
Computers and Chemical Engineering 144 (2021) 107133

Contents lists available at ScienceDirect

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/compchemeng

Reinforcement learning based optimal control of batch processes using

Monte-Carlo deep deterministic policy gradient with phase

segmentation

Haeun Yoo

a , Boeun Kim

b , Jong Woo Kim

c , Jay H. Lee

a , ∗

a Department of Biomolecular and Chemical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141,

Republic of Korea
b Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
c School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic

of Korea

a r t i c l e i n f o

Article history:

Received 29 July 2020

Revised 6 October 2020

Accepted 20 October 2020

Available online 30 October 2020

Keywords:

Batch process

Reinforcement learning

Optimal control

Actor-Critic

a b s t r a c t

Batch process control represents a challenge given its dynamic operation over a large operating envelope.

Nonlinear model predictive control (NMPC) is the current standard for optimal control of batch processes.

The performance of conventional NMPC can be unsatisfactory in the presence of uncertainties. Reinforce-

ment learning (RL) which can utilize simulation or real operation data is a viable alternative for such

problems. To apply RL to batch process control effectively, however, choices such as the reward func-

tion design and value update method must be made carefully. This study proposes a phase segmentation

approach for the reward function design and value/policy function representation. In addition, the deep

deterministic policy gradient algorithm (DDPG) is modified with Monte-Carlo learning to ensure more

stable and efficient learning behavior. A case study of a batch polymerization process producing poly-

ols is used to demonstrate the improvement brought by the proposed approach and to highlight further

issues.

© 2020 Elsevier Ltd. All rights reserved.

1

d

u

g

t

n

m

n

c

e

i

b

i

t

d

(

c

f

d

t

m

c

s

r

t

o

i

u

2

i

m

t

c

h

0

. Introduction

Batch or semi-batch processing is widely used in the process in-

ustry, mostly for producing low-volume, high-value added prod-

cts. Operating condition of a batch process is determined to meet

iven requirements for end product quality (e.g., composition, par-

icle size and shape) in a manner that assures safety and eco-

omic feasibility (e.g., maximization of the productivity or mini-

ization of the cost). However, its inherent features, such as 1)

on-stationary operation covering a wide operating envelope 2)

onsequent exposure of the underlying nonlinear dynamics, and 3)

xistence of both path and end-point constraints, present a signif-

cant challenge to control engineers. These problems are exacer-

ated by oftentimes significant variabilities in the feedstock qual-

ty and condition as well as other process uncertainties (e.g. dis-

urbances, noises, model errors).

For optimal control of batch processes, nonlinear model pre-

ictive control (NMPC) has been the most widely studied method
∗ Corresponding author.

E-mail address: jayhlee@kaist.ac.kr (J.H. Lee).

S

w

p

ttps://doi.org/10.1016/j.compchemeng.2020.107133

098-1354/© 2020 Elsevier Ltd. All rights reserved.
 Qin and Badgwell, 20 0 0; Mayne, 20 0 0; Chang et al., 2016). NMPC

an be designed in two different forms. First it can be designed to

ollow a prespecified recipe (e.g., setpoint trajectories), which are

etermined from an off-line (or run-to-run) optimization. Alterna-

ively, it can be designed to optimize an economic or other perfor-

ance index directly on-line while respecting process and quality

onstraints (Rawlings and Amrit, 2009; Ellis et al., 2014). In this

etting, as an economic optimization tends to drive the operating

ecipe towards active constraints, it is important for the controller

o assure constraint satisfaction. While NMPC offers the advantage

f including constraints directly in the optimal control calculation,

ts constraint handling capability can degrade when the model

sed for the prediction has significant uncertainty (Lucia et al.,

014). Conventional NMPC addresses this problem by reperform-

ng the optimization at each sample time after receiving feedback

easurements and also by detuning the controller and tightening

he constraints to account for the uncertainty (“back-off”) but this

an lead to significant suboptimality (Paulson and Mesbah, 2018;

antos et al., 2019). Robust NMPC formulations have also appeared

hich are based on rigorous uncertainty models (e.g., bounded

arameter sets, scenario trees) but they come at the cost of

https://doi.org/10.1016/j.compchemeng.2020.107133
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2020.107133&domain=pdf
mailto:jayhlee@kaist.ac.kr
https://doi.org/10.1016/j.compchemeng.2020.107133

H. Yoo, B. Kim, J.W. Kim et al. Computers and Chemical Engineering 144 (2021) 107133

s

M

(

a

w

o

t

l

p

l

s

e

t

t

e

c

s

n

m

t

w

d

o

e

e

o

t

t

a

r

f

s

p

i

i

s

o

s

i

(

s

w

f

a

t

t

(

a

t

p

R

t

d

a

t

m

d

p

2

2

i

s

d

h

n

e

r

a

a

t

c

e

t

t

f

u

t

s

i

fi

t

m

s

t

t

t

t

m

o

x

x

Nomenclature

X n = G n + D n , n = 0 , 1 , . . . , N polyol product chains

Y n = Q n + R n , n = 0 , 1 , ., N unsaturated chains

G n the growing product chains of

length n (P n O

−K

+)
D n the dormant product chains of

length n (P n OH)

Q n the growing unsat chains of

length n (U n O

−K

+)
R n the dormant unsat chains of

length n (U n OH)

MX i =

∑ N
n =1 n

i X n moment of X

MY i =

∑ N
n =1 n

i Y n moment of Y

MG i =

∑ N
n =1 n

i G n moment of G

MQ i =

∑ N
n =1 n

i Q n moment of Q

n KOH the total amount of catalyst

MW PO molecular weight of polyol

V liquid volume

W water

M monomer

k reaction rate constant

ignificantly increased complexity preventing practical use

orari and H. Lee (1999) , Lucia et al. (2013) , Thangavel et al.

2018) .

In this regard, reinforcement learning (RL), which tries to learn

n optimal control policy and value function from data may be

orthy of consideration. Learning data can be real operation data

r simulation data and such data contain (or can be made to con-

ain) the effect of the uncertainty which will be experienced on-

ine. Therefore, RL provides a flexible framework wherein a control

olicy can be learned to address the uncertainty contained in the

earning data and its potential has been examined through several

et-point tracking control problems (Lee and Lee, 2005; Spielberg

t al., 2019; Kim et al., 2020). For such problems, the set point

racking error was used as the (negative) reward in the training of

he RL based controller. On the other hand, just a few studies have

xamined RL in the context of dynamic optimization of batch pro-

ess operation (Wilson and Martinez, 1997; Martinez, 1998; Pet-

agkourakis et al., 2020).

