm. Zhou
et al. proposed a battery state-of-charge estimating algo-
rithm based on particle filter data fusion [13]. Although the
schemes are robust to irregular noise, they are not suitable
for real-time smartphone tracking because they have a high
computational cost.

3 DSFF
The methods to estimate absolute and relative position

are classified based on the information in the acquired
data of various sensors, as noted above. If the data can
be collected in an offline phase and have characteristics
that appear only at a specific location, these data can be
used for absolute positioning. In contrast, if the sensor data
have characteristics that change depending on the user’s
motion or route, these data can only be used for relative
positioning. In the proposed method, both absolute and
relative positioning are derived as a probabilistic sensor data
fusion.

3.1 Extended Radio Map Construction

The first step in the implementation of the DSF method
is to construct an extended radio map (ERM). Typically, a
radio map is a model of network characteristics in an area
of interest, where the characteristics of a location are called
its fingerprint. Because all sensing data for positioning are
stored in the form of fingerprints in the DSFF, we expand the
concept of a radio map. In other words, the ERM indicates
not only radio signal fingerprints but also any kind of
sensing data fingerprints that can differentiate a location
from others. In the framework proposed in this paper, an
offline phase consists of two steps. The site survey step
generates a set of training samples for ERM construction.
This step involves laborious effort to collect training
data and to assign location labels to the measurements.
An analysis of the target area precedes the data collection
activity so that the survey may be planned. In the calibration
step, the ERM is constructed using the set of location-labeled
measurements. The ERM construction begins by dividing
the area of interest into location cells with the help of
a floor plan. Formally, a three-dimensional (3D) area is
modeled as a finite location-state space L, which is a set of
physical locations with x, y and z coordinates, that is, L =
{l1 = (x1, y1, z1), l2 = (x2, y2, z2), . . . , ln = (xn, yn, zn)} ,
where the coordinates denote the center of a location cell.
The z coordinate is specifically used for floor detection in
our system.

Assume that signals from k access points (APs) can be
received in the area. This will result in a one-time mea-
surement of RSSI values transmitted from the APs, which

are represented as a k-dimensional vector of RSSI values
w =< rssi1, rssi2, . . . , rssik >, where k is the index of an
AP, and rssii is the RSSI value of the k th AP. The RSSI value
typically ranges from -100 to 0 dBm for the IEEE 802.11
standard. Although this paper uses Wi-Fi fingerprinting as a
representative method of absolute positioning, other sensors
can be used in the site survey if they are suitable for absolute
positioning. In other words, if the sensor can be pre-trained
in the offline phase, we can construct an ERM similar to
the ERM that stores Wi-Fi data in a fingerprint. When the
fingerprint is added to the ERM, one-time measurements
of the sensor values transmitted from the devices can be
extended as

w =< sensor11, . . . , sensor1i, sensor21, . . . , sensor2j ,

. . . , sensorNk >, (1)

where sensor1i represents the ith signal of the nth sensor1,
sensorNk represents the kth signal value of the N th sensor.

The magnetometer is also used for absolute positioning
based on the fingerprinting method [32], [35] in DSFF.
Similar to the Wi-Fi ERM data, magnetometer data can be
recorded as m =< inorm, iincl >, where < inorm, iincl >
represent the vector of the magnetic strength norm value
and magnetic inclination at each point measured by a three-
axis magnetometer. These measurements can be combined
as Ew,m. If there is no disturbance during measurement,
magnetic field value ranges from 25 to 65µT outdoors
whereas they range from 0 to 100µT indoors depending
on the distance between a ferromagnetic object and the
measurement device.

3.2 Sensor Data Classification and Fusion

3.2.1 Probabilistic ERM training

Once the ERM has been constructed, Wi-Fi and mag-
netometer fingerprint training is completed for each geo-
graphical coordinate of the target area. Because training
data are already labeled in the ERM, the probabilities can
be calculated using the respective AP strengths and mag-
netometer signal strengths measured in the online phase.
To calculate a new absolute position in real-time, we need
to perform an online measurement OE update formulated
as E, such that, p(wt = OEw|Lt) and p(mt = OEm|Lt), at
each location. To calculate p(wt|Lt) and (mt|Lt), a Gaussian
distribution is assumed for each signal collected wt,i of
AP i and mt at the survey site. Although signal strength
noticeably varies with the distance between an AP and a
location, a single RSSI value is still not enough to represent
the feature of an AP at one location because of the uncer-
tainty in signal propagation. The magnetic field feature has
similar characteristics because magnetic distortion is caused
by surrounding ferromagnetic objects.

The probabilistic DSF method tries to explain this sort
of phenomena by treating RSS and magnetic field measure-
ment as the results of a random process. The aim of the
probabilistic absolute position update is to compute the
conditional probability p(lx|OE) of a location lx given a
certain online measurement OE, and find a location l∗ that
maximizes the posterior probability for positioning. In the
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Fig. 1. Conditional probability densities for (a) accelerometer, (b) gyro-
scope, and (c) barometer. (d) Probability distribution for location.

online positioning phase, a posterior distribution over all
the locations is computed using Bayes rule as follows:

p(lx|OE) =
p(OE|lx)p(lx)∑
li∈L p(OE|li)p(li)

, (2)

where p(lx) is the prior and p(OE|lx) is the likelihood. The
denominator of the equation is a normalization constant
related only to the given OE and where a device may be
located. A conventional choice for the prior is a uniform
distribution that assumes every location is equally likely.

The likelihood function computes the probability of ob-
serving that measurement at a certain location. By assuming
independence among the signals from different APs, the
likelihood p(OEw|lx) is computed as follows:

p(OEw|lx) =
k∏
i=1

p(rssmi |lx), (3)

where rssmi is the RSS value of AP i shown in measurement
m and p(rssmi |lx) is the likelihood of rssmi at location lx.
Similarly, likelihood p(OEmlx) is computed as follows:

p(OEm|lx) = p(inorm, iincl|lx), (4)

where p(inorm, iincl|lx) is the likelihood at location lx. The
value of OE is calculated by simply multiplying (3) and (4).

3.2.2 Probabilistic Motion Sensor Update
The results for the relative positioning are derived by

fusing step length, step detection, the direction of move-
ment, and pressure change with the value of OE. The prob-
ability densities for each of these sensor data have a different
shape as shown in Fig. 1. The conditional probability of
moving distance is derived from accelerometer readings
as a ring shape. For moving direction and floor detection,
the probability densities from gyroscope and barometer

Fig. 2. Probabilistic sensor fusion for relative and absolute position
updates. The gray ring and fan-shaped zones indicate the conditional
probabilities of the moving distance and orientation, respectively. The
probability distribution when considering 2D movement is indicated by
dark blue circles.

readings form triangle and bar shapes, respectively. Because
the probability distributions for relative position changes are
distributed differently according to data sensor types, the
probability for each of them must be calculated indepen-
dently.

In the offline phase, the location information of the dis-
tance and direction between neighboring cells is determined
after dividing the target area into several cells. For instance,
the mean value of the real-time gyroscope reading is used
to estimate user direction in the online phase. For moving
distance, all neighboring cells of a previous location have the
same probability. However, if the probability distribution is
derived from the conditional probability of the moving dis-
tance and the direction simultaneously as shown in Fig. 2,
more accurate positioning results can be obtained. Mean-
while, we use barometer signal distribution to determine
the floor detection. Because atmospheric pressure changes
with altitude, it is possible to distinguish floor levels using
this sensor.

