
Computers and Chemical Engineering 144 (2021) 107133 

Contents lists available at ScienceDirect 

Computers and Chemical Engineering 

journal homepage: www.elsevier.com/locate/compchemeng 

Reinforcement learning based optimal control of batch processes using 

Monte-Carlo deep deterministic policy gradient with phase 

segmentation 

Haeun Yoo 

a , Boeun Kim 

b , Jong Woo Kim 

c , Jay H. Lee 

a , ∗

a Department of Biomolecular and Chemical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, 

Republic of Korea 
b Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA 
c School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic 

of Korea 

a r t i c l e i n f o 

Article history: 

Received 29 July 2020 

Revised 6 October 2020 

Accepted 20 October 2020 

Available online 30 October 2020 

Keywords: 

Batch process 

Reinforcement learning 

Optimal control 

Actor-Critic 

a b s t r a c t 

Batch process control represents a challenge given its dynamic operation over a large operating envelope. 

Nonlinear model predictive control (NMPC) is the current standard for optimal control of batch processes. 

The performance of conventional NMPC can be unsatisfactory in the presence of uncertainties. Reinforce- 

ment learning (RL) which can utilize simulation or real operation data is a viable alternative for such 

problems. To apply RL to batch process control effectively, however, choices such as the reward func- 

tion design and value update method must be made carefully. This study proposes a phase segmentation 

approach for the reward function design and value/policy function representation. In addition, the deep 

deterministic policy gradient algorithm (DDPG) is modified with Monte-Carlo learning to ensure more 

stable and efficient learning behavior. A case study of a batch polymerization process producing poly- 

ols is used to demonstrate the improvement brought by the proposed approach and to highlight further 

issues. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Batch or semi-batch processing is widely used in the process in- 

ustry, mostly for producing low-volume, high-value added prod- 

cts. Operating condition of a batch process is determined to meet 

iven requirements for end product quality (e.g., composition, par- 

icle size and shape) in a manner that assures safety and eco- 

omic feasibility (e.g., maximization of the productivity or mini- 

ization of the cost). However, its inherent features, such as 1) 

on-stationary operation covering a wide operating envelope 2) 

onsequent exposure of the underlying nonlinear dynamics, and 3) 

xistence of both path and end-point constraints, present a signif- 

cant challenge to control engineers. These problems are exacer- 

ated by oftentimes significant variabilities in the feedstock qual- 

ty and condition as well as other process uncertainties (e.g. dis- 

urbances, noises, model errors). 

For optimal control of batch processes, nonlinear model pre- 

ictive control (NMPC) has been the most widely studied method 
∗ Corresponding author. 
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 Qin and Badgwell, 20 0 0; Mayne, 20 0 0; Chang et al., 2016 ). NMPC

an be designed in two different forms. First it can be designed to 

ollow a prespecified recipe (e.g., setpoint trajectories), which are 

etermined from an off-line (or run-to-run) optimization. Alterna- 

ively, it can be designed to optimize an economic or other perfor- 

ance index directly on-line while respecting process and quality 

onstraints ( Rawlings and Amrit, 2009; Ellis et al., 2014 ). In this 

etting, as an economic optimization tends to drive the operating 

ecipe towards active constraints, it is important for the controller 

o assure constraint satisfaction. While NMPC offers the advantage 

f including constraints directly in the optimal control calculation, 

ts constraint handling capability can degrade when the model 

sed for the prediction has significant uncertainty ( Lucia et al., 

014 ). Conventional NMPC addresses this problem by reperform- 

ng the optimization at each sample time after receiving feedback 

easurements and also by detuning the controller and tightening 

he constraints to account for the uncertainty (“back-off”) but this 

an lead to significant suboptimality ( Paulson and Mesbah, 2018; 

antos et al., 2019 ). Robust NMPC formulations have also appeared 

hich are based on rigorous uncertainty models (e.g., bounded 

arameter sets, scenario trees) but they come at the cost of 

https://doi.org/10.1016/j.compchemeng.2020.107133
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2020.107133&domain=pdf
mailto:jayhlee@kaist.ac.kr
https://doi.org/10.1016/j.compchemeng.2020.107133
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Nomenclature 

X n = G n + D n , n = 0 , 1 , . . . , N polyol product chains 

Y n = Q n + R n , n = 0 , 1 , ., N unsaturated chains 

G n the growing product chains of 

length n ( P n O 

−K 

+ ) 
D n the dormant product chains of 

length n ( P n OH) 

Q n the growing unsat chains of 

length n ( U n O 

−K 

+ ) 
R n the dormant unsat chains of 

length n ( U n OH) 

MX i = 

∑ N 
n =1 n 

i X n moment of X 

MY i = 

∑ N 
n =1 n 

i Y n moment of Y 

MG i = 

∑ N 
n =1 n 

i G n moment of G 

MQ i = 

∑ N 
n =1 n 

i Q n moment of Q 

n KOH the total amount of catalyst 

MW PO molecular weight of polyol 

V liquid volume 

W water 

M monomer 

k reaction rate constant 

ignificantly increased complexity preventing practical use 

orari and H. Lee (1999) , Lucia et al. (2013) , Thangavel et al.

2018) . 

In this regard, reinforcement learning (RL), which tries to learn 

n optimal control policy and value function from data may be 

orthy of consideration. Learning data can be real operation data 

r simulation data and such data contain (or can be made to con- 

ain) the effect of the uncertainty which will be experienced on- 

ine. Therefore, RL provides a flexible framework wherein a control 

olicy can be learned to address the uncertainty contained in the 

earning data and its potential has been examined through several 

et-point tracking control problems ( Lee and Lee, 2005; Spielberg 

t al., 2019; Kim et al., 2020 ). For such problems, the set point

racking error was used as the (negative) reward in the training of 

he RL based controller. On the other hand, just a few studies have 

xamined RL in the context of dynamic optimization of batch pro- 

ess operation ( Wilson and Martinez, 1997; Martinez, 1998; Pet- 

agkourakis et al., 2020 ). 