In this paper, we examine the use of RL for on-line dy-

amic optimization and control of a batch process with high di-

ensional and continuous state and action spaces. We focus on

he issues that arise in such applications, e.g., the choice of re-

ard functions, esp. in handling constraints, construction of time-

ependent approximators, and choice of learning algorithm. First

f all, we suggest three types of reward functions that combine

conomic performance index and degree of violation of path and

nd-point constraints. To address the time dependence of batch

peration, a phase segmentation approach is proposed to tailor

he reward functions and the function approximators to suit dis-

inct characteristics of the different phases of batch run. For the

gent training, deep deterministic policy gradient (DDPG) algo-

ithm (Lillicrap et al., 2016) is adopted as it is known to be ef-

ective in handling high dimensional continuous state and action

paces. However, the traditional DDPG algorithm, which uses tem-

oral difference learning, is modified with Monte-Carlo (MC) learn-

ng so as to ensure stable learning behavior. This is particularly

mportant for batch process control as the reward function is de-

igned such that violation of the end-point constraints affect the

verall reward significantly. The NMPC and different RL control

trategies will be examined and compared in a case study that
2
nvolves a semi-batch polymerization reactor producing polyols

 Nie et al., 2013).

In summary, the intended contributions of this paper are in 1)

uggesting the RL method for optimal control of batch processes

ith uncertainty, 2) proposing the phase segmentation approach

or designing the reward functions and the function approximators

nd 3) modifying the DDPG algorithm with MC learning to improve

he agent learning in order to better reflect the future value, par-

icularly with respect to the end point constraints satisfactions.

In the next section we briefly introduce MPC, RL, MC vs. TD

Temporal-Difference) learning, and DDPG. Section 3 then proposes

 RL based optimal control strategy with specific components like

he phase segmentation, and MC-DDPG learning. The case study

roblem is introduced next and the training environment of the

L based optimal controller is described in Section 4 . In Section 5 ,

he improvement by using the phase segmentation approach is

emonstrated and the learning results of the conventional DDPG

nd MC-DDPG algorithms as well as NMPC are compared. In addi-

ion, sensitivity analysis with respect to the choice of phase seg-

entation point and to the hyperparameters used in the reward

esign are investigated. Section 6 summarizes and concludes the

aper.

. Preliminaries

.1. MPC and RL

The optimal control problem formulation we adopt in this study

s given in Eq. (2.1) . A general method to solve this problem is by

olving the Hamilton-Jacobi-Bellman (HJB) equation, which can be

erived by applying Bellman’s principle of optimality. On the other

and, the HJB equation is a PDE with boundary conditions and can-

ot be solved in most cases with just a few well-known exceptions,

.g., the linear quadratic optimal control problem. MPC and RL rep-

esent two different approaches to solve the problem indirectly or

pproximately.

MPC employs a mathematical programming technique to solve

n open-loop optimal control problem for a specific state encoun-

ered at each given time. Thus, MPC at each time step numerically

alculates optimal input trajectory u (t) using appropriate param-

terization and discretization of the model (Eq. (2.1c) , (2.1e)) and

he input trajectory. Typically, the objective function minimized is

he set-point tracking error (Eq. (2.1a)), but an economic objective

unction (Eq. (2.1b)), e.g., the cost or energy consumption, can be

sed instead and this is often referred to as Economic MPC (eMPC)

o distinguish it from the conventional MPC. Other inequality con-

traints such as input and output bounds (Eq. (2.1f) , (2.1g)) can be

mposed in the optimization providing much needed flexibility in

tting industrial control problems into the standard optimal con-

rol problem. When the model is nonlinear, a nonlinear program-

ing (NLP) solver is needed which employs either sequential or

imultaneous strategies (Barton et al., 1998; Biegler, 2007a). Thus,

he on-line computational requirement can be very high. Note that

he optimization is resolved at each sample time as the starting

ime with the current state updated by measurements as the ini-

ial state (Eq. (2.1d)).

in

u (t)

∫ T

0

| y sp − y | 2 Q + | u sp − u | 2 R dt (2.1a)

r max
u (t)

∫ T

0

l t (x, u) dt (2.1b)

˙
 = f (x, u) (2.1c)

 (0) = x 0 (2.1d)

H. Yoo, B. Kim, J.W. Kim et al. Computers and Chemical Engineering 144 (2021) 107133

y

u

y

p

o

(

v

b

c

t

i

e

t

m

t

m

a

m

1

c

t

i

t

d

a

r

B

a

i

o

f

s

s

u

O

b

p

t

r

d

o

o

t

a

t

o

t

o

e

a

l

u

p

e

l

o

l

t

2

e

p

l

w

u

t

M

w

g

e

e

e

t

u

i

r

l

c

m

e

(

2

s

d

n

l

g

a

p

u

p

v

a

Q

t

p

c

w

c

(

b

s

H

c

w

t

2

b

t

c

a

s

 = g(x, u) (2.1e)

 lb ≤ u ≤ u ub (2.1f)

 lb ≤ y ≤ y ub (2.1g)

MPC has become de facto the advanced control method of the

rocess industry mainly owing to its ability to handle constraints

n inputs and states explicitly for multi-variable systems (Eq. (2.1f) ,

 2.1g)). This model-based control method offers an important fa-

orable feature that the objective function and constraints can

e changed on the fly, affording much needed flexibilities in fast

hanging industrial operation environments. Its main weakness is

he high on-line computational requirement and the limited abil-

ty to incorporate information on uncertainty such as parameter

rrors and drifts. MPC is based on open-loop trajectory calcula-

ion and uncertainties are handled mostly by repeating the opti-

ization after a feedback update, which is reactive in nature. In

he context of batch process operation, such reactive mechanism

ay not be sufficient, thus leading to frequent constraint violations

nd off-spec products. There are robust MPC formulations such as

in-max MPC, tube-based MPC, and multi-stage MPC (Lee and Yu,

997; Mayne et al., 2011; Lucia et al., 2013), but they tend to be

onservative and require significantly increased on-line computa-

ion.

RL is a data-based method to learn optimal decision policies

n sequential decision making problems. ”Data-based” here means

hat the agent (i.e. the decision maker or the controller) receives

ata while it is interacting with the environment (i.e. as it applies

ctions calculated by the policy which is being evolved). The envi-

onment can be the real system or a simulated system (Sutton and

arto, 2018). The data received typically consists of next state (s t+1)

nd reward (r t) taken by the result of action (a t) following the pol-

cy (π) at current state (s t). The reward is defined to reflect merits

r demerits of each state with respect to achieving the goal. The

ollowing are the elements of the tuple that define a Markov deci-

ion process (MDP) (Puterman, 2014):

• State space S and state s ∈ S (discrete or continuous),
• Action space A and action a ∈ A (discrete or continuous),
• State transition model T , given by transition probability

p(s t+1 | s t , a t) ,
• Reward function r(s, a) where r : S × A → R,

• Policy π mapping state s t to a t

 here corresponds x, the state variables of the ODE, a the manip-

lated variables u . The state transition model T is defined by the

DE, which is normally deterministic but can be made stochastic

y appropriately adding stochastic uncertainties. For the rest of the

aper, we will adopt the notations used in MDP.