To track user movement, we calculate the probability
distribution p(Lt|ξt, OEt−1), where ξt denotes the set of
movement measurements at time t. In a Markov-based
model, user location Lt depends only on the previous
location Lt−1. Therefore, we can represent moving distance
Dt, gyroscope measurement θt, and barometer reading Bt
as follows:

p(Lt|ξt, OEt−1) =
∑
Lt−1

p(Lt|Lt−1, Dt, θt, Bt)

·p(Lt−1|ξt−1, Et−1). (5)

Given the moving distance, the heading measurement
and barometer reading can be derived using Bayes law as
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follows:

p(Lt|Lt−1, Dt, θt, Bt) =
p(Dt, θt, Bt|Lt, Lt−1) · p(Lt|Lt−1)

p(Dt, θt, Bt|Lt−1)
.

(6)

Because we assume that the moving distance, heading mea-
surement, and barometer reading are independent of each
other, (6) yields

p(Lt|Lt−1, Dt, θt, Bt) =

p(Dt|Lt, Lt−1) · p(θt|Lt, Lt−1) · p(Bt|Lt, Lt−1) · p(Lt|Lt−1)

p(Dt) · p(θt) · p(Bt)
.

(7)

For a transition probability p(Lt|Lt−1), a user’s move-
ment to an adjacent location is more likely than a movement
to a distant location. However, the moving distance Dt, gy-
roscope heading measurements θt, and barometer reading
Bt are already given reliably; we hence know which location
is more likely than the others. By inserting (5) into (7), we
obtain

p(Lt|ξt, OEt−1)

= c ·
∑
Lt−1

p(Dt|Lt, Lt−1) · p(θt|Lt, Lt−1) · p(Bt|Lt, Lt−1)

· p(Lt−1|ξt−1, OEt−1). (8)

The constant c in (8) is determined at the end of the
motion sensor update for normalization because the sum-
mation of all possible locations has to be 1.

As visualized in Fig. 2, for instance, we assume that
the movement measurement set ξt is taken when a user
first reaches the location li(= lt, i ∈ k). The gray ring
and fan-shaped zones denote the conditional probabilities
of the moving distance and orientation respectively. By
multiplying these conditional probabilities, we can obtain
the probability distribution of ξt as the dark gray area,
which is the intersection of the ring and fan-shape zones
at l3 when lt−1(= l5) is the previous location (i.e., the center
of the coordinate system). Here, we specify the step length
of the user as a mean value dmean, the maximum moving
distance dmax and the standard deviation of the step length
dstdev .

Similarly, the heading of the user θmean and standard
deviation of the heading θstdev are set implicitly. These mean
values denote the online phase sensor readings of the user’s
device. Standard deviations are set empirically at the very
beginning. However, as the tracking of a route progresses,
these values will be changed based on online phase data. In
this case, the probability distribution when considering 2D
movement is shown in Fig. 2 as dark blue circles. Similarly,
the conditional probability of the barometer reading is also
multiplied by the probability distribution of ξt when a user
is tracked in 3D space.

4 DYNAMIC ADAPTATION OF PROBABILITY DIS-
TRIBUTION FOR SENSOR FUSION

Generally, a probability distribution for each location is
learned through offline training for absolute positioning.
The probability of each location can be derived with rel-
atively high reliability by reflecting environmental factors.

Fig. 3. Error characteristics of the relative sensor.

However, for relative positioning, it is difficult to obtain an
error distribution that contains both location and environ-
mental factors. For example, a probability distribution is ob-
tained for the moving distance estimation after the reliability
of the method has been calculated using step detection or a
similar variable, and the static value is continuously used.
Because this approach overlooks the environmental changes
and user behavior patterns at each location, it is difficult to
obtain a result that is as reliable as absolute positioning.

The framework proposed in this paper solves this prob-
lem by continually learning and correcting the error distri-
bution of the sensors that are used for relative positioning
by assuming that the position tracking result obtained from
the fusion of multiple sensors is closer to the correct answer
than the result of a single sensor. The positioning results
of each sensor used for absolute positioning are derived
using off-line training data and then integrated to determine
a single probability through sensor fusion. This integrated
absolute positioning result exhibits relatively high accuracy
because it is the result of the highest probabilities for each
sensor. Therefore, at an early stage of user tracking, we
assume that this positioning result is close to the correct
answer, and use it to correct sensor error.

The error probability, which is the basis of the calcula-
tion, is corrected for each sensor by training in the online
phase. Here, we create a database called an error block
(EB) to store the errors for the error correction. Using the
tracking result of the optimal trace, the error is continuously
accumulated in the EB and re-learned as the environment
dynamically changes. Thus, as tracking progresses, the error
of each sensor should be corrected.

4.1 System Overview
Figure 3 shows the error characteristics of the relative

sensor used in the DSFF, where the bias is included in the
sensor reading and produces an undesirable result. Note
that, while there are many ways to express errors in system
modeling, we used a way that considers fluctuation and bias
errors. To this end, the variables are defined as follows:

Ri,n = Ti,n +Bi,n + Fi,n, (9)

where Ri,n is a raw value of the sensor reading, i denotes
relative sensor type, n represents time, Ti,n is the true value,
Bi,n represents bias error, and Fi,n denotes fluctuation error.
We originally expected sensor reading Ri,n to equal the
actual value Ti,n, resulting in an accurate result. However,
in reality, it is unlikely for Ri,n and Ti,n to coincide due
to errors arising from bias, fluctuation, and other factors.
DSFF aims to improve accuracy over time. That is, if Ri,n
converges to Ti,n, the desired goal is achieved.
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Fig. 4. Bias error correction procedure.

System S is defined as a naive system in which the
calibration algorithm of this study is not applied and the
relative sensor reading value is simply input and an answer
is generated as output. If the true value Ti,n is input to the
entire system S, the ideal result Gn will be derived, but in
reality, the sensor reading Ri,n containing the error is input
and estimated result Qn is derived. This can be expressed
as:

S(Ti,n) = Gn,

S(Ri,n) = Qn. (10)

The main goal of our proposed dynamic sensor fusion
technique is to make Qn as close as possible to Gn. In this
case, if filter f is used to receive the sensor reading Ri,n
as an input and output a correction value for the error, the
following filter f output may be used to correct Qn to be
closer to Gn and should be added to Gn. The expression is
as follows:

correction value = f

(
n−1∑
r=1

Ri,r

)
. (11)

In previous studies, assuming that the estimated error of
the tracking system is obtained as Qn−Gn, the DSF obtains
the final revised error as follows:

revised estimation error = S

(
Ri,n +

(
f
n−1∑
r=1

Ri,r

))
−Gn.