In this paper, we examine the use of RL for on-line dy- 

amic optimization and control of a batch process with high di- 

ensional and continuous state and action spaces. We focus on 

he issues that arise in such applications, e.g., the choice of re- 

ard functions, esp. in handling constraints, construction of time- 

ependent approximators, and choice of learning algorithm. First 

f all, we suggest three types of reward functions that combine 

conomic performance index and degree of violation of path and 

nd-point constraints. To address the time dependence of batch 

peration, a phase segmentation approach is proposed to tailor 

he reward functions and the function approximators to suit dis- 

inct characteristics of the different phases of batch run. For the 

gent training, deep deterministic policy gradient (DDPG) algo- 

ithm ( Lillicrap et al., 2016 ) is adopted as it is known to be ef-

ective in handling high dimensional continuous state and action 

paces. However, the traditional DDPG algorithm, which uses tem- 

oral difference learning, is modified with Monte-Carlo (MC) learn- 

ng so as to ensure stable learning behavior. This is particularly 

mportant for batch process control as the reward function is de- 

igned such that violation of the end-point constraints affect the 

verall reward significantly. The NMPC and different RL control 

trategies will be examined and compared in a case study that 
2 
nvolves a semi-batch polymerization reactor producing polyols 

 Nie et al., 2013 ). 

In summary, the intended contributions of this paper are in 1) 

uggesting the RL method for optimal control of batch processes 

ith uncertainty, 2) proposing the phase segmentation approach 

or designing the reward functions and the function approximators 

nd 3) modifying the DDPG algorithm with MC learning to improve 

he agent learning in order to better reflect the future value, par- 

icularly with respect to the end point constraints satisfactions. 

In the next section we briefly introduce MPC, RL, MC vs. TD 

Temporal-Difference) learning, and DDPG. Section 3 then proposes 

 RL based optimal control strategy with specific components like 

he phase segmentation, and MC-DDPG learning. The case study 

roblem is introduced next and the training environment of the 

L based optimal controller is described in Section 4 . In Section 5 ,

he improvement by using the phase segmentation approach is 

emonstrated and the learning results of the conventional DDPG 

nd MC-DDPG algorithms as well as NMPC are compared. In addi- 

ion, sensitivity analysis with respect to the choice of phase seg- 

entation point and to the hyperparameters used in the reward 

esign are investigated. Section 6 summarizes and concludes the 

aper. 

. Preliminaries 

.1. MPC and RL 

The optimal control problem formulation we adopt in this study 

s given in Eq. (2.1) . A general method to solve this problem is by

olving the Hamilton-Jacobi-Bellman (HJB) equation, which can be 

erived by applying Bellman’s principle of optimality. On the other 

and, the HJB equation is a PDE with boundary conditions and can- 

ot be solved in most cases with just a few well-known exceptions, 

.g., the linear quadratic optimal control problem. MPC and RL rep- 

esent two different approaches to solve the problem indirectly or 

pproximately. 

MPC employs a mathematical programming technique to solve 

n open-loop optimal control problem for a specific state encoun- 

ered at each given time. Thus, MPC at each time step numerically 

alculates optimal input trajectory u (t) using appropriate param- 

terization and discretization of the model ( Eq. (2.1c) , (2.1e) ) and 

he input trajectory. Typically, the objective function minimized is 

he set-point tracking error ( Eq. (2.1a) ), but an economic objective 

unction ( Eq. (2.1b) ), e.g., the cost or energy consumption, can be 

sed instead and this is often referred to as Economic MPC (eMPC) 

o distinguish it from the conventional MPC. Other inequality con- 

traints such as input and output bounds ( Eq. (2.1f) , ( 2.1g )) can be

mposed in the optimization providing much needed flexibility in 

tting industrial control problems into the standard optimal con- 

rol problem. When the model is nonlinear, a nonlinear program- 

ing (NLP) solver is needed which employs either sequential or 

imultaneous strategies ( Barton et al., 1998; Biegler, 2007a ). Thus, 

he on-line computational requirement can be very high. Note that 

he optimization is resolved at each sample time as the starting 

ime with the current state updated by measurements as the ini- 

ial state ( Eq. (2.1d) ). 

in 

u (t) 

∫ T 

0 

| y sp − y | 2 Q + | u sp − u | 2 R dt (2.1a) 

r max 
u (t) 

∫ T 

0 

l t (x, u ) dt (2.1b) 

˙ 
 = f (x, u ) (2.1c) 

 (0) = x 0 (2.1d) 
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 = g(x, u ) (2.1e) 

 lb ≤ u ≤ u ub (2.1f) 

 lb ≤ y ≤ y ub (2.1g) 

MPC has become de facto the advanced control method of the 

rocess industry mainly owing to its ability to handle constraints 

n inputs and states explicitly for multi-variable systems ( Eq. (2.1f) , 

 2.1g )). This model-based control method offers an important fa- 

orable feature that the objective function and constraints can 

e changed on the fly, affording much needed flexibilities in fast 

hanging industrial operation environments. Its main weakness is 

he high on-line computational requirement and the limited abil- 

ty to incorporate information on uncertainty such as parameter 

rrors and drifts. MPC is based on open-loop trajectory calcula- 

ion and uncertainties are handled mostly by repeating the opti- 

ization after a feedback update, which is reactive in nature. In 

he context of batch process operation, such reactive mechanism 

ay not be sufficient, thus leading to frequent constraint violations 

nd off-spec products. There are robust MPC formulations such as 

in-max MPC, tube-based MPC, and multi-stage MPC ( Lee and Yu, 

997; Mayne et al., 2011; Lucia et al., 2013 ), but they tend to be

onservative and require significantly increased on-line computa- 

ion. 

RL is a data-based method to learn optimal decision policies 

n sequential decision making problems. ”Data-based” here means 

hat the agent (i.e. the decision maker or the controller) receives 

ata while it is interacting with the environment (i.e. as it applies 

ctions calculated by the policy which is being evolved). The envi- 

onment can be the real system or a simulated system ( Sutton and 

arto, 2018 ). The data received typically consists of next state ( s t+1 )

nd reward ( r t ) taken by the result of action ( a t ) following the pol-

cy ( π ) at current state ( s t ). The reward is defined to reflect merits

r demerits of each state with respect to achieving the goal. The 

ollowing are the elements of the tuple that define a Markov deci- 

ion process (MDP) ( Puterman, 2014 ): 

• State space S and state s ∈ S (discrete or continuous), 
• Action space A and action a ∈ A (discrete or continuous), 
• State transition model T , given by transition probability 

p(s t+1 | s t , a t ) , 
• Reward function r(s, a ) where r : S × A → R, 

• Policy π mapping state s t to a t 

 here corresponds x, the state variables of the ODE, a the manip- 

lated variables u . The state transition model T is defined by the 

DE, which is normally deterministic but can be made stochastic 

y appropriately adding stochastic uncertainties. For the rest of the 

aper, we will adopt the notations used in MDP. 