Return value is defined as the (discounted) cumulative sum of

he received rewards along the travelled trajectory from the cur-

ent state to the terminal state (G (s t) =

∑ T
τ= t γ τ−t r(s τ)) with a

iscount factor γ ∈ [0 , 1] . Value function (V (s t)) is the expectation

f the return value which implies the expected long-term value

f the current state, and Q-function (Q(s t , a t)) is the expected re-

urn value of the state and action pair. Based on these values, the

gent tries to improve the policy (π) toward the direction of get-

ing higher return or expected return value (policy gradient meth-

ds) (Sutton et al., 20 0 0). The design of the reward and its utiliza-

ion for the agent training have a direct impact on the performance

f the RL agent. Thus, in designing an RL controller, it is critical to

ngineer proper reward functions which reflect the characteristics

nd intended goal of the batch process operation.

The RL agent can eventually learn an optimal policy for a given

ong-term goal in an uncertain environment by observing the eval-

ative responses to the decisions implemented assuming an appro-

riate reward is used which matches the agent’s goal. When the
3
nvironment can be simulated, the learning can be carried out off-

ine and the off-line derived optimal policy can be implemented

n-line, thus minimizing the potentially negative impact of the

earning process on the real system and also drastically reducing

he on-line computational load.

.2. MC and TD learning

RL agent continuously improves its policy interacting with the

nvironment. For the improvements, there are two different ap-

roaches: Monte-Carlo (MC) learning and Temporal-Difference (TD)

earning. MC learning learns directly from episodes of experience

hich means the agent updates the value or Q-function and policy

sing the return values which can be calculated when the episodes

erminate. Therefore, this method can only be applied to episodic

DPs (Sutton and Barto, 2018). The REINFORCE algorithm which

as used for Alpha-Go training is an MC based policy gradient al-

orithm for learning stochastic policies (Sutton et al., 20 0 0; Silver

t al., 2016).

TD learning updates the value function by using the current

stimate of the value function of next state, so this can be ex-

cuted while an episode proceeds, thus speeding up the agent

raining process (Sutton and Barto, 2018). This learning method

ses bootstrapping which means an estimator is updated by us-

ng an estimated target value. Although many leading RL algo-

ithms such as Deep Q Network (DQN) and DDPG employ the TD

earning method for the efficiency of training, the bootstrapping

an cause the value function approximation to get stuck in local

inima or even diverge in the presence of a nonlinearly param-

terized function approximator or arbitrary sampling distributions

 Tsitsiklis and Van Roy, 1997).

.3. Deep deterministic policy gradient (DDPG) algorithm

DDPG is an actor-critic, model-free algorithm which adopts the

trengths of Deep Q Network (DQN) and deterministic policy gra-

ient (DPG) (Lillicrap et al., 2016). The DQN algorithm uses a deep

eural network to approximately estimate the Q-function in Q-

earning with continuous state space and the agent follows the ε-

reedy policy in discrete action space (Mnih et al., 2015). The DPG

lgorithm deterministically maps the state to a specific action by

arameterizing the actor function (e.g. by a neural network) and

pdates the actor parameters following the gradient of the policy’s

erformance which is called policy gradient (Sutton et al., 20 0 0; Sil-

er et al., 2014). As shown in Algorithm 1 , DDPG employs critic and

ctor networks. The critic network (Q) is updated toward accurate

-function approximation and the actor network (μ) is updated

oward maximizing the critic network’s output using the sampled

olicy gradient. These updates are executed while an episode pro-

eeds by using the current estimated value of the Q-function (y i),

hich is TD learning. DDPG uses a replay buffer to eliminate serial

orrelations of the samples and also separates the target networks

 Q

′ and μ′) from the updated networks (Q and μ) to promote sta-

le bootstrapping.

DDPG is known to be effective in problems with continuous

tate and action spaces like the chemical process control problems.

owever, there are several obstacles to applying this algorithm to

hemical batch process control. First, the actor can be updated to-

ard a wrong direction based on inaccurate critic values which in

urn leads to bad samples with low rewards (Tsitsiklis and Roy,

0 0 0; Fujimoto et al., 2018). Actor parameters can even exceed the

ounds when the critic provides gradients that encourage the ac-

or network to continue increasing a parameter that already ex-

eeds the bounds (Hausknecht and Stone, 2015). In addition, the

gent with a deterministic actor explores spaces by adding just a

mall noise term to the given action, which makes it even harder

H. Yoo, B. Kim, J.W. Kim et al. Computers and Chemical Engineering 144 (2021) 107133

Algorithm 1: DDPG algorithm (Lillicrap et al., 2016).

Initialize the critic network Q(s, a | θQ) and the actor network

μ(s | θμ) with weights θQ and θμ

Initialize the target networks Q

′ and μ′ with weights

θQ ′ ← θQ and θμ′ ← θμ

(Initialize the replay buffer R)

for episode = 1, …, M do

Initialize a random process ν for action exploration

Receive initial observation state s 1
for t = 1, …, T do

Select action a t = μ(s t | θμ) + νt (noise) according to the

current policy and random exploration noise

Receive r t and s t+1 from the environment with a t
Store (s t , a t , r t , s t+1) in R

if number of samples in R ≥ N then

N random sampling (s i , a i , r i , s i +1) from R

Set y i = r i + γ Q

′ (s i +1 , μ
′ (s i +1 | θμ′

) | θQ ′)
Update the critic by minimizing the critic loss:

L c =

1
N

∑

i (y i − Q(s i , a i | θQ)) 2

Update the actor policy using the sampled policy

gradient:

� θμ J ≈ 1

N

∑

i

� a Q(s, a | θQ) | s = s i ,a = μ(s i) � θμμ(s | θμ) | s i
Update the target networks:

θQ ′ ← ηθQ + (1 − η) θQ ′ , θμ′ ← ηθμ + (1 − η) θμ′

with η
 1

end

end

end

Table 1

Reward types.

r path =

{
αpath if satisfies all path constraint

−αpath otherwise

r end =

∑

j r end, j

r end, j =

{
αend, j if satisfies end point constraint j

−α′
end, j

− |� c j | /s j otherwise

r prod = v /s v (v is a measure of process performance)

t

i

t

a

o

p

e

v

l

M

t

3

3

u

c

w

t

t

h

Fig. 1. Example for phase segmentation approach. Based on the physical knowl-

edge, we can divide the control profile into two or more phases.

p

i

a

(

g

r

c

w

a

v

p

v

t

s

i

p

s

|
f

3

t

s

2

c

a

t

s

t

o

p

c

t

o

s

e

o get out of the local minima or the divergence problem. Chem-

cal batch processes are particularly vulnerable to the aforemen-

ioned drawbacks, because most chemical reactions are irreversible

nd thus undesired states resulting from wrong decision(s) early

n can hardly be steered to desired ones later unlike in robot path

lanning or game playing. For instance, a faulty action during the

arly stage of a batch operation can inevitably lead to significant

iolations of end-point constraints. To address such potential prob-

em intrinsic to chemical batch processes, a modified algorithm of

onte Carlo (MC)-DDPG with phase segmentation is suggested in

he next section.