(12)

Using this concept, we can intuitively understand the
difference between correcting and not correcting inputs. The
error factor for the sensor input of naive system S can be
simply expressed as follows:∣∣∣∣Ri,n − Ti,nTi,n

∣∣∣∣ . (13)

Applying the correction algorithm filter f proposed in
this study changes this equation as follows:∣∣∣∣∣∣

Ri,n + f
(∑n−1

r=1 Ri,r
)
− Ti,n

Ti,n

∣∣∣∣∣∣ . (14)

Since the Ri,n and Ti,n of each relative sensor are not
scalar values on the same dimension, this paper will not
consider how to calculate these values from the actual value
because the calculation depends on obtaining the best error

Fig. 5. Probability density of (a) absolute sensor 1, (b) absolute sensor
2, (c) relative sensor 1, (d) relative sensor 2, and (e) relative sensor 3.
Depiction of (f) map matching and (g) aggregate result.

model for each sensor. As time progresses in the algorithm,
since the bias error will be the same in each period for which
the environmental factor is homogeneous, the correction
value, which is the output of f , will converge to the negative
of the bias value. This can be expressed as follows:

lim
n→∞

f

(
n−1∑
r=1

Ri,r

)
= −Bi,n. (15)

We can re-arrange (14) from (15). Then, all the bias errors
are corrected and only the fluctuation error remains. This
process is summarized in (16) and is shown in Fig. 4.∣∣∣∣∣Ri,n + f

∑n−1
r=1 −Ti,n

Ti,n

∣∣∣∣∣ =

∣∣∣∣Ri,n −Bi,n − Ti,nTi,n

∣∣∣∣ =

∣∣∣∣Fi,nTi,n

∣∣∣∣ .
(16)

The proposed framework aims to find the right values
through online learning, even if the initial probability dis-
tribution of the error for a particular sensor is not known
exactly. Therefore, we assume that the most common Gaus-
sian distribution is the distribution of a particular sensors
error. In other words, we did not evaluate the probability
distribution of the error each sensor, so the distributions
we used in our experiments are the same as those that are
typically applied in other studies [30], [31], [32].

It would be possible to precisely define all the error dis-
tributions of each sensor in every building to clearly under-
stand the probability distribution of the error distribution.
This would enhance the accuracy of the results if the sensor
values were set at the beginning. However, our on-line
learning-based error correction technique is not targeted at
defining the initial error distribution accurately. Instead, the
aim is to improve the accuracy of the defined distribution
by learning about the error distribution dynamically during
tracking. In other words, we set the initial error distribution
to be Gaussian, and then focus on testing to improve the
accuracy over time.

4.1.1 Assumption of the Multiple Sensor Result

As stated above, we assume that the result of multiple
sensors is closer to the correct answer than the results of a
single sensor. The following example explains the assump-
tions underlying the use of multiple sensor results. In Fig. 5,
(a) and (b) show the probability distributions when absolute
positioning based on probability is performed. To this end,
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we assume that the probability of location L1 is 0.8, the
probability of L2 is 0.7, and the probability of L3 is 0.8 in
Fig. 5 (a). We also assume that the probability of location L1

is 0.7, the probability of L2 is 0.7, and the probability of L3

is 0.6 in Fig. 5 (b). In Fig. 5 (a), L1 and L3 have the same
probability of 0.8, and in Fig. 5 (b) the probability of L1 and
L2 is equal to 0.7. There is ambiguity when we look at the
probability of the locations separately because two different
locations have the same probability.

However, when we consider the probabilities of the ac-
tual positioning results, they are often similar to 10 decimal
places, and any differences are seen only after 10 decimal
places. If we multiply the probabilities from the absolute
sensors, the probability of L1 is 0.56, that of L2 is 0.49,
and that of L3 is 0.48. Now, we have ascertained that a
single location (L1) has the highest probability, simply by
multiplication. No complex calculations are necessary. At
the same time, we have confirmed the possibility that the
accuracy of the defined probability distribution is better
when probabilities from multiple sensors are multiplied
than when a single sensor is used.

Using the same method, we can derive the probability
of an accurate positioning by calculating the probability
distribution for the relative sensors depicted in Fig. 5 (c),
(d), and (e) using (8). Likewise, the probabilities of the
additional sensors are multiplied, and the ambiguity dis-
appears. (Note that, because we are describing the concept
of multiple sensor results here, we do not consider cases
where the error of a single sensor is large. This is discussed
in Section 4.8). If we proceed with map matching using the
indoor layout shown in Fig. 5 (f) for a single probability as
derived with this method, we can obtain the more accurate
final positioning result shown in Fig. 5 (g).

4.1.2 Extension of the DSFF to Other Sensors
DSFF is scalable and new data can be easily fused when

new sensors are added to the system. Whether we use the
sensors described in Section 1 or other kinds of sensors, we
can fuse the values measured by them for absolute posi-
tioning by stochastic derivations. Moreover, it is possible to
calculate the conditional probability according to the type of
sensor or systematically calculate the movement probability
through map matching. Assuming these sensors are added
to the DSFF and used for tracking, we can obtain their
probability distributions as follows.

Because the GPS’s Android API provides standard devi-
ations with latitude and longitude coordinates, we can ob-
tain the reliability of the derived coordinates P (GPS|Loc).
Bluetooth signal distribution can be trained in advance
when the ERM is constructed. The signals collected in the
online phase can be used to derive the probability of the
location P (BLE|Loc). Locality sensitive hashing [21] can
be used to perform image matching for indoor positioning
using the probabilistic nearest neighbor search method to
calculate P (IMG|Loc).

Wi-Fi modules are often used for absolute positioning,
but they can also be used to detect relative position change
using signal variation P (WiFidiff |Loc) [22]. Because we
use the indoor layout of a building in DSFF, map matching
can also be used to calculate the product of the probability.
For example, we can set the probability of movement to zero

when a wall exists in a movement space or set it to 0.25 at
a corridor intersection. Assuming that DSFF tracking is im-
plemented at the intersection, we can derive a probability-
based result from the following equation:

P (WiFi,BLE, . . . |Loc)

=
1

4
× P (WiFi|Loc)× P (BLE|Loc)

× (GPS|Loc)× (IMG|Loc)
× (PDR|Loc), . . . . (17)

In (17), each sensor is independently used to obtain po-
sitional probability. Even if error correction is performed for
each sensor, the independent final probability value of each
sensor is used for tracking estimation. This encapsulates the
probability calculation for each sensor. This means that even
if a new sensor is added, the tracking result can be derived
by simply multiplying the independent probabilities for
each sensor.

4.1.3 EB-applied Relative Sensor Probability Distribution
To calculate the transition probability of relative sensors,

i.e., p(relative sensor|Lt, Lt−1), we can derive

P (S′ = x) =

∫
k
P (S = k) · P (EB = x− k) dk, (18)

where S′ denotes the EB-applied sensor signal distribution
of each sensor and k represents the sensor reading. Since
the distribution of the EB is discrete, it can be re-written as
follows:

P (S′ = x) =
∑
n

∫ x−(n−0.5)w

x−(n+0.5)w
P (S = k) · P (EB = nw)dk,

(19)

where w denotes the width of the EB.

4.2 Dynamic Error Correction for User Direction
The gyroscope is used as a relative positioning method

to detect user orientation. Here, the original location is
inversely estimated using the gyro effect generated by the
rotation of the object and the current direction is inversely
calculated. The magnetometer and gyroscope are widely
used to determine the direction of a user. The magne-
tometer uses the azimuth to determine the absolute angle
between magnetic north and the moving direction. Because
the magnetometer calculates direction with respect to the
direction of gravity obtained by the accelerometer and the
value of the magnetic field, if ferromagnetic materials that
can influence the magnetic field exist in the environment,
the measurement error increases. Accordingly, we use the
gyroscope sensor to estimate user movement direction. This
sensor represents relative angular velocity and is negligibly
influenced by external noise. However, gyroscope data are
not sufficient for obtaining accurate direction information
because errors accumulate as a result of gyro drift.