Return value is defined as the (discounted) cumulative sum of 

he received rewards along the travelled trajectory from the cur- 

ent state to the terminal state ( G (s t ) = 

∑ T 
τ= t γ τ−t r(s τ ) ) with a

iscount factor γ ∈ [0 , 1] . Value function ( V (s t ) ) is the expectation

f the return value which implies the expected long-term value 

f the current state, and Q-function ( Q(s t , a t ) ) is the expected re-

urn value of the state and action pair. Based on these values, the 

gent tries to improve the policy ( π ) toward the direction of get- 

ing higher return or expected return value (policy gradient meth- 

ds) ( Sutton et al., 20 0 0 ). The design of the reward and its utiliza-

ion for the agent training have a direct impact on the performance 

f the RL agent. Thus, in designing an RL controller, it is critical to 

ngineer proper reward functions which reflect the characteristics 

nd intended goal of the batch process operation. 

The RL agent can eventually learn an optimal policy for a given 

ong-term goal in an uncertain environment by observing the eval- 

ative responses to the decisions implemented assuming an appro- 

riate reward is used which matches the agent’s goal. When the 
3 
nvironment can be simulated, the learning can be carried out off- 

ine and the off-line derived optimal policy can be implemented 

n-line, thus minimizing the potentially negative impact of the 

earning process on the real system and also drastically reducing 

he on-line computational load. 

.2. MC and TD learning 

RL agent continuously improves its policy interacting with the 

nvironment. For the improvements, there are two different ap- 

roaches: Monte-Carlo (MC) learning and Temporal-Difference (TD) 

earning. MC learning learns directly from episodes of experience 

hich means the agent updates the value or Q-function and policy 

sing the return values which can be calculated when the episodes 

erminate. Therefore, this method can only be applied to episodic 

DPs ( Sutton and Barto, 2018 ). The REINFORCE algorithm which 

as used for Alpha-Go training is an MC based policy gradient al- 

orithm for learning stochastic policies ( Sutton et al., 20 0 0; Silver 

t al., 2016 ). 

TD learning updates the value function by using the current 

stimate of the value function of next state, so this can be ex- 

cuted while an episode proceeds, thus speeding up the agent 

raining process ( Sutton and Barto, 2018 ). This learning method 

ses bootstrapping which means an estimator is updated by us- 

ng an estimated target value. Although many leading RL algo- 

ithms such as Deep Q Network (DQN) and DDPG employ the TD 

earning method for the efficiency of training, the bootstrapping 

an cause the value function approximation to get stuck in local 

inima or even diverge in the presence of a nonlinearly param- 

terized function approximator or arbitrary sampling distributions 

 Tsitsiklis and Van Roy, 1997 ). 

.3. Deep deterministic policy gradient (DDPG) algorithm 

DDPG is an actor-critic, model-free algorithm which adopts the 

trengths of Deep Q Network (DQN) and deterministic policy gra- 

ient (DPG) ( Lillicrap et al., 2016 ). The DQN algorithm uses a deep

eural network to approximately estimate the Q-function in Q- 

earning with continuous state space and the agent follows the ε- 

reedy policy in discrete action space ( Mnih et al., 2015 ). The DPG 

lgorithm deterministically maps the state to a specific action by 

arameterizing the actor function (e.g. by a neural network) and 

pdates the actor parameters following the gradient of the policy’s 

erformance which is called policy gradient ( Sutton et al., 20 0 0; Sil-

er et al., 2014 ). As shown in Algorithm 1 , DDPG employs critic and

ctor networks. The critic network ( Q) is updated toward accurate 

-function approximation and the actor network ( μ) is updated 

oward maximizing the critic network’s output using the sampled 

olicy gradient. These updates are executed while an episode pro- 

eeds by using the current estimated value of the Q-function ( y i ), 

hich is TD learning. DDPG uses a replay buffer to eliminate serial 

orrelations of the samples and also separates the target networks 

 Q 

′ and μ′ ) from the updated networks ( Q and μ) to promote sta- 

le bootstrapping. 

DDPG is known to be effective in problems with continuous 

tate and action spaces like the chemical process control problems. 

owever, there are several obstacles to applying this algorithm to 

hemical batch process control. First, the actor can be updated to- 

ard a wrong direction based on inaccurate critic values which in 

urn leads to bad samples with low rewards ( Tsitsiklis and Roy, 

0 0 0; Fujimoto et al., 2018 ). Actor parameters can even exceed the 

ounds when the critic provides gradients that encourage the ac- 

or network to continue increasing a parameter that already ex- 

eeds the bounds ( Hausknecht and Stone, 2015 ). In addition, the 

gent with a deterministic actor explores spaces by adding just a 

mall noise term to the given action, which makes it even harder 
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Algorithm 1: DDPG algorithm ( Lillicrap et al., 2016 ). 

Initialize the critic network Q(s, a | θQ ) and the actor network 

μ(s | θμ) with weights θQ and θμ

Initialize the target networks Q 

′ and μ′ with weights 

θQ ′ ← θQ and θμ′ ← θμ

(Initialize the replay buffer R ) 

for episode = 1, …, M do 

Initialize a random process ν for action exploration 

Receive initial observation state s 1 
for t = 1, …, T do 

Select action a t = μ(s t | θμ) + νt (noise ) according to the 

current policy and random exploration noise 

Receive r t and s t+1 from the environment with a t 
Store (s t , a t , r t , s t+1 ) in R 

if number of samples in R ≥ N then 

N random sampling (s i , a i , r i , s i +1 ) from R 

Set y i = r i + γ Q 

′ (s i +1 , μ
′ (s i +1 | θμ′ 

) | θQ ′ ) 
Update the critic by minimizing the critic loss: 

L c = 

1 
N 

∑ 

i (y i − Q(s i , a i | θQ )) 2 

Update the actor policy using the sampled policy 

gradient: 

� θμ J ≈ 1 

N 

∑ 

i 

� a Q(s, a | θQ ) | s = s i ,a = μ(s i ) � θμμ(s | θμ) | s i 
Update the target networks: 

θQ ′ ← ηθQ + (1 − η) θQ ′ , θμ′ ← ηθμ + (1 − η) θμ′ 

with η 
 1 

end 

end 

end 

Table 1 

Reward types. 

r path = 

{
αpath if satisfies all path constraint 

−αpath otherwise 

r end = 

∑ 

j r end, j 

r end, j = 

{
αend, j if satisfies end point constraint j 

−α′ 
end, j 

− |� c j | /s j otherwise 

r prod = v /s v (v is a measure of process performance ) 

t
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Fig. 1. Example for phase segmentation approach. Based on the physical knowl- 

edge, we can divide the control profile into two or more phases. 
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o get out of the local minima or the divergence problem. Chem- 

cal batch processes are particularly vulnerable to the aforemen- 

ioned drawbacks, because most chemical reactions are irreversible 

nd thus undesired states resulting from wrong decision(s) early 

n can hardly be steered to desired ones later unlike in robot path 

lanning or game playing. For instance, a faulty action during the 

arly stage of a batch operation can inevitably lead to significant 

iolations of end-point constraints. To address such potential prob- 

em intrinsic to chemical batch processes, a modified algorithm of 

onte Carlo (MC)-DDPG with phase segmentation is suggested in 

he next section. 