. RL based batch process control strategy

.1. Reward design

The goal of batch process control is to produce target prod-

cts in an economical and safe manner. As in classical optimal

ontrol, goal engineering is needed to express the goal as the re-

ard function (i.e. the objective function). In this regard, three

ypes of reward terms (as shown in Table 1) are suggested to allow

he agent to be trained effectively for the purposes of achieving

igh economic performance, and satisfying relevant path and end-
4
oint constraints. The first term (r path) denotes reward for satisfy-

ng the path constraints. If all the path constraints are satisfied, the

gent gets the corresponding reward (αpath), otherwise the penalty

 −αpath). The second term (r end) is determined based on whether

iven end-point constraints are satisfied or not. It is the sum of the

eward/penalty assigned to each end-point constraint (r end, j). If the

onstraint j is satisfied, the agent gets the reward (αend, j). Other-

ise, the agent receives both the default penalty (α′
end, j

) and the

dditional penalty which is proportional to the degree of constraint

iolation (|� c j |) scaled by the hyperparameter s j . This additional

enalty term is used to reflect how much the product quality de-

iates from the spec. The last reward term (r prod) is to be designed

o reflect the process’s economic performance, so it is problem-

pecific. For example, in the ensuing case study, the total mass

n the reactor v is used as the reward in order to maximize the

rocess’s productivity. αpath and αend are hyperparameters which

hould be tuned along with the discount rate γ . Note that, v and

� c j | should be appropriately scaled with s v and s j , respectively,

or the effective training.

.2. Phase segmentation

Most batch processes are operated with recipes encompassing

ime-varying trajectories, which can include abrupt changes like

hutting off of the feed supply (Abel et al., 20 0 0; Bonvin et al.,

001; Peroni et al., 2005). However, in RL, a single pair of actor-

ritic networks are oftentimes used to represent the value function

nd the policy. In batch process control, it can be a difficult task to

rain single networks to cover the entire duration of a batch run

ince they must represent functions of abrupt (e.g. nondifferen-

iable) changes in their slopes. Therefore, we propose an approach

f phase segmentation to reflect distinct characteristics of different

hases of a batch run to reflect their distinct dynamic and reward

haracteristics. In this approach, separate actor-critic networks are

rained for different phases.

A batch operation can oftentimes be divided into phases based

n available physical knowledge and reasoning. For example, as

hown in Fig. 1 , a typical semi-batch polymerization process op-

ration comprises three sequential phases: feed charge, processing,

H. Yoo, B. Kim, J.W. Kim et al. Computers and Chemical Engineering 144 (2021) 107133

a

p

b

t

b

t

s

t

b

a

b

s

p

m

c

w

c

i

f

l

G

3

t

c

t

i

T

a

t

e

i

t

I

b

c

a

t

s

i

(

i

b

o

A

e

f

t

t

t

t

n

M

b

n

m

v

d

p

Algorithm 2: MC-DDPG algorithm with phase segmentation.

Initialize the critic networks Q p (s, a | θQ) and the actor

network μp (s | θμ) with weights θQ p and θμp for p = 1 , . . . , P

(Initialize the replay buffer R p for p = 1 , . . . , P)

for episode = 1, …, L do

Initialize a random process ν for action exploration

Receive an initial observation state s 1
for t = 1, …, T do

Select action a t = μp (s t | θμp) + νt (noise) , where

t ∈ [t p−1 , t p)

Receive r t and s t+1 from the environment with a t
end

Calculate G t (s t , a t) = r t + γ r t+1 + . . . γ T −t r T for t = 1 , . . . , T

Store (s t , a t , G t) in R p where t ∈ [t p−1 , t p)

if number of samples in R p ≥ N p for p = 1 , . . . , P then

for iter = 1, …, M do

N p random sampling (s i , a i , G i) from R p for

p = 1 , . . . , P

Update the parameters of the critic networks by

minimizing the critic’s loss:

L c,p =

1
N p

∑

i (G i − Q p (s i , a i | θQ p)) 2

Update the parameters of the actor networks using

the policy gradient:

� θμp J ≈ 1

N p

∑

i

� a Q p (s, a | θQ p) | s = s i ,a = μp (s i) � θμp μp (s | θμp) | s i

end

end

end

r

e

4

4

D

t

t

l

m

o

c

d

m

l

r

a

N

nd discharge. The process should be controlled according to each

hase’s purpose. Excluding the discharge step, the example semi-

atch operation can simply be divided into two phases: Phase I for

he feeding and Phase II for carrying out the reaction. One should

e able to identify the time sections for each phase and design

he reward function for each phase to reflect its purpose to train

eparate actor-critic networks. If a process is more intricate than

his simple case, the process can be segmented into more phases,

ut this may require significant prior knowledge. One can conceiv-

bly automate the segmentation task, e.g., via machine learning,

ut this is not addressed in this work and is left for future re-

earch.

Even though rewards may take on different forms for different

hases, the return value (or the value function) which is the cu-

ulative sum of the stage-wise rewards (or its expectation) is cal-

ulated along over the entire batch interval. Thus, the critic net-

ork can predict the value reflecting the future performance in-

luding the final product quality. Assuming the process is divided

nto P phases (phase p = [t p−1 , t p) , p ∈ { 1 , . . . , P }) and the reward

or each phase is represented by r p , the return value can be calcu-

ated as shown in Eq. (3.2) .