Figure 6 illustrates the process of the dynamic error
correction focusing on user direction estimation. Suppose
a user’s movement has been tracked for times T0 to T3. In
Fig. 6 (a), ϕ represents the direction of the tracking result, θ
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Fig. 6. EB generation for heading error compensation.

denotes the reading value of the gyroscope, and ∆ϕ is the
difference between ϕ and θ. As shown in Fig. 6, the tracking
result ϕT1,T2,T3 and the inertial sensor reading θT0,T1,T2

at each time are not the same. This mismatch should be
treated as an error of the inertial sensors and corrected for
in the calculation of the next moving probabilities. When
a mismatch occurs, the error distribution is changed by
storing the EB, as shown, from T1 to T3. After storing the EB,
the heading probability distribution is changed depending
on its distribution.

At time T0, an initial location is determined from the
calculation of Et, and the EB is initialized for recording the
error of the inertial sensors. In Fig. 6 (a), the EB forms a nor-
mal distribution with an initial value under the assumption
that the sensor reading is correct. Initially, the EB is formed
with a smooth curve, but this can be converted to the shape
of a block with the same area, as shown in Fig. 6 (b).

At time T1, as shown in Fig. 6 (b), the EB is accumu-
lated at the value corresponding to ∆ϕT0. By contrast, the
opposite value weight of the EB becomes higher in the head-
ing probability distribution. When normalizing the heading
probability distribution, the weight of the other heading
probability, which is set to the initial value, decreases. In
other words, the weight of the new heading bias value
relative to the initial error distribution can be adjusted by
the ratio of the area of the EB to the area of the initial error
distribution.

At time T2, as shown in Fig. 6 (c), the EB accumulates
to the right of the EB values generated at time T1 because
∆ϕT1 is larger than ∆ϕT0. This EB construction causes
the heading probability distribution to expand to the left;
the weight of the correction value rises and the weight of
the initial value decreases, as in T1. At time T3, the EB
is generated at the same position because ∆ϕT2 has the
same value as ∆ϕT1. As shown in Fig. 6 (d), the initial
value of the heading probability distribution decreases, the
weight of the corrected value increases, and a high peak
is formed toward the corrected value. Learning the EBs in

this way and applying the correction values to the heading
probability distribution corrects the heading bias due to the
effect of assigning higher weights to the correction values.

In the EB graph, the y-axis represents the value of the EB
and the x-axis is the value of the error that appears at every
step. In the heading probability distribution graph, the y-
axis represents the probability and the x-axis represents the
angle in degrees. For the direction of movement, the relative
angular velocity is obtained in rad/s from the gyroscope.
To convert radians into degrees, we integrate using radj =∑j
i=1(gyroi · (timei − timei−1)) and find the direction of

movement using θj = radj · 180/π.

4.3 Dynamic Error Correction for Moving Distance
Step detection and step length estimation are the basic

elements used to calculate the relative movement distance
of a user. To detect a user’s steps, we use the norm value
of the three-axis accelerometer, and calculate steps based on
a combination of peak detection and the Fourier transform.
The acceleration values obtained for each pedestrian create a
waveform with a certain period. The peak detection detects
the local maxima of the waveform, which are treated as the
steps of the pedestrian.

Peak detection alone has a low recognition rate for steps
because there are many local maxima in the acceleration
waveform of a pedestrian. Therefore, the frequency com-
ponents of the waveform are obtained using the Fourier
transform and analyzed to estimate whether or not the user
is walking. When the transformed data have a large value at
a specific frequency, this is defined as the walking frequency.
To estimate the number of steps, this frequency component
is multiplied by the pedestrians total moving time.

A delay occurs when the Fourier transform method is
used to estimate steps because the walking frequency of
the pedestrian does not appear until a certain amount of
acceleration data has been collected. We use a combination
method for relative moving distance, but other step detec-
tion algorithms, e.g., zero crossings [19], could be used.

For step length calculation, we use a nonlinear model
that represents a relation between acceleration magnitude
and step length [20]. The expression is as follows:

SLk = ϑ · 4

√
amax(t)− amin(t), (20)

where SLk represents the kth step length and amax(t) and
amin(t) are respectively the maximum and minimum values
of the acceleration reading at time t. Coefficient ϑ is the
ratio of the estimated and real distances, which needs to be
adjusted for different subjects as follows:

ϑ =
dreal

destimated
. (21)

This approach, which dynamically calculates the step
length during walking, is easy to implement because of its
simplicity. Hence, we adopt this method for the step length
estimation of the DSFF.

The relative position of the user is determined from the
displacement direction, step detection, and step length as
follows:

Coort = Coort−1 + SL

[
sin(θt)
cos(θt)

]
, (22)
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Fig. 7. EB correction of the barometer reading.

where θt denotes a corrected heading angle or sensor read-
ing, Coort is the (xt, yt) coordinate at time t, Coort−1 is
the (xt−1, yt−1) coordinate at time t−1, and SLt represents
step length. As with the heading EB, the distance EB also
generates the EB based on the tracking result of the optimal
trace. When tracking results and IMU sensor readings are
not synchronized, it does this by dividing by the detected
step count in the moving distance of successive tracking
results. Consequently, the difference in distance is applied
to each step and stored as a probability distribution of
errors for the distance EB. The distance error correction
employs the same concepts and procedures as heading error
correction: the x-axis of the EB represents the state in which
the tracking result is longer than SLk, and the y-axis of the
EB represents the opposite case. The weight of the distance
bias value can also be adjusted based on the ratio of the EB
area, just as in the heading error correction.

4.4 Dynamic Error Correction for Floor Detection

To track users’ movement between floors, we use a
smartphone-embedded barometric pressure sensor that de-
tects pressure change according to altitude. The barometric
pressure sensor can be utilized for distinguishing user lo-
cation in terms of height in a multi-story building. As is
generally known, the atmospheric pressure decreases as the
altitude increases. The altitude can be calculated using these
characteristics and sea level pressure with scale factors [23].

However, the pressure value changes according to the
weather or other environmental factors when checked on a
daily basis at the same location. If the weather fluctuates
suddenly, there may be a larger error. Because of these
irregular changes, barometer data is not appropriate for
training in the offline phase. It is more helpful to measure
the pressure at the point of providing the navigation service
and utilize it for movement between floors. Using the baro-
metric formula [24], we can calculate user location in terms

of altitude corresponding to barometric pressure changes
using

p = p0 · exp
(
−g ·M ·H

R · T

)
, (23)

where p denotes the reference barometric pressure at a
certain altitude H , p0 is the mean sea level pressure, g
is the gravitational acceleration, M is the molar mass of
dry air, R is the universal gas constant of air, and T is
the temperature. These scale factors can be obtained from
the weather information provided by a weather station or
from [25]. We rearrange (23) to obtain altitude as follows:

H = −R · T
g ·M

· ln
(
p

p0

)
. (24)

If we calculate p using the height information of the
building in (23), it will differ from the barometer reading.
This difference then becomes the bias of the barometer,
which differs for each device. Although some studies have
initially compensated for this bias by calibrating the barom-
eter reading [26], the initially set bias compensation value
is employed as a static value, which is not consistent with
the objective pursued by the DSFF. The International System
unit for pressure is the pascal (Pa), but we use hectopascal
(hPa) units for the DSFF. In general, hPa or millibar units
are used for atmospheric pressure.