. RL based batch process control strategy 

.1. Reward design 

The goal of batch process control is to produce target prod- 

cts in an economical and safe manner. As in classical optimal 

ontrol, goal engineering is needed to express the goal as the re- 

ard function (i.e. the objective function). In this regard, three 

ypes of reward terms (as shown in Table 1 ) are suggested to allow

he agent to be trained effectively for the purposes of achieving 

igh economic performance, and satisfying relevant path and end- 
4 
oint constraints. The first term ( r path ) denotes reward for satisfy- 

ng the path constraints. If all the path constraints are satisfied, the 

gent gets the corresponding reward ( αpath ), otherwise the penalty 

 −αpath ). The second term ( r end ) is determined based on whether 

iven end-point constraints are satisfied or not. It is the sum of the 

eward/penalty assigned to each end-point constraint ( r end, j ). If the 

onstraint j is satisfied, the agent gets the reward ( αend, j ). Other- 

ise, the agent receives both the default penalty ( α′ 
end, j 

) and the 

dditional penalty which is proportional to the degree of constraint 

iolation ( |� c j | ) scaled by the hyperparameter s j . This additional

enalty term is used to reflect how much the product quality de- 

iates from the spec. The last reward term ( r prod ) is to be designed

o reflect the process’s economic performance, so it is problem- 

pecific. For example, in the ensuing case study, the total mass 

n the reactor v is used as the reward in order to maximize the 

rocess’s productivity. αpath and αend are hyperparameters which 

hould be tuned along with the discount rate γ . Note that, v and 

� c j | should be appropriately scaled with s v and s j , respectively, 

or the effective training. 

.2. Phase segmentation 

Most batch processes are operated with recipes encompassing 

ime-varying trajectories, which can include abrupt changes like 

hutting off of the feed supply ( Abel et al., 20 0 0; Bonvin et al.,

001; Peroni et al., 2005 ). However, in RL, a single pair of actor- 

ritic networks are oftentimes used to represent the value function 

nd the policy. In batch process control, it can be a difficult task to 

rain single networks to cover the entire duration of a batch run 

ince they must represent functions of abrupt (e.g. nondifferen- 

iable) changes in their slopes. Therefore, we propose an approach 

f phase segmentation to reflect distinct characteristics of different 

hases of a batch run to reflect their distinct dynamic and reward 

haracteristics. In this approach, separate actor-critic networks are 

rained for different phases. 

A batch operation can oftentimes be divided into phases based 

n available physical knowledge and reasoning. For example, as 

hown in Fig. 1 , a typical semi-batch polymerization process op- 

ration comprises three sequential phases: feed charge, processing, 
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Algorithm 2: MC-DDPG algorithm with phase segmentation. 

Initialize the critic networks Q p (s, a | θQ ) and the actor 

network μp (s | θμ) with weights θQ p and θμp for p = 1 , . . . , P 

(Initialize the replay buffer R p for p = 1 , . . . , P ) 

for episode = 1, …, L do 

Initialize a random process ν for action exploration 

Receive an initial observation state s 1 
for t = 1, …, T do 

Select action a t = μp (s t | θμp ) + νt (noise ) , where 

t ∈ [ t p−1 , t p ) 

Receive r t and s t+1 from the environment with a t 
end 

Calculate G t (s t , a t ) = r t + γ r t+1 + . . . γ T −t r T for t = 1 , . . . , T 

Store (s t , a t , G t ) in R p where t ∈ [ t p−1 , t p ) 

if number of samples in R p ≥ N p for p = 1 , . . . , P then 

for iter = 1, …, M do 

N p random sampling (s i , a i , G i ) from R p for 

p = 1 , . . . , P 

Update the parameters of the critic networks by 

minimizing the critic’s loss: 

L c,p = 

1 
N p 

∑ 

i (G i − Q p (s i , a i | θQ p )) 2 

Update the parameters of the actor networks using 

the policy gradient: 

� θμp J ≈ 1 

N p 

∑ 

i 

� a Q p (s, a | θQ p ) | s = s i ,a = μp (s i ) � θμp μp (s | θμp ) | s i 

end 

end 

end 
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nd discharge. The process should be controlled according to each 

hase’s purpose. Excluding the discharge step, the example semi- 

atch operation can simply be divided into two phases: Phase I for 

he feeding and Phase II for carrying out the reaction. One should 

e able to identify the time sections for each phase and design 

he reward function for each phase to reflect its purpose to train 

eparate actor-critic networks. If a process is more intricate than 

his simple case, the process can be segmented into more phases, 

ut this may require significant prior knowledge. One can conceiv- 

bly automate the segmentation task, e.g., via machine learning, 

ut this is not addressed in this work and is left for future re-

earch. 

Even though rewards may take on different forms for different 

hases, the return value (or the value function) which is the cu- 

ulative sum of the stage-wise rewards (or its expectation) is cal- 

ulated along over the entire batch interval. Thus, the critic net- 

ork can predict the value reflecting the future performance in- 

luding the final product quality. Assuming the process is divided 

nto P phases (phase p = [ t p−1 , t p ) , p ∈ { 1 , . . . , P } ) and the reward

or each phase is represented by r p , the return value can be calcu-

ated as shown in Eq. (3.2) . 