 τ =

T ∑

t= τ
γ t−τ r t , r t = r p for t ∈ [t p−1 , t p) (3.2)

.3. Monte-Carlo DDPG (MC-DDPG)

Typical environment of a chemical batch process involves con-

inuous state and action variables. In general, state variables in-

lude concentrations of the reactants and products, the reactor

emperature, etc. Common action variables are the inlet and heat-

ng/cooling jacket temperatures, the inlet flow rate, and so on.

herefore, DDPG is a suitable choice for batch process control

mong the available RL algorithms since it is known to be effec-

ive for problems involving continuous state and action spaces as

xplained in Section 2.3 . However, chemical reactions oftentimes

nvolve irreversible transitions and require a good prediction of the

erminal reward early on in order to meet the end-product quality.

n this regard, we hypothesize that the MC learning method may

e a better choice than the TD learning method for batch process

ontrol problems.

In this paper, we modified the conventional DDPG algorithm to

dopt the MC learning in the place of the TD learning and also

o accommodate the phase segmentation described earlier. The re-

ulting MC-DDPG algorithm with phase segmentation is shown

n Algorithm 2 . First, the critic (Q p (s, a | θQ)) and actor networks

 μp (s | θμ)) are initialized for the chosen number of phases, P . To

nitialize their parameters in a reasonable way, they can be trained

y using supervised learning using closed-loop data with a sub-

ptimal controller like NMPC. This is called ”imitation learning.”

fter the initialization, the environment simulator generates one

pisode data for given batch time, T , with the actions obtained

rom the initialized actor network. Small noise terms are added to

he action variables for exploration. When the episode terminates,

he return value G for each time step is calculated and stored with

he corresponding state and action in the replay buffer R p for the

ime range of each phase p. This procedure is repeated for a given

umber of episodes L . Then, for a certain number of iterations

,N p data set is randomly sampled from each replay buffer R p , and

ased on this, the critic and actor networks are updated. The critic

etworks are updated by minimizing the critic’s loss which is the

ean squared error between the return value and the predicted Q

alue. The actor networks are also updated based on the same gra-

ient calculation as in DDPG, but target networks and bootstrap-

ing are not used. The learning performance of the DDPG algo-
5
ithm with MC and TD learning methods will be compared in the

nsuing case study.

. Case study

.1. Propylene oxide (PO) batch polymerization

To evaluate and illustrate the performance of the proposed MC-

DPG with phase segmentation strategy for batch process con-

rol, a polyether polyol process for polypropylene glycol produc-

ion is chosen as a case study. This process has significant non-

inear dynamics and involves both path and end constraints. The

onomer PO first reacts with the alkaline anion and then the

xy-propylene anion undertakes the propagation, followed by the

ation-exchange and proton-transfer reactions. A first-principles

ynamic model including the population balance equation of poly-

er chains and monomers and overall mass balance is reformu-

ated with the method-of-moments as shown in Eq. (4.3) for the

eactor simulation and NMPC calculation (Nie et al., 2013; Mastan

nd Zhu, 2015). The mathematical symbols are summarized in the

omenclature table at the end of this paper.

d(V [MX 0])

dt
= V k i [M][G 0] (4.3a)

d(V [MX 1])

dt
= V k i [M][G 0] + V k p MG 0 (4.3b)

d(V [MX 2])

dt
= V k i [M][G 0] + V k p [M](2 M G 1 + M G 0) (4.3c)

d(V [MY 0]) = V k i [M][Q 0] (4.3d)

dt

H. Yoo, B. Kim, J.W. Kim et al. Computers and Chemical Engineering 144 (2021) 107133

Table 2

End-point and path constraints in PO polymerization example.

End-point constraints

Final NAMW (NAMW) ≥3027.74 [g/mol]

Final Unsat. Value (USV) ≤0.02 [mmol/g polyol]

Final unreacted PO (Unrct) ≤2000 [ppm]

Path constraints

Heat removal duty ≤Allowed maximum cooling capacity:

r p (−
H p) − F (−
H f) ≤ UA (T − T w) /MW PO = 430[J/s]

Adiabatic end temperature ≤192 ◦C

s

b

i

m

(

T

i

p

a

t

b

i

a

Table 4

Reward for each phase.

Phase I: PO feeding phase Phase II: PO digestion phase

r = r path + r prod

if not terminal: r = r path

if terminal (t = 480): r = r end

s

i

w

t

i

f

s

s

v

i

b

4

M

c

a

X

u

p

P

p

t

(

f

b

o

t

T

w

s

(

t

i

c

a

t

d(V [MY 1])

dt
= V k i [M][Q 0] + V k p MQ 0 (4.3e)

d(V [MY 2])

dt
= V k i [M][Q 0] + V k p [M](2 M Q 1 + M Q 0) (4.3f)

d(V [X 0])

dt
= V (2 k h [W] − k i [G 0])[M] (4.3g)

d(V [Y 0])

dt
= −V k i [Q 0][M] + V k t n c [M] (4.3h)

d(V [M])

dt
= F − V { k h [W] + (k i − k p)([G 0] + [Q 0]) + (k p + k t) n c } [M] (4.3i)

d(V [W])

dt
= −V k h [W][M] (4.3j)

dm

dt
= F · MW PO (4.3k)

This reactor should be operated while satisfying two path con-

traints, one on the heat removal duty and the other on the adia-

atic end temperature. The product should satisfy the quality spec-

fication, i.e., the end-point constraints on the final number average

olecular weight (NAMW), the final unsaturated chains per mass

 USV), and the final concentration of unreacted monomer (Unrct).

he constraints are reported in Table 2 and other details are given

n Nie et al. (2013) . The manipulated variables are the reactor tem-

erature T (t) and the monomer (PO) feeding rate F (t) .

In this case study, the kinetic parameter of the propagation re-

ction A p which is one of the most critical parameters affecting

he polymerization progression is assumed to vary from batch to

atch according to a uniform distribution in the range of ±10% of

ts nominal value. The key reaction parameters, molecular weights

nd initial mass are reported in Table 3 . Total reaction time and
Table 3

Key model parameters (Jang et al., 2016; Jung et

Kinetic parameters (k r

Reaction (r) Hydrolysis (h) Initiation

A r [m

3 /mol · s] 8.64x10 4 3.964x10

E r [kJ/mol] 82.425 77.822

Heat capacity coefficients (c pi

A i B i

F eed (f) 53.347 0.51543

Bulk (b) 1.10 2 . 72 × 10 −

Mass param

H 2 O PO

MW [g/mol] 18.02 58.08

Initial mass [g] 0.6 5822

6
ampling interval are set as 480 min and 20 min, respectively, as

n the previous studies (Jung et al., 2015; Jang et al., 2016). At first,

e solved this problem with NMPC, which solves the dynamic op-

imization problem with a shrinking horizon (i.e. a horizon stretch-

ng from current time to the end of batch), to gather sample data

or the initial training of the actor-critic networks and to get in-

ights for the rewards design. Referring to the simulated NMPC re-

ults as well as the results found in the previous studies, we di-

ided this batch operation into two phases, the second phase start-

ng from the 400 min mark. Important features of each phase will

e addressed in the next section.