The current floor is estimated using (24) as follows:

FL =
Hc −H0

D
, (25)

where FL is the estimated floor level, H0 denotes the first
floor height of the building, Hc denotes the present height
of the user location, and D represents inter-floor height of
the building.

Figure 7 (a) shows the error correction process by ap-
plying the EB to the barometer reading. In Fig. 7 (a), B
represents the barometer reading, ϕ denotes the tracking
result, and ∆ϕ is the difference between ϕ and θ. The
barometer EB is formed using the vertical moving distance
of the tracking result and the change in pressure. After
obtaining the approximate floor level at the beginning of
the positioning from (25), the tracking result ∆ϕT0 is ob-
tained using the difference between BT0 and the tracking
result ϕT1. In this case, the EB is generated using the EB
probability distribution corresponding to ∆ϕT0 as shown in
Fig. 7 (b), and the shape of the probability distribution of the
barometer value is modified to reflect the generated EB. In
the same way, ϕT1 and ϕT2 are calculated, and ∆ϕT0,T1,T2

values are formed by dividing both sides as shown in Fig. 7
(c) and (d). As the EB is generated, the initial weights of
the pressure value probability distribution decrease, and the
barometric biases generated by the EB have a higher weight.
In this way, even if the barometer readings are different
because of the offset of each device, the initial floor level and
EB can be used to calibrate the offset, and error correction
can be used to correct the bias of the barometer readings.

4.5 Error Correction Convergence in DSFF
It is assumed that the initial error block is a discretized

normal distribution EB, where the probability space is
[−2.5σ, 2.5σ], as depicted in Fig. 8 and, in this example, the
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Fig. 8. Initial error block distribution.

width of each error block is set to σ, but it can be changed
depending on the user’s preference. Further, it is assumed
that EB is the initial error block distribution of orientation
following Z(0, 3) and that there is a certain orientation bias
b, following B = Z(µb, σb = 3). An error block is then
generated at around -30 degrees per step. Let h be the height
of the error block accumulated at each step. The probability
density of each error block is hσ.

The error correction effect can be examined based on the
magnitude of P (EB = −µb). If the probability distribution
of EB satisfies,

P (−µb − 2.5σb ≤ EB ≤ −µb + 2.5σb) ≥ 0.95, (26)

EB is considered to have converged enough to have the
error correction effect. Let EBk be EB at kth step. Suppose
P (EB0 = −µb) = 0. Then,

Fig. 9. Error correction convergence with different h values.

P (EB1 = −µb) = P

((σ
2

)⌊2µb
σ

⌋
≤ B ≤

(σ
2

)⌊2µb
σ

+ 2

⌋)
×
(

hσ

1 + hσ
+ P (EB0 = −µb)

)
+ P

(((σ
2

)⌊2µb
σ

⌋
≤ B

≤
(σ

2

)⌊2µb
σ

+ 2

⌋)c)
× P (EB0 = −µ0) = KC, (27)

where

K = P

((σ
2

)⌊2µb
σ

⌋
≤ B ≤

(σ
2

)⌊2µb
σ

+ 2

⌋)
and

C =
hσ

1 + hσ
, (28)

K is the probability that b is in the 2σ range, and C is the
amount of accumulated error block normalized by 1 + hσ.

P (EB2 = −µb)

= K

(
P (EB1 = −µb)

1 + cσ
+ C

)
+ (1−K)

P (EB1 = −µb)
1 + hσ

=
K2C

1 + hσ
+KC +

KC −K2C

1 + hσ

= KC

(
1 +

1

1 + hσ

)
,

P (EB3 = −µb)

= KC

(
1 +

1

1 + hσ
+

1

(1 + hσ)2

)
,

... (29)

From (29), we can derive

P (EBk = −µb)

= KC

(
1 +

1

1 + hσ
+

1

(1 + hσ)2
+ · · ·+ 1

(1 + hσ)k

)

= KC
1−

(
1

1+hσ

)n
1− 1

1+hσ

. (30)

Then,

P (EBk = −µb + σ) = P (EBk = −µb − σ)

= K ′C
1−

(
1

1+hσ

)n
1− 1

1+hσ

,

P (EBk = −µb + 2σ) = P (EBk = −µb − 2σ)

= K ′′C
1−

(
1

1+hσ

)n
1− 1

1+hσ

, (31)

where

K ′ = P

((σ
2

)⌊2µb
σ

+ 2

⌋
≤ B ≤

(σ
2

)⌊2µb
σ

+ 4

⌋)
,

K ′′ = P

((σ
2

)⌊2µb
σ

+ 4

⌋
≤ B ≤

(σ
2

)⌊2µb
σ

+ 6

⌋)
. (32)
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Therefore, it holds that

P (−µb − 2.5σb ≤ EBk ≤ −µb + 2.5σb)

= P (EBK = −µb) + 2P (EBK = −µb + σ)

+ 2P (EBk = −µb + 2σ)

= C(K +K ′ +K ′′)
1−

(
1

1+hσ

)n
1− 1

1+hσ

. (33)

Figure 9 shows the error correction convergence with re-
spect to different values of h, the height of each error block.
To show the error correction convergence of the heading as
an example, we use the collected data from Section 5.2. The
width of each error block is fixed as σ. For all cases, the
probability of bias increases over time. The error correction
effect appears faster as the size of the error block increases.
Even with the slowest error block height of 0.1, a bias of 0.95
probability or more appears in the 13th step in Fig. 9. This
corresponds to the results in Fig. 13.

4.6 DSFF
Our probabilistic fusion method searches out the most

probable location l, given online measurement OE by cal-
culating the posterior priority P (l|OE) for all locations.
The proposed DSFF compensates for sensor data errors by
analyzing the error in accumulated sensor data over time
as it searches for the optimal trace using the HMM. The
HMM is a suitable model for sequential indoor positioning
data because it can handle the temporal nature of the data
and deduce the desired information from the information.
The HMM-based positioning algorithm operates by deter-
mining the hidden structure of user traces that fits into the
building’s inner layout. In general, an HMM estimates a
current state at each time point by utilizing observations,
HMM properties, and parameters. Although the current
state is hidden at each time point, it can be estimated
by observations together with the previous state. Indoor
localization systems employ HMM by replacing states with
locations and observations with online measurements.

The proposed DSFF uses a k-best Viterbi tracking algo-
rithm [36], [37] in the HMM framework. Viterbi tracking
is an interpretation framework that efficiently computes
position changes using the HMM, which allows historical
and dynamic user movement trajectories to be tracked
stochastically. Probabilistic Viterbi tracking is performed
using absolute and relative positioning. The optimal trace
is found by calculating the user position with the highest
probability. In other words, the optimal trace is the trace
with the highest probability and minimal errors in the
various sensor data.

4.7 Environmental Adaptation of the DSF
To determine which data of the corrected probability

distribution should be considered for Viterbi tracking, we
used modified exponential smoothing (ES), which weights
the most recent data while still using all data. When using
the EB for tracking, if we use the entire history, it is less
reliable because the EB considers the average environment
of the entire trajectory rather than considering the most re-
cent information about a constantly changing environment.