 τ = 

T ∑ 

t= τ
γ t−τ r t , r t = r p for t ∈ [ t p−1 , t p ) (3.2)

.3. Monte-Carlo DDPG (MC-DDPG) 

Typical environment of a chemical batch process involves con- 

inuous state and action variables. In general, state variables in- 

lude concentrations of the reactants and products, the reactor 

emperature, etc. Common action variables are the inlet and heat- 

ng/cooling jacket temperatures, the inlet flow rate, and so on. 

herefore, DDPG is a suitable choice for batch process control 

mong the available RL algorithms since it is known to be effec- 

ive for problems involving continuous state and action spaces as 

xplained in Section 2.3 . However, chemical reactions oftentimes 

nvolve irreversible transitions and require a good prediction of the 

erminal reward early on in order to meet the end-product quality. 

n this regard, we hypothesize that the MC learning method may 

e a better choice than the TD learning method for batch process 

ontrol problems. 

In this paper, we modified the conventional DDPG algorithm to 

dopt the MC learning in the place of the TD learning and also 

o accommodate the phase segmentation described earlier. The re- 

ulting MC-DDPG algorithm with phase segmentation is shown 

n Algorithm 2 . First, the critic ( Q p (s, a | θQ ) ) and actor networks

 μp (s | θμ) ) are initialized for the chosen number of phases, P . To

nitialize their parameters in a reasonable way, they can be trained 

y using supervised learning using closed-loop data with a sub- 

ptimal controller like NMPC. This is called ”imitation learning.”

fter the initialization, the environment simulator generates one 

pisode data for given batch time, T , with the actions obtained 

rom the initialized actor network. Small noise terms are added to 

he action variables for exploration. When the episode terminates, 

he return value G for each time step is calculated and stored with 

he corresponding state and action in the replay buffer R p for the 

ime range of each phase p. This procedure is repeated for a given 

umber of episodes L . Then, for a certain number of iterations 

,N p data set is randomly sampled from each replay buffer R p , and 

ased on this, the critic and actor networks are updated. The critic 

etworks are updated by minimizing the critic’s loss which is the 

ean squared error between the return value and the predicted Q

alue. The actor networks are also updated based on the same gra- 

ient calculation as in DDPG, but target networks and bootstrap- 

ing are not used. The learning performance of the DDPG algo- 
5 
ithm with MC and TD learning methods will be compared in the 

nsuing case study. 

. Case study 

.1. Propylene oxide (PO) batch polymerization 

To evaluate and illustrate the performance of the proposed MC- 

DPG with phase segmentation strategy for batch process con- 

rol, a polyether polyol process for polypropylene glycol produc- 

ion is chosen as a case study. This process has significant non- 

inear dynamics and involves both path and end constraints. The 

onomer PO first reacts with the alkaline anion and then the 

xy-propylene anion undertakes the propagation, followed by the 

ation-exchange and proton-transfer reactions. A first-principles 

ynamic model including the population balance equation of poly- 

er chains and monomers and overall mass balance is reformu- 

ated with the method-of-moments as shown in Eq. (4.3) for the 

eactor simulation and NMPC calculation ( Nie et al., 2013; Mastan 

nd Zhu, 2015 ). The mathematical symbols are summarized in the 

omenclature table at the end of this paper. 

d(V [ MX 0 ]) 

dt 
= V k i [ M][ G 0 ] (4.3a) 

d(V [ MX 1 ]) 

dt 
= V k i [ M][ G 0 ] + V k p MG 0 (4.3b) 

d(V [ MX 2 ]) 

dt 
= V k i [ M][ G 0 ] + V k p [ M ](2 M G 1 + M G 0 ) (4.3c)

d(V [ MY 0 ]) = V k i [ M][ Q 0 ] (4.3d) 

dt 
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Table 2 

End-point and path constraints in PO polymerization example. 

End-point constraints 

Final NAMW ( NAMW ) ≥3027.74 [g/mol] 

Final Unsat. Value ( USV ) ≤0.02 [mmol/g polyol] 

Final unreacted PO ( Unrct) ≤2000 [ppm] 

Path constraints 

Heat removal duty ≤Allowed maximum cooling capacity: 

r p (−
H p ) − F (−
H f ) ≤ UA (T − T w ) /MW PO = 430[ J/s ] 

Adiabatic end temperature ≤192 ◦C 
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Table 4 

Reward for each phase. 

Phase I: PO feeding phase Phase II: PO digestion phase 

r = r path + r prod 

if not terminal: r = r path 

if terminal ( t = 480 ): r = r end 
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d(V [ MY 1 ]) 

dt 
= V k i [ M][ Q 0 ] + V k p MQ 0 (4.3e) 

d(V [ MY 2 ]) 

dt 
= V k i [ M][ Q 0 ] + V k p [ M ](2 M Q 1 + M Q 0 ) (4.3f)

d(V [ X 0 ]) 

dt 
= V (2 k h [ W ] − k i [ G 0 ])[ M] (4.3g) 

d(V [ Y 0 ]) 

dt 
= −V k i [ Q 0 ][ M] + V k t n c [ M] (4.3h)

d(V [ M]) 

dt 
= F − V { k h [ W ] + (k i − k p )([ G 0 ] + [ Q 0 ]) + (k p + k t ) n c } [ M] (4.3i)

d(V [ W ]) 

dt 
= −V k h [ W ][ M] (4.3j) 

dm 

dt 
= F · MW PO (4.3k) 

This reactor should be operated while satisfying two path con- 

traints, one on the heat removal duty and the other on the adia- 

atic end temperature. The product should satisfy the quality spec- 

fication, i.e., the end-point constraints on the final number average 

olecular weight ( NAMW ), the final unsaturated chains per mass 

 USV ), and the final concentration of unreacted monomer ( Unrct). 

he constraints are reported in Table 2 and other details are given 

n Nie et al. (2013) . The manipulated variables are the reactor tem- 

erature T (t) and the monomer (PO) feeding rate F (t) . 

In this case study, the kinetic parameter of the propagation re- 

ction A p which is one of the most critical parameters affecting 

he polymerization progression is assumed to vary from batch to 

atch according to a uniform distribution in the range of ±10% of 

ts nominal value. The key reaction parameters, molecular weights 

nd initial mass are reported in Table 3 . Total reaction time and 
Table 3 

Key model parameters ( Jang et al., 2016; Jung et

Kinetic parameters ( k r

Reaction ( r) Hydrolysis ( h ) Initiation 

A r [ m 

3 /mol · s ] 8.64x10 4 3.964x10

E r [ kJ/mol] 82.425 77.822 

Heat capacity coefficients ( c pi 

A i B i 

F eed ( f ) 53.347 0.51543

Bulk (b) 1.10 2 . 72 × 10 −

Mass param

H 2 O PO 

MW [ g/mol] 18.02 58.08 

Initial mass [ g] 0.6 5822 

6 
ampling interval are set as 480 min and 20 min, respectively, as 

n the previous studies ( Jung et al., 2015; Jang et al., 2016 ). At first,

e solved this problem with NMPC, which solves the dynamic op- 

imization problem with a shrinking horizon (i.e. a horizon stretch- 

ng from current time to the end of batch), to gather sample data 

or the initial training of the actor-critic networks and to get in- 

ights for the rewards design. Referring to the simulated NMPC re- 

ults as well as the results found in the previous studies, we di- 

ided this batch operation into two phases, the second phase start- 

ng from the 400 min mark. Important features of each phase will 

e addressed in the next section. 