.2. RL problem formulation

To solve the problem with RL, it should be formulated as an

DP. With the assumption of perfect measurements, the 11 physi-

al variables in the model (Eq. (4.3)) are used as the state variables

nd time is also included (s = [t; MX 0 ; MX 1 ; MX 2 ; MY 0 ; MY 1 ; MY 2 ;
 0 ; Y 0 ; M; W ; m]). Action variables are the aforementioned manip-

lated variables (a = [T ; F]).

In this case study, a batch run is divided into two phases, de-

ending on the operating temperature and feeding rate profiles.

hase I covers from the start to the 400 min mark. During this

hase, the feed flow should be kept as high as possible in order

o achieve high productivity while satisfying the safety constraints

i.e., maintaining the reactor temperature low), so this will be re-

erred to as the ‘PO feeding phase’ . Phase II, which ensues, will

e referred to as the ‘PO digestion phase’ , because the reactor is

perated at a high temperature without further feeding in order

o achieve the end product quality by quick monomer digestion.

hus, the reward of Phase I is chosen as the summation of the re-

ards for satisfying the path constraints (r path) and for achieving

ufficient amount of products which is related to the productivity

 r prod) without regard to the end constraints. v in r prod is defined as

he total mass m in the reactor. Phase II must emphasize the sat-

sfaction of the end product quality specs without violating path

onstraints, so r path and r end are assigned to the non-terminal state

nd terminal state, respectively as shown in Table 4 . Hyperparame-

ers for the reward values of the constraints in Table 5 were tuned
 al., 2015).

= A r exp −E r /RT)

(i) Propagation (p) Transfer (t)

5 1.35x10 4 1.509x10 6

69.172 105.018

= A i + B i T + C i T
2 + D i T

3)

C i D i

 −1 . 8029 × 10 −3 2 . 7795 × 10 −6

3 0 0

eters

KOH Alcohol

56.11 92.09

36 178

H. Yoo, B. Kim, J.W. Kim et al. Computers and Chemical Engineering 144 (2021) 107133

Table 5

Hyperparameters for RL agent training.

Hyperparameter Value

γ 0.98

Total reaction time 480 min

Time step 20 min

Phase change (t 1) 400 min

Buffer size for phase 1 (R 1) 2400

Buffer size for phase 2 (R 2) 600

Minibatch size for phase 1 (N 1) 60

Minibatch size for phase 2 (N 2) 12

OU noise μ 0

OU noise θ 0.15

OU noise σ 0.2

Actor network (12, 40, 30, 2)

Activation function for the actor ReLU,Tanh

Critic network ((12, 30), (2, 30), 60, 30, 1)

Activation function for the critic ReLU

αpath 0.5

αend 1

α ′
end

0.5

s NAMW 1 / 1500

s USV 3100

s Unrct 1 / 3900

s v 0.715

s

a

4

a

f

−

T

E

s

p

I

B

c

d

T

f

r

t

i

(

f

u

d

v

t

p

(

n

t

w

(

a

5

s

Table 6

Performance results of the agent trained without the phase seg-

mentation for the three cases (∗: constraint violation).

� A p −10% Nominal + 10%

NAMW 3247.17 3599.38 3953.41 ≥3027.74

USV 0 . 0297 ∗ 0 . 0279 ∗ 0 . 0264 ∗ ≤0.02

Unrct 3 3 2 ≤2000

Total mass 797.67 797.64 797.63

r

w

t

D

t

l

i

p

w

a

h

5

a

a

p

w

n

s

u

c

o

t

f

t

i

g

l

t

w

t

t

5

M

i

a

w

u

t

t

l

w

p

g

w

n

a

o

f

t

o that the maximum reward or penalty values have similar orders

s other values during the training process.

.3. Training environment

To initialize the network weight parameters with reason-

ble values, the closed-loop system with NMPC was simulated

or 21 episodes to gather samples from the environment with

10 , −9 , . . . , +9 , +10% deviations from the nominal value of A p .

he objective function of NMPC in this case study is given by

q. (4.4) subject to the constraints in Table 2 . The problem was

olved by using the simultaneous approach with three collocation

oints (Biegler, 2007b) and for this, a python package PYOMO with

POPT solver was employed (Hart et al., 2011; 2017; Wächter and

iegler, 2006). These initial samples could be obtained using other

ontroller types, such as PID controllers or any existing operation

ata.

min

 t ,F t ,t∈ [0 , 480]
− m (t=480) + 0 . 0 0 01

∑

T 2 t +

∑

F 2 t (4.4)

Using the collected samples, the neural networks were trained

or 10 0 0 iterations by supervised learning to initialize the neu-

al network parameters before starting the RL agent training. Af-

er the initialization, we trained the resulting networks further us-

ng the proposed MC-DDPG algorithm for 2500 additional episodes

 L = 2500 in Algorithm 2) with the value of A p randomly sampled

rom the uniform distribution of ±10% of its nominal value. This

ncertain parameter is held constant over each episode but up-

ated after each episode. We set the number of episodes to pro-

ide enough episodes for the critic loss value and the total rewards

o converge. We used Ornstein-Uhlenbeck (OU) process to sam-

le the noise ν for constructing the exploration part of the policy

 Uhlenbeck and Ornstein, 1930; Lillicrap et al., 2016). For the actor

etworks, ReLU and tanh activation functions were used, and for

he critic networks, ReLU was used. To train the neural networks,

e employed the deep neural network training package PyTorch

 Paszke et al., 2017) in Python. Discount factor γ was set as 0.98

nd other hyperparameters used are summarized in Table 5 .

. Results & discussion

To demonstrate the benefit of using the suggested reward de-

ign strategy with phase segmentation and the MC-DDPG algo-
7
ithm, we compare 1) the results of the agent trained with and

ithout the phase segmentation, 2) the learning performance of

he agents using the MC-DDPG and the conventional DDPG (TD-

DPG), and 3) the control performances of the agent trained with

he MC-DDPG algorithm, the agent initialized by the supervised

earning with the NMPC closed-loop data (i.e., imitation learn-

ng), and NMPC. Furthermore, we discuss the reason for less-than-

erfect performance of the proposed approach, and suggest some

ays to further improve its performance. In addition, sensitivity

nalysis with respect to the phase segmentation point and to the

yperparameters are conducted.

.1. Phase segmentation

For applying the phase segmentation approach, two pairs of

ctor-critic networks were trained with the respective rewards

s explained in Section 4.2 . On the other hand, without the

hase segmentation approach, one pair of actor-critic networks

as trained with the sum of r path and r prod as the reward of the

on-terminal states, and the r end of the terminal state was de-

igned the same as in Section 4.2 . Their performances (i.e. end val-

es of NAMW, U SV , Unrct, and total mass) was evaluated for the

ases of −10, 0, and +10% perturbations in A p .