Fig. 10. DSF process for handling outliers.

Conversely, if we only consider recent error distributions,
the amount of data is insufficient for error correction, and
the tracking accuracy may be low. Therefore, we use a
modified ES which we call the aging method to consider
the entire history of the EB, while giving a higher weight to
the more recent data.

ES is an algorithm for predicting future data from ex-
isting data, which gives a higher weight to recent data
and applies past historical data to exponential weighting to
predict the data average. Because the proposed DSFF does
not need to predict the future, only the part that weights the
tracking history is used. It is calculated as follows:

EBaging = αEBn + α(1− α)EBn−1 + α(1− α)2EBn−2

+ · · ·+ α(1− α)n−1EBn−m, (34)

whereN is the number of EBs,EBn is an observed EB value
at time n, and α is an ES coefficient, which is set 0.2. In
general, the ES coefficient is small for a time series with
large irregular fluctuations and large for a time series with
small irregular fluctuations. A value of 0.2 was chosen by
comparing the residual sum of squares between the actual
observations and predicted values to obtain the smallest
prediction error.

4.8 Effect of Outliers

In the previous sections, we assumed that more sensory
data enhances positioning accuracy. At this point, we con-
sider the scenario in which extremely inaccurate data of a
single sensor is present. In this case, extreme sensor noise
and outliers may damage the system. This consideration
applies to the general fusion method. However, a single
sensor that exhibits a large error does not significantly affect
the tracking result of the system because the remaining sen-
sors compensate for this one sensor in most fusion methods.
In other words, if we use sensor fusion, the probability
of obtaining inaccurate results is much lower than if we
use only one sensor. This is because the directionality of
each sensor error pattern varies. The error of each sensor
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Fig. 11. Experimental area at KAIST, Korea: (a) testbed N1: seventh floor of the N1 building and (b) testbed KI: open space of a lobby.

is influenced by the inherent nature of the sensor, and the
environment that affects each sensor also varies. For these
reasons, the sensor errors vary in size and orientation in 2D
space. For example, in typical fusion, when sensor A has an
error of -5 m on the x-axis and sensor B has an error of +3 m,
the sensor fusion result has an error of -1 m because these
two sensors complement each other. The proposed method
can be more robust in a situation where one sensor has a
large error. DSFF continuously learns the error pattern for
each sensor and performs sensor fusion with a real-time
correction value depending on this pattern. In other words,
if sensor A frequently shows a negative error on the x axis,
DSFF will calibrate the negative sensor reading so that it is
closer to zero.

The sensor reading si,n at the nth stage is subjected to an
error correction process and the proposed system estimates
the corrected probabilistic distribution q1,n, q2,n, , qi,n as the
output shown in Fig. 10. If an extremely large error Z
occurs in a single sensor (i.e., Zi > 2σi), the sensor reading
si,n(=oi,n) becomes si,n = oi,n + Z and there will be no
outlier when Z = 0. Here, Z denotes the difference between
the outlier value and the µ value of the distribution of
the respective sensor. These outputs act as the input of the
DSF along with the probability distribution of the absolute
sensors, resulting in a corrected result Qn. In this case,
Qn − qi,n denotes the error of the single sensor at the nth

stage, and the error block for each sensor at the next stage
is updated through this error. When an outlier occurs in a
single sensor, the effect of this single sensor on the result
at the nth stage is proportional to Zi/σi. At this time, the
degree to which the overall result is affected by this sensor
can be represented byM =

(
Zi

σi

)
×
(∏

σ
σi

)
, and the corrected

value of the result can be expressed as follows:

Q′n = Qn +M. (35)

If the outlier is not included, the effect of the final result at
the nth stage on the single-sensor error block update at the

n+ 1th stage is as follows:

EBi,n+1 = (1− α)EBi,n + α(Qn − qi,n). (36)

If the outlier is included, then

EB′i,n+1 = (1− α)EBi,n + α(Q′n − qi,n). (37)

Summarizing the effects of including outliers, we can
derive from (35) and (37) that

EB′i,n+1 = (1− α)EB′i,n + α(Q′n − qi,n +M)

= (1− α)EB′i,n + α(Q′n − qi,n) + αM. (38)

Therefore, it can be found from (36) and (38) that when
the final result is affected by M due to a single- sensor
outlier at the nth stage, the influence of the error block on
each single sensor at the n + 1th stage is proportional to α
and M as follows:

EB′i,n+1 = EBi,n+1 + αM. (39)

However, the DSF may fail if the sensor outlier continues
to appear as an extreme error that deviates from the existing
pattern. If outliers occur continuously and (38) continues to
repeats,M accumulates andQ′n continues to degrade. In ad-
dition, if EBs are accumulated randomly and continuously,
the probabilistic distribution of the sensors can form an even
distribution, and this situation is the same as when the error
is included but not error-corrected.

5 EVALUATION

5.1 Experiment Setup and ERM Construction
The experiments were conducted in medium-scale office

buildings, N1 and KI, at the Korea Advanced Institute
of Science and Technology (KAIST), Daejeon, Korea. We
evaluated the performance of the DSFF by dividing the
target site into a 2D space and a 3D space with floor
movement. Figure 11 (a) depicts the experimental area in
the N1 building, which includes three floors, and Fig. 11 (b)
shows the experimental open space in the KI building. The
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TABLE 1
EXPERIMENTAL SETUP

Testbed Area Total length of
corridors (m)

#APs
detected
(used)

Data collection
Training data Test data

# traces
# measurements

Wi-Fi + Mag. # traces # measurements

N1 (80 × 32 ) m2 × 3floors 196 196 (50) 4 10,000+250,000 40 7,200
KI (18 × 36) m2 × 1floor 83 206 (all) 1 523+8,442 1 621

specifications of the testbed and their ERM constructions are
listed in Table 1.

Test bed N1, which consists of corridors and rooms, is
a typical configuration of an office building. The tracking
accuracy test uses Wi-Fi and a magnetometer for absolute
positioning and a gyroscope, accelerometer, and barometer
for relative positioning. To construct the ERM for the target
area, HMM cells of the building shown in Fig. 11 were
separated into 1m intervals and training data were collected
using a point-by-point collection method. A total of 1,000
fingerprints were collected for 20 Wi-Fi data per cell. In the
ERM construction, a fingerprint for each cell was stored
after calculating the average measurement, and a total of
500 fingerprints were used in the N1 building.

A total of 196 APs were detected, but 50 APs were
used so that a Wi-Fi positioning accuracy of 3.5m ∼ 4m
was obtained. In general, APs are selected to improve per-
formance through dimensional reduction. However, in this
experiment, AP selection was performed to more clearly
evaluate the effect of DSFF when tracking. About 500 values
of magnetometer data were collected in each cell so that
the total number of data is 250,000. To construct the ERM
for the magnetometer, the norm values of the x, y, and z
axes were assigned to the magnet intensity and the averages
were used along with the inclination values. The average
values of Wi-Fi and magnetic field in each HMM cell of
the target site were stored as training data along with the
location coordinates during the construction of the ERM.
Because DSFF uses probability-based positioning, the signal
distribution of the collected training data was analyzed and
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Fig. 12. Comparison of distance-dependent tracking.

used in the online phase. For accuracy tests, the test point
coordinates were registered in the test data and the accuracy
was calculated using the difference in distances between the
ground truth and test point. All simulation codes for the
evaluation were implemented in Java and run on a 3.30 GHz
Intel Core i5-6600 CPU with 16 GB of memory.