.2. RL problem formulation 

To solve the problem with RL, it should be formulated as an 

DP. With the assumption of perfect measurements, the 11 physi- 

al variables in the model ( Eq. (4.3) ) are used as the state variables

nd time is also included ( s = [ t; MX 0 ; MX 1 ; MX 2 ; MY 0 ; MY 1 ; MY 2 ;
 0 ; Y 0 ; M; W ; m ] ). Action variables are the aforementioned manip- 

lated variables ( a = [ T ; F ] ). 

In this case study, a batch run is divided into two phases, de- 

ending on the operating temperature and feeding rate profiles. 

hase I covers from the start to the 400 min mark. During this 

hase, the feed flow should be kept as high as possible in order 

o achieve high productivity while satisfying the safety constraints 

i.e., maintaining the reactor temperature low), so this will be re- 

erred to as the ‘PO feeding phase’ . Phase II, which ensues, will 

e referred to as the ‘PO digestion phase’ , because the reactor is 

perated at a high temperature without further feeding in order 

o achieve the end product quality by quick monomer digestion. 

hus, the reward of Phase I is chosen as the summation of the re- 

ards for satisfying the path constraints ( r path ) and for achieving 

ufficient amount of products which is related to the productivity 

 r prod ) without regard to the end constraints. v in r prod is defined as

he total mass m in the reactor. Phase II must emphasize the sat- 

sfaction of the end product quality specs without violating path 

onstraints, so r path and r end are assigned to the non-terminal state 

nd terminal state, respectively as shown in Table 4 . Hyperparame- 

ers for the reward values of the constraints in Table 5 were tuned 
 al., 2015 ). 

 

= A r exp −E r /RT ) 

( i ) Propagation ( p) Transfer ( t) 

 

5 1.35x10 4 1.509x10 6 

69.172 105.018 

= A i + B i T + C i T 
2 + D i T 

3 ) 

C i D i 

 −1 . 8029 × 10 −3 2 . 7795 × 10 −6 

3 0 0 

eters 

KOH Alcohol

56.11 92.09 

36 178 
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Table 5 

Hyperparameters for RL agent training. 

Hyperparameter Value 

γ 0.98 

Total reaction time 480 min 

Time step 20 min 

Phase change ( t 1 ) 400 min 

Buffer size for phase 1 ( R 1 ) 2400 

Buffer size for phase 2 ( R 2 ) 600 

Minibatch size for phase 1 ( N 1 ) 60 

Minibatch size for phase 2 ( N 2 ) 12 

OU noise μ 0 

OU noise θ 0.15 

OU noise σ 0.2 

Actor network (12, 40, 30, 2) 

Activation function for the actor ReLU,Tanh 

Critic network ((12, 30), (2, 30), 60, 30, 1) 

Activation function for the critic ReLU

αpath 0.5 

αend 1 

α ′ 
end 

0.5 

s NAMW 1 / 1500 

s USV 3100 

s Unrct 1 / 3900 

s v 0.715 

s
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Table 6 

Performance results of the agent trained without the phase seg- 

mentation for the three cases ( ∗: constraint violation). 

� A p −10% Nominal + 10% 

NAMW 3247.17 3599.38 3953.41 ≥3027.74 

USV 0 . 0297 ∗ 0 . 0279 ∗ 0 . 0264 ∗ ≤0.02 

Unrct 3 3 2 ≤2000 

Total mass 797.67 797.64 797.63 
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o that the maximum reward or penalty values have similar orders 

s other values during the training process. 

.3. Training environment 

To initialize the network weight parameters with reason- 

ble values, the closed-loop system with NMPC was simulated 

or 21 episodes to gather samples from the environment with 

10 , −9 , . . . , +9 , +10% deviations from the nominal value of A p .

he objective function of NMPC in this case study is given by 

q. (4.4) subject to the constraints in Table 2 . The problem was 

olved by using the simultaneous approach with three collocation 

oints ( Biegler, 2007b ) and for this, a python package PYOMO with 

POPT solver was employed ( Hart et al., 2011; 2017; Wächter and 

iegler, 2006 ). These initial samples could be obtained using other 

ontroller types, such as PID controllers or any existing operation 

ata. 

min 

 t ,F t ,t∈ [ 0 , 480 ] 
− m ( t=480 ) + 0 . 0 0 01 

∑ 


T 2 t + 

∑ 


F 2 t (4.4) 

Using the collected samples, the neural networks were trained 

or 10 0 0 iterations by supervised learning to initialize the neu- 

al network parameters before starting the RL agent training. Af- 

er the initialization, we trained the resulting networks further us- 

ng the proposed MC-DDPG algorithm for 2500 additional episodes 

 L = 2500 in Algorithm 2 ) with the value of A p randomly sampled

rom the uniform distribution of ±10% of its nominal value. This 

ncertain parameter is held constant over each episode but up- 

ated after each episode. We set the number of episodes to pro- 

ide enough episodes for the critic loss value and the total rewards 

o converge. We used Ornstein-Uhlenbeck (OU) process to sam- 

le the noise ν for constructing the exploration part of the policy 

 Uhlenbeck and Ornstein, 1930; Lillicrap et al., 2016 ). For the actor 

etworks, ReLU and tanh activation functions were used, and for 

he critic networks, ReLU was used. To train the neural networks, 

e employed the deep neural network training package PyTorch 

 Paszke et al., 2017 ) in Python. Discount factor γ was set as 0.98

nd other hyperparameters used are summarized in Table 5 . 