As shown in Fig. 2 a, the action profile of the actor trained with-

ut the phase segmentation converged to an unreasonable trajec-

ory which leads to a small amount of the product with unsatis-

actory quality for all cases (see Table 6). This actor which failed

o learn a good policy suggested a low temperature and zero feed-

ng rate except for the first decision. Note that, in this case study,

ood performance would be achieved by a high feeding rate with a

ow temperature during Phase I and a low feeding rate with a high

emperature during Phase II. Fig. 2 b shows that the agent trained

ith the phase segmentation approach was able to give good ac-

ion profiles, fully reflecting the aforementioned phase characteris-

ics.

.2. TD-DDPG vs MC-DDPG

To compare the learning performances of the TD-DDPG and

C-DDPG algorithms, we trained the agents in the same train-

ng environment. For a fair comparison, the phase segmentation

pproach was applied to the both algorithms with the same re-

ard functions as in Section 4.2 , and the same initial data were

sed for the initialization as in Section 4.3 . Fig. 3 shows the to-

al (cumulative) rewards of each episode (
∑ T

t=0 r t)) resulting from

he two algorithms as the training proceeds. This value is getting

ower with TD-DDPG which means the agent is being trained to-

ard a wrong direction, due to the bootstrapping. As mentioned

reviously, when the critic network is updated with inaccurate tar-

et values through bootstrapping, the actor can also be updated

ith gradients of wrong directions based on the erroneous critic

etworks. The resulting actor policy can then lead the training to

 wrong space and the actor cannot get the training process out

f this situation, especially with a deterministic actor which per-

orms limited exploration with a small noise term. Furthermore,

he reason why the bootstrapping can be fatal in the case of batch

H. Yoo, B. Kim, J.W. Kim et al. Computers and Chemical Engineering 144 (2021) 107133

Fig. 2. Action profiles given by the actor trained (a) without the phase segmentation and (b) with phase segmentation. The actor trained without the phase segmentation

failed to learn the phase characteristics reflected policy.

Fig. 3. Learning curves of (a) TD-DDPG and (b) MC-DDPG. The agent trained with TD-DDPG diverged toward a lower reward, but the agent trained with MC-DDPG converged

to the maximum possible total reward.

Table 7

Performance results of (a) NMPC, (b) Imitation learning, and (c)

MC-DDPG for three cases (∗: constraint violation).

(a) eNMPC

� A p −10% Nominal + 10%

NAMW 3158.95 3866.70 4680.56 ≥3027.74

USV 0 . 0204 ∗ 0.0200 0.0198 ≤0.02

Unrct 24 4 4 . 77 ∗ 1974.27 1612.73 ≤2000

Total mass 5555.16 6955.77 7839.42

(b) Imitation learning

� A p −10% Nominal + 10%

NAMW 3634.79 3654.19 3669.74 ≥3027.74

USV 0 . 0228 ∗ 0 . 0205 ∗ 0.0187 ≤0.02

Unrct 11077 ∗ 8675 ∗ 7077 ∗ ≤2000

Total mass 6941.19 6944.61 6947.64

(c) Reinforcement learning (MC-DDPG)

� A p −10% Nominal + 10%

NAMW 3044.69 3059.14 3071.22 ≥3027.74

USV 0 . 0214 ∗ 0.0192 0.0174 ≤0.02

Unrct 1898 1094 635 ≤2000

Total mass 5798.88 5808.77 5817.14

p

i

t

a

d

5

r

t

p

s

N

w

s

t

a

w

l

i

o

T

l

n

n

i

t

s

u

r

c

o

l

l

t

p

c

c

c

p

b

t

f

d

I

t

U

rocess control is because the high bias in the TD based learning is

nappropriate for the irreversible environment like the polymeriza-

ion process. Meanwhile, the learning curve of MC-DDPG gradually

rrives at a high value indicating that the agent is trained to the

irection of maximizing the total reward.

.3. Control performance comparison

The developed RL based controller with the MC-DDPG algo-

ithm and phase segmentation approach, the NMPC controller, and

he controller from the imitation learning were tested on the three

arameter perturbation cases as in Section 5.1 , and the results are

ummarized in Fig. 4 and Table 7 . As shown in Fig. 4 a and b, the

MPC controller gives the profiles of the feeding rate which vary
8
ith the perturbation in A p , and violations of the both path con-

traints are observed, especially the upper limit on the adiabatic

emperature. NMPC with an economic objective typically oper-

tes the system very close to boundaries of its constraints. Hence,

hen the environment has significant uncertainty, constraint vio-

ations become inevitable due to the inaccurate predictions used

n the NMPC calculations. All the end-point constraints are also vi-

lated in the case of the −10% perturbation in A p as reported in

able 7 a.

The performances of the agent trained by using the imitation

earning are shown in Fig. 4 c, d and Table 7 b. The policy gives

early the same profile for the three cases and this policy does

ot fully satisfy the path and end-point constraints either. This

s because the actor of this agent was updated to closely mimic

he sub-optimal controller’s behavior without considering the con-

traint satisfaction.

From this initialized neural networks, the agent was trained by

sing the MC-DDPG algorithm and its performance results are rep-

esented in Fig. 4 e, f and Table 7 c. The resulting agent provides

onsistent action profiles despite the perturbations in A p , and also

utperforms the NMPC controller and the controller with imitation

earning in terms of satisfying the required constraints. Slight vio-

ations occur only in the case of the −10% perturbation in A p for

he path constraint on the adiabatic end temperature and the end-

oint constraint on the final unsaturated value (USV). Of course,

onstraint satisfactions require a sacrifice on the productivity be-

ause an excessively high reactor temperature violating the safety

onstraints would be unavoidable if we try to produce qualified

roducts from more monomers within given batch time.

To analyze the constraint violations seen with the −10% pertur-

ation in A p , we conducted the deterministic dynamic optimiza-

ion for that case. Fig. 5 shows the resulting input profiles: The

eeding step is finished one step earlier (380 min) than the pre-

etermined segmentation point in time (400 min) in Section 4.2 .

n this regard, we can deduce that the predetermined reaction

ime of Phase II was not sufficient to satisfy the end constraint on

SV in the case of the −10% perturbation in A p . Thus, we should

H. Yoo, B. Kim, J.W. Kim et al. Computers and Chemical Engineering 144 (2021) 107133

Fig. 4. (a) Action profiles of NMPC. (b) Path constraints in NMPC. (c) Action profiles of imitation learning. (d) Path constraints in imitation learning. (e) Action profiles of

MC-DDPG. (f) Path constraints in MC-DDPG.