5.2 Tracking Accuracy Test
We compared the tracking accuracy achieved by the

DSFF with that of a model built in a supervised manner
using the ground truth location labels. The average error
distances were measured according to the time sequences
of the test data. Test data for the Wi-Fi, magnetometer, ac-
celerometer, gyroscope, and barometer along with learning
data were collected in the N1 building for the tracking
accuracy test. Test data were collected for 40 test paths, and
about 180 fingerprints were included in each test path. A
total of 7,200 fingerprints were used for the test data. In all
experiments, the absolute sensor accuracy was compared
to the ground truth. Therefore, there is still an error in
all cases, even for HMM+. The real (ground) truth was
calculated using the criterion of correction we mentioned in
this paper, which uses the aggregate result of the proposed
method. Consecutive position is a consecutive state of the
HMM. Tracking was performed by continuously calculating
the state at t by multiplying the emission probability and
transition probability at t-1. The heading computation of
the consecutive position can be derived using the coordi-
nates between the states and indoor layout along with the
probabilities.

Sequence

0 20 40 60 80 100 120 140 160 180

D
is

ta
n

c
e

 E
rr

o
r 

(m
)

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6
HMM+

DSF

HMM

Fig. 13. Comparison of heading-dependent tracking.
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Fig. 14. Comparison of distance- and heading-dependent tracking.

In this section, we consider the case of tracking DSFF
while correcting only the heading data, correcting only the
step data, correcting the heading and step data at the same
time, and performing no correction. These variations are de-
noted by DSF and HMM, as per the experimental condition.
The abbreviations and mean distance error for the methods
in this experiment are summarized in Table 2. The accuracy
is compared by evaluating the cases in which where there is
no error in the heading data, no error in the step data, and
no error in either the heading or step data. The latter case
is denoted by HMM+, as per the experimental condition.
(Note that the purpose of the experiment is to evaluate
how the proposed DSF method is employed in the DSFF so
that the sensor values of the HMM are corrected and thus,
become similar to the values of the HMM+, which has no
relative sensor errors.)

Figure 12 presents the tracking accuracy with respect
to the distance data. The tracking accuracy of the HMM
converges at 3.1 m, DSF converges at 2.92 m, and HMM+
converges at 2.85 m. DSF achieves an improvement in accu-
racy of 6.45% compared with HMM. Although the accuracy
is further improved by HMM+, the difference in accuracy
between HMM+ and HMM is only about 0.4 m.

Figure 13 presents the tracking accuracy with respect to
the heading data. In contrast to the results for distance,
HMM converges at 3.1 m, DSF converges at 2.4 m, and
HMM+ converges at 2 m in Fig. 13. Compared with HMM,
DSF converges with a 22.5% improvement in accuracy. Com-
paring HMM+ of Fig. 12 and HMM+ of Fig. 13, HMM+ in
Fig. 13 converges with an 0.8 m improvement. DSF of Fig. 12
and DSF of Fig. 13 also show a similar pattern whereby DSF
in Fig. 13 converges with an 0.5 m improvement in accuracy.

Because the probability distribution of distance forms
a ring shape, as shown in Fig. 1, all HMM cells to which
the user can move from a candidate point have the same
probability. Therefore, the tracking accuracy of the distance
data is lower than that of the heading data. For the heading
data, HMM cells with the same probability are limited to the
distribution of a fan shape. Consequently, even if the travel
distance is not accurately calculated, the traveling direction
has a relatively high influence on the tracking result.

Fig. 15. This figure shows the influence of the heading error correction.
Here, ”ANSWER DEG” denotes HMM+,”INPUT DEG” denotes HMM,
and ”REVISED DEG” denotes DSF.

DSF in Fig. 12 and DSF in Fig. 13 have similar accuracy
to HMM before sequences 40 and 20, respectively. Although
the EB is generated for the sensor bias and applied to the
probability distribution, it does not substantially improve
the accuracy as compared to HMM. However, the accuracy
is improved after sequence 40 for DSF in Fig. 12 and se-
quence 20 for DSF in Fig. 13. This means that the effect of er-
ror correction begins to appear near these sequences (40 and
20, respectively), and we can see that accuracy continues to
improve up to sequence 140 and 100, respectively, where the
improvement appears to reach its maximum. In the case of
DSF in Fig. 12, the improvement in accuracy with respect to
DSF in Fig. 13 is less than 0.2 m. This is because the deviation
in the step length is not large, even if error correction is
applied. By contrast, the accuracy is highly improved from

TABLE 2
SUMMARY OF EXPERIMENT METHODS AND RESULTS IN 2D

SPACE

Notation Condition
Mean Err.
Dist. (m)

HMM Tracking without DSF 3.19

HMM+
Tracking with accurate
distance data in Fig. 12 3.00

Tracking with accurate
heading data in Fig. 13 2.25

Tracking with accurate
heading and distance data
in Fig. 14

2.07

DSF
DSF adaptation to
distance data in Fig. 12 3.08

DSF adaptation to
heading data in Fig. 13 2.70

DSF adaptation to both
heading and distance data
in Fig. 14

2.52
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Fig. 16. Comparison of barometer-dependent tracking.

sequence 20 in the case of DSF in Fig. 13 because the weight
is accumulated in the value obtained by applying EB to the
heading distribution. A comparison of the results in Figs. 12
and 13 shows that the accuracy improves and degrades
intermittently because the methods shown in Fig. 12 correct
the distance error but not the heading error. This indicates
that the bias of the heading data degrades the tracking result
relatively strongly.

Figure 14 shows the tracking accuracy of the simul-
taneous correction of step and heading sensor data. DSF
converges at 2.2 m and HMM+ converges at 1.8 m. Here,
DSF improved accuracy by about 29% with respect to HMM.
The accuracy begins to improve as DSF moves past sequence
20, which is similar to the results for DSF in Fig. 13. Figure 15
shows how the heading errors are corrected in the test
trace, where ”ANSWER DEG” denotes HMM+, ”INPUT
DEG” denotes HMM, and ”REVISED DEG” denotes DSF.
Compared to HMM, all values of HMM are biased to
positive values, indicating that gyro drift is occurring. On
the other hand, DSF is not corrected in the early stage,
but the correction rapidly occurs at a certain time point.
The points at which the accuracy improves are similar
to those in Fig. 14. Although it is not completely error-
corrected, the DSF values are corrected to a value similar
to the correct answer as a whole, compared to those of
HMM, and the accuracy is improved, as shown in Fig. 14,
through error correction. Even in HMM(+), where there is
no relative sensor error in the sensor data, HMM+ in Fig. 14
is improved by 35.71% and 10% compared to HMM+ in
Fig. 12 and HMM+ in Fig. 13, respectively. The relatively
low improvement rate of HMM+ in Fig. 13 with respect to
HMM+ in Fig. 12 confirms that the moving direction of a
pedestrian has a higher effect on the tracking result. In this
regard, if the conditional probability of the moving direction
and the moving distance is applied, the accuracy of DSF as
well as that of HMM+ in Fig. 14 improves.