. Results & discussion 

To demonstrate the benefit of using the suggested reward de- 

ign strategy with phase segmentation and the MC-DDPG algo- 
7 
ithm, we compare 1) the results of the agent trained with and 

ithout the phase segmentation, 2) the learning performance of 

he agents using the MC-DDPG and the conventional DDPG (TD- 

DPG), and 3) the control performances of the agent trained with 

he MC-DDPG algorithm, the agent initialized by the supervised 

earning with the NMPC closed-loop data (i.e., imitation learn- 

ng), and NMPC. Furthermore, we discuss the reason for less-than- 

erfect performance of the proposed approach, and suggest some 

ays to further improve its performance. In addition, sensitivity 

nalysis with respect to the phase segmentation point and to the 

yperparameters are conducted. 

.1. Phase segmentation 

For applying the phase segmentation approach, two pairs of 

ctor-critic networks were trained with the respective rewards 

s explained in Section 4.2 . On the other hand, without the 

hase segmentation approach, one pair of actor-critic networks 

as trained with the sum of r path and r prod as the reward of the 

on-terminal states, and the r end of the terminal state was de- 

igned the same as in Section 4.2 . Their performances (i.e. end val- 

es of NAMW, U SV , Unrct, and total mass) was evaluated for the 

ases of −10, 0, and +10% perturbations in A p . 

As shown in Fig. 2 a, the action profile of the actor trained with-

ut the phase segmentation converged to an unreasonable trajec- 

ory which leads to a small amount of the product with unsatis- 

actory quality for all cases (see Table 6 ). This actor which failed 

o learn a good policy suggested a low temperature and zero feed- 

ng rate except for the first decision. Note that, in this case study, 

ood performance would be achieved by a high feeding rate with a 

ow temperature during Phase I and a low feeding rate with a high 

emperature during Phase II. Fig. 2 b shows that the agent trained 

ith the phase segmentation approach was able to give good ac- 

ion profiles, fully reflecting the aforementioned phase characteris- 

ics. 

.2. TD-DDPG vs MC-DDPG 

To compare the learning performances of the TD-DDPG and 

C-DDPG algorithms, we trained the agents in the same train- 

ng environment. For a fair comparison, the phase segmentation 

pproach was applied to the both algorithms with the same re- 

ard functions as in Section 4.2 , and the same initial data were 

sed for the initialization as in Section 4.3 . Fig. 3 shows the to- 

al (cumulative) rewards of each episode ( 
∑ T 

t=0 r t ) ) resulting from 

he two algorithms as the training proceeds. This value is getting 

ower with TD-DDPG which means the agent is being trained to- 

ard a wrong direction, due to the bootstrapping. As mentioned 

reviously, when the critic network is updated with inaccurate tar- 

et values through bootstrapping, the actor can also be updated 

ith gradients of wrong directions based on the erroneous critic 

etworks. The resulting actor policy can then lead the training to 

 wrong space and the actor cannot get the training process out 

f this situation, especially with a deterministic actor which per- 

orms limited exploration with a small noise term. Furthermore, 

he reason why the bootstrapping can be fatal in the case of batch 
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Fig. 2. Action profiles given by the actor trained (a) without the phase segmentation and (b) with phase segmentation. The actor trained without the phase segmentation 

failed to learn the phase characteristics reflected policy. 

Fig. 3. Learning curves of (a) TD-DDPG and (b) MC-DDPG. The agent trained with TD-DDPG diverged toward a lower reward, but the agent trained with MC-DDPG converged 

to the maximum possible total reward. 

Table 7 

Performance results of (a) NMPC, (b) Imitation learning, and (c) 

MC-DDPG for three cases ( ∗: constraint violation). 

(a) eNMPC 

� A p −10% Nominal + 10% 

NAMW 3158.95 3866.70 4680.56 ≥3027.74 

USV 0 . 0204 ∗ 0.0200 0.0198 ≤0.02 

Unrct 24 4 4 . 77 ∗ 1974.27 1612.73 ≤2000 

Total mass 5555.16 6955.77 7839.42 

(b) Imitation learning 

� A p −10% Nominal + 10% 

NAMW 3634.79 3654.19 3669.74 ≥3027.74 

USV 0 . 0228 ∗ 0 . 0205 ∗ 0.0187 ≤0.02 

Unrct 11077 ∗ 8675 ∗ 7077 ∗ ≤2000 

Total mass 6941.19 6944.61 6947.64 

(c) Reinforcement learning (MC-DDPG) 

� A p −10% Nominal + 10% 

NAMW 3044.69 3059.14 3071.22 ≥3027.74 

USV 0 . 0214 ∗ 0.0192 0.0174 ≤0.02 

Unrct 1898 1094 635 ≤2000 

Total mass 5798.88 5808.77 5817.14 

p

i

t

a

d

5

r

t

p

s  

N

w

s

t

a

w

l

i

o

T

l  

n

n

i

t

s

u

r  

c

o

l

l

t

p

c

c

c

p

b

t

f

d

I

t

U

rocess control is because the high bias in the TD based learning is 

nappropriate for the irreversible environment like the polymeriza- 

ion process. Meanwhile, the learning curve of MC-DDPG gradually 

rrives at a high value indicating that the agent is trained to the 

irection of maximizing the total reward. 

.3. Control performance comparison 

The developed RL based controller with the MC-DDPG algo- 

ithm and phase segmentation approach, the NMPC controller, and 

he controller from the imitation learning were tested on the three 

arameter perturbation cases as in Section 5.1 , and the results are 

ummarized in Fig. 4 and Table 7 . As shown in Fig. 4 a and b, the

MPC controller gives the profiles of the feeding rate which vary 
8 
ith the perturbation in A p , and violations of the both path con- 

traints are observed, especially the upper limit on the adiabatic 

emperature. NMPC with an economic objective typically oper- 

tes the system very close to boundaries of its constraints. Hence, 

hen the environment has significant uncertainty, constraint vio- 

ations become inevitable due to the inaccurate predictions used 

n the NMPC calculations. All the end-point constraints are also vi- 

lated in the case of the −10% perturbation in A p as reported in 

able 7 a. 

The performances of the agent trained by using the imitation 

earning are shown in Fig. 4 c, d and Table 7 b. The policy gives

early the same profile for the three cases and this policy does 

ot fully satisfy the path and end-point constraints either. This 

s because the actor of this agent was updated to closely mimic 

he sub-optimal controller’s behavior without considering the con- 

traint satisfaction. 

From this initialized neural networks, the agent was trained by 

sing the MC-DDPG algorithm and its performance results are rep- 

esented in Fig. 4 e, f and Table 7 c. The resulting agent provides

onsistent action profiles despite the perturbations in A p , and also 

utperforms the NMPC controller and the controller with imitation 

earning in terms of satisfying the required constraints. Slight vio- 

ations occur only in the case of the −10% perturbation in A p for 

he path constraint on the adiabatic end temperature and the end- 

oint constraint on the final unsaturated value ( USV ). Of course, 

onstraint satisfactions require a sacrifice on the productivity be- 

ause an excessively high reactor temperature violating the safety 

onstraints would be unavoidable if we try to produce qualified 

roducts from more monomers within given batch time. 

To analyze the constraint violations seen with the −10% pertur- 

ation in A p , we conducted the deterministic dynamic optimiza- 

ion for that case. Fig. 5 shows the resulting input profiles: The 

eeding step is finished one step earlier (380 min) than the pre- 

etermined segmentation point in time (400 min) in Section 4.2 . 

n this regard, we can deduce that the predetermined reaction 

ime of Phase II was not sufficient to satisfy the end constraint on 

SV in the case of the −10% perturbation in A p . Thus, we should 



H. Yoo, B. Kim, J.W. Kim et al. Computers and Chemical Engineering 144 (2021) 107133 

Fig. 4. (a) Action profiles of NMPC. (b) Path constraints in NMPC. (c) Action profiles of imitation learning. (d) Path constraints in imitation learning. (e) Action profiles of 

MC-DDPG. (f) Path constraints in MC-DDPG. 

Fig. 5. Dynamic optimization result in the case of −10% perturbation in A p . 
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Table 8 

End-point constraint results for the agent trained with a different 

phase duration ( ∗: constraint violation). 

� A p −10% Nominal + 10% 

NAMW 3226.67 3234.60 3241.63 ≥3027.74 

USV 0 . 0248 ∗ 0 . 0219 ∗ 0.0197 ≤0.02 

Unrct 68 27 11 ≤2000 

Total mass 6162.93 6162.81 6162.67 
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evelop a method to employ more flexible phase segmentation and 

his will be left for future work. 

.4. Sensitivity analysis of phase segmentation 

Determining the time duration for each phase requires prior 

hysical knowledge or engineer’s insights and it can sometimes be 

ifficult to choose a proper phase segmentation point. To see the 

mpact of choosing an erroneous segmentation point on the opti- 

ality of the control policy, we trained the RL agent with phase I 

asting longer by 1-time step ( t = 420 min) than in the previous
1 

9 
ase ( t 1 = 400 min). As shown in Fig. 6 and Table 8 , the resulting

olicy violates the path constraint on the adiabatic end tempera- 

ure in the case of the −10% perturbation in A p and the end-point 

onstraint on the final unsaturated value ( USV ) in the cases of the 

10% and nominal cases. The control performance is also a little 

orse than in the previous case, but the phase characteristics are 

ell reflected. If the performance of a converged policy is not suffi- 

ient, adjusting the phase segmentation point would be a potential 

ay to improve the policy. However, this approach has limitations 

n that it still requires prior knowledge. To address this problem, an 

L algorithm that can determine the phase segmentation point(s) 

utomatically should be developed in future works. 

.5. Sensitivity analysis of reward hyperparameter 

Determining the hyperparameter values associated with the re- 

ard and penalty is as important as designing appropriate reward 
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Fig. 6. (a) Action profiles and (b) Path constraints of the agent trained with a different phase duration. 

Fig. 7. (a) Action profiles and (b) Path constraints of the agents with three different αpath values. 

Table 9 

End-point constraint results for different values of αpath ( ∗: con- 

straint violation). 

αpath 0.1 0.5 1.0 

NAMW 5736.13 3044.69 3279.10 ≥3027.74 

USV 0 . 0233 ∗ 0 . 0214 ∗ 0 . 0203 ∗ ≤0.02 

Unrct 26699 ∗ 1898 38692 ∗ ≤2000 

Total mass 11830.60 5798.88 6443.26 
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unctions. The suggested reward functions contain several hyperpa- 

ameters which should be carefully decided to achieve good train- 

ng performance. To show its effect on the training, three αpath val- 

es of 0.1, 0.5 (original), and 1.0 were used for the agents training 

under the same training environment as in Section 4.3 ). The re- 

ulting three agents were tested for the case of the −10% pertur- 

ation in A p as shown in Fig. 7 and Table 9 . When αpath was set

o a lower value (i.e. 0.1), the path constraints were violated more 

ecause the reward or penalty for satisfying the path constraints 

ad less impact on the total reward. When the αpath was set to 

 higher value (i.e., 1.0), the path constraints were satisfied, but 

he reactor temperature converged to a lower value which led to 

 violation of the end constraints. For a highly nonlinear process 

ike this polymerization process, the hyperparameters often do not 

ave linear relationships with the training performance, and the 

atios between the hyperparameters may be critical. In addition, 

he discontinuous reward function can result in a high sensitiv- 

ty of the controller to the hyperparameter values. For more con- 

enient design and training of the RL controllers, it is important 

o have a systematic way to address the sensitivity with respect 

o the choice of these hyperparameter values. For this, adaptation 

f these hyperparameters during training is a promising route and 

his will be addressed in our future work. 

. Conclusion 

An RL based batch process control strategy was proposed, with 

articular attention given to the design of the reward to prop- 

rly reflect the process’s economic performance and (path/end- 

oint) constraint satisfaction. In addition, the phase segmentation 
10 
pproach and the Monte-Carlo DDPG algorithm were suggested to 

andle the non-stationary and irreversible characteristics of most 

atch processes. The suggested RL strategy was tested on a batch 

olymerization example and the beneficial effects of the phase 

egmentation and the MC modification of DDPG on the train- 

ng and control performance were observed. Comparing with the 

MPC controller and the agent trained by imitation learning, the 

L-based controller showed enhanced ability to satisfy the path 

nd end-point constraints in the presence of parameter errors. The 

mpact of the choice of phase segmentation point on the optimal- 

ty was discussed by training the agent with different phase dura- 

ions. The importance of determining proper hyperparameters was 

iscussed with sensitivity analysis of the reward/penalty value. The 

roposed approach and algorithm can be applied to other batch 

r semi-batch process (e.g. bio-reactor) problems, especially those 

hat have significant uncertainties and irreversible and nonlinear 

ynamics. For future work, the RL based control method will be 

xtended to allow for more flexible phase segmentation and batch 

ime adjustment and to systematically vary the hyperparameters 

uring training for more intuitive and reliable learning. 
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