5.3 Floor Detection Evaluation
The test path for the floor detection experiment moves

between three levels in the N1 building, and the test data
was collected four times between the highest level and the
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lowest level. In the floor detection test, the plane detection
space was set to about 30%, and the floor detection space
was set to about 70% of the whole test space, so that the
effect of the barometer on the floor classification can be
clearly seen in the DSFF. A total of 800 test data were used,
including about 80 fingerprints per 10 test paths.

Figure 16 compares the cases in which the accuracy
varies depending on the barometer data. In the figure, HMM
converges at 3.4 m, DSF converges at 3.1 m, and HMM+ con-
verges at 2.8 m. Compared to the case of tracking without
error compensation, DSF improves accuracy by 6.45%. Also,
although there was an improvement, the difference in accu-
racy between HMM+ and HMM was not substantial (about
0.4 m). Figure 17 shows the result of tracking using heading,
distance, and pressure data, and the average accuracy of
each case is shown in Table 3. In Figs. 16 and 17, HMM+
converges at 2.8 m and 1.7 m, respectively. This indicates
that even if the altitude value is fused correctly using DSF,
the tracking accuracy is not substantially improved unless
the direction and distance values are correct. This is because
the probability distribution of barometric pressure only
varies over the z coordinate, and the x and y coordinates
depend on the positioning results of the other sensors.

By contrast, DSF improves accuracy from sequence 10
in Fig. 16. In the case of the floor displacement test, it
is possible to perform relatively accurate calculations with
absolute positioning using (25). Hence, if error correction
is applied to the probability distribution of the barometer
data, the improvement may be relatively faster than for
other sensors. As shown in Fig. 17, the rapid accuracy
improvement occurs near sequence 20 of DSF. Similar to
Figs. 13 and 14, this phenomenon is due to the heading error
correction.

5.4 Tracking Accuracy Test for Open Space
The open space experiment was conducted in the first

floor of the KI building to evaluate the tracking accuracy of
the DSFF and HMM. The performance was measured for a
random walk path in the 18× 36 m lobby of the KI building,
where the average error distance is 4.34 m when Wi-Fi alone
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is used for positioning. Moreover, the accuracy is not greatly
improved even if the IMU sensor is used.

Figure 18 shows the random walk path using blue
points, and the red points show the estimated points. Fig-
ure 18 (a) shows HMM tracking and Fig. 18 (b) shows DSF
using distance and heading data tracking. The mean errors
for these methods are 4.73 m and 4.29 m, respectively. In this
space, it is difficult to improve the accuracy using the IMU
sensors when error correction is not performed. Even if error
correction is performed, the accuracy is not dramatically
improved. Nonetheless, Fig. 18 shows that DSF can also
affect the user tracking accuracy, even in an open space.
As shown in Fig. 18 (a), the estimated points are scattered
without any pattern in the black solid circle. In Fig. 18 (b),
the estimated points at the lower part of the solid circle are
spread out to the left and right, and the estimated points are
approximately linear in the upper part. Although they differ
from the ground truth, the estimated points more closely
follow the actual moving pattern when DSF is used.

In the dotted circle in Fig. 18 (a), the heading is shifted
continuously to the right because of the accumulated error,
but the DSF results are closer to the ground truth in Fig. 18
(b). In other words, even if it is difficult to expect a good
positioning result due to a decrease in positioning accuracy
when using a radio signal in an open space, accuracy
can be improved by performing error correction using an
aggregated result.

6 DISCUSSION

The main purpose of the framework proposed in this
paper is to compensate for the degradation of tracking
accuracy by providing a fusion mode that can be used as
a universal fusion system. This aim was accomplished by
developing a real-time error-learning model and adaptive
fusion framework. The proposed error-learning model sug-
gests that it is possible to correct the errors of sensor data
by reflecting the characteristics of a continuously changing
environment in real time. In contrast, other fusion meth-
ods require complicated calculations and unfamiliar fusion

TABLE 3
SUMMARY OF EXPERIMENT METHODS AND RESULTS IN 3D

SPACE

Notation Condition
Mean Err.

Dist. (m)

HMM Tracking without DSF 3.48

HMM+
Tracking with accurate

barometer data in Fig. 16
2.95

Tracking with accurate data

for all sensors in Fig. 17
1.99

DSF
DSF adaptation to

barometer data in Fig. 16
3.23

DSF adaptation to all

sensor data in Fig. 17
2.45

Fig. 18. Comparison of tracking (a) without and (b) with DSF in an open
space. Blue and red points indicate the ground truth and estimated
points, respectively.

models. The proposed framework is more robust when fus-
ing new sensors in indoor positioning. We have developed
a framework that can provide a navigation service without
complicated calculations or processing by easily and simply
combining new sensors using a probability-based fusion
model. In other words, the framework developed in this
study enables a navigation service to be used more accu-
rately in various environments.

The experiments conducted under a changing environ-
ment revealed that the proposed DSFF can provide a precise
fusion model without a static or empirical setting. In an
office building, the tracking accuracy was improved by
at least 3.45% and up to 28.95% in the 2D space during
tracking. In the floor displacement experiment, the tracking
accuracy was improved by at least 7.18% and up to 29.59%.
These results imply that an indoor navigation service would
be possible through dynamic sensor fusion, even under the
continuously changing indoor environments that exist in
most spaces of a building.

In contrast, in an open space, using a diverging signal as
a characteristic for a specific location in indoor positioning
using Wi-Fi remains difficult. As with HMM-based position-
ing, the proposed method also performs poorly if an indoor
layout is not used. Although these limitations exist, we
have confirmed that the proposed method can be calibrated
along the ground truth in the open space. This indicates that
the proposed method can provide guidance to positioning
studies in open space in the future. Moreover, there is a
trade-off between the amount of data accumulated and the
agility of the error correction adaptation, as mentioned in
Section 4.7. Although ES applies temporal significance to
Viterbi tracking data, additional research is needed to deter-
mine the importance of data over time and thus, optimize
the DSFF developed here.

7 CONCLUSION

This paper presented a dynamic sensor fusion frame-
work to combine various sensors and provided a fusion
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model for fusion-based indoor navigation services. Al-
though it is not possible to fully analyze the error pattern
and bias characteristics of each sensor, it has been confirmed
that a few sensors such as Wi-Fi and magnetometer can
compensate for the errors or biases of various other sensors
by complementing their functionality. Although the charac-
teristics of each sensor are different because of the variety of
sensors and vendors, the proposed method enables the fu-
sion of sensor data in real time. The proposed fusion system
will become a critical technique for accurate user tracking.
We are considering integrating the proposed system into
the KAIST Indoor Locating System (KAILOS) [27], and
providing the sensor fusion framework and maintenance
service to the public.

Meanwhile, reducing site survey effort has long been an
issue in indoor positioning. The data used for offline train-
ing can cause different signal measurements, even at the
same location, due to the addition or removal of infrastruc-
ture over time. In the dynamic sensor fusion method, which
is relatively dependent on the accuracy of the absolute
sensor data used for offline training, this problem becomes
even more critical. To reduce this effort, methods of crowd-
sourcing [38], automatic updating of training data [39], [40],
and user feedback [41] have been studied. Another typical
solution for reducing site survey effort is to use additional
sensors to capture signal changes [42]. Future research could
focus on finding a suitable method for reducing site survey
effort and a more sophisticated method for aging that works
well with the proposed fusion framework.
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