Fig. 5. Dynamic optimization result in the case of −10% perturbation in A p .

d

t

5

p

d

i

m

l

Table 8

End-point constraint results for the agent trained with a different

phase duration (∗: constraint violation).

� A p −10% Nominal + 10%

NAMW 3226.67 3234.60 3241.63 ≥3027.74

USV 0 . 0248 ∗ 0 . 0219 ∗ 0.0197 ≤0.02

Unrct 68 27 11 ≤2000

Total mass 6162.93 6162.81 6162.67

c

p

t

c

−
w

w

c

w

i

R

a

5

w

evelop a method to employ more flexible phase segmentation and

his will be left for future work.

.4. Sensitivity analysis of phase segmentation

Determining the time duration for each phase requires prior

hysical knowledge or engineer’s insights and it can sometimes be

ifficult to choose a proper phase segmentation point. To see the

mpact of choosing an erroneous segmentation point on the opti-

ality of the control policy, we trained the RL agent with phase I

asting longer by 1-time step (t = 420 min) than in the previous
1

9
ase (t 1 = 400 min). As shown in Fig. 6 and Table 8 , the resulting

olicy violates the path constraint on the adiabatic end tempera-

ure in the case of the −10% perturbation in A p and the end-point

onstraint on the final unsaturated value (USV) in the cases of the

10% and nominal cases. The control performance is also a little

orse than in the previous case, but the phase characteristics are

ell reflected. If the performance of a converged policy is not suffi-

ient, adjusting the phase segmentation point would be a potential

ay to improve the policy. However, this approach has limitations

n that it still requires prior knowledge. To address this problem, an

L algorithm that can determine the phase segmentation point(s)

utomatically should be developed in future works.

.5. Sensitivity analysis of reward hyperparameter

Determining the hyperparameter values associated with the re-

ard and penalty is as important as designing appropriate reward

H. Yoo, B. Kim, J.W. Kim et al. Computers and Chemical Engineering 144 (2021) 107133

Fig. 6. (a) Action profiles and (b) Path constraints of the agent trained with a different phase duration.

Fig. 7. (a) Action profiles and (b) Path constraints of the agents with three different αpath values.

Table 9

End-point constraint results for different values of αpath (∗: con-

straint violation).

αpath 0.1 0.5 1.0

NAMW 5736.13 3044.69 3279.10 ≥3027.74

USV 0 . 0233 ∗ 0 . 0214 ∗ 0 . 0203 ∗ ≤0.02

Unrct 26699 ∗ 1898 38692 ∗ ≤2000

Total mass 11830.60 5798.88 6443.26

f

r

i

u

(

s

b

t

b

h

a

t

a

l

h

r

t

i

v

t

t

o

t

6

p

e

p

a

h

b

p

s

i

N

R

a

i

i

t

d

p

o

t

d

e

t

d

D

C

-

J

S

A

m

(

d

unctions. The suggested reward functions contain several hyperpa-

ameters which should be carefully decided to achieve good train-

ng performance. To show its effect on the training, three αpath val-

es of 0.1, 0.5 (original), and 1.0 were used for the agents training

under the same training environment as in Section 4.3). The re-

ulting three agents were tested for the case of the −10% pertur-

ation in A p as shown in Fig. 7 and Table 9 . When αpath was set

o a lower value (i.e. 0.1), the path constraints were violated more

ecause the reward or penalty for satisfying the path constraints

ad less impact on the total reward. When the αpath was set to

 higher value (i.e., 1.0), the path constraints were satisfied, but

he reactor temperature converged to a lower value which led to

 violation of the end constraints. For a highly nonlinear process

ike this polymerization process, the hyperparameters often do not

ave linear relationships with the training performance, and the

atios between the hyperparameters may be critical. In addition,

he discontinuous reward function can result in a high sensitiv-

ty of the controller to the hyperparameter values. For more con-

enient design and training of the RL controllers, it is important

o have a systematic way to address the sensitivity with respect

o the choice of these hyperparameter values. For this, adaptation

f these hyperparameters during training is a promising route and

his will be addressed in our future work.

. Conclusion

An RL based batch process control strategy was proposed, with

articular attention given to the design of the reward to prop-

rly reflect the process’s economic performance and (path/end-

oint) constraint satisfaction. In addition, the phase segmentation
10
pproach and the Monte-Carlo DDPG algorithm were suggested to

andle the non-stationary and irreversible characteristics of most

atch processes. The suggested RL strategy was tested on a batch

olymerization example and the beneficial effects of the phase

egmentation and the MC modification of DDPG on the train-

ng and control performance were observed. Comparing with the

MPC controller and the agent trained by imitation learning, the

L-based controller showed enhanced ability to satisfy the path

nd end-point constraints in the presence of parameter errors. The

mpact of the choice of phase segmentation point on the optimal-

ty was discussed by training the agent with different phase dura-

ions. The importance of determining proper hyperparameters was

iscussed with sensitivity analysis of the reward/penalty value. The

roposed approach and algorithm can be applied to other batch

r semi-batch process (e.g. bio-reactor) problems, especially those

hat have significant uncertainties and irreversible and nonlinear

ynamics. For future work, the RL based control method will be

xtended to allow for more flexible phase segmentation and batch

ime adjustment and to systematically vary the hyperparameters

uring training for more intuitive and reliable learning.

eclaration of Competing Interest

The authors declare no conflict of interest.

RediT authorship contribution statement

Haeun Yoo: Conceptualization, Methodology, Software, Writing

 original draft. Boeun Kim: Validation, Writing - review & editing.

ong Woo Kim: Resources, Writing - review & editing. Jay H. Lee:

upervision, Writing - review & editing.

cknowledgement

This research was supported by Korea Institute for Advance-

ent of Technology (KIAT) grant funded by the Korea Government

MOTIE) (P0 0 08475, The Competency Development Program for In-

ustry Specialist).

H. Yoo, B. Kim, J.W. Kim et al. Computers and Chemical Engineering 144 (2021) 107133

R

A

B

B

B

B

C

E

F

H

H

H

J

J

K

L

L

L

L

L

M

M

M

M

M

M

N

P

P

P

P

P

Q

R

S

S

S

S

S

S

T

T

T

U

W

W

eferences

bel, O. , Helbig, A. , Marquardt, W. , Zwick, H. , Daszkowski, T. , 20 0 0. Productivity op-

timization of an industrial semi-batch polymerization reactor under safety con-

straints. J. Process Control 10 (4), 351–362 .
arton, P.I. , Allgor, R.J. , Feehery, W.F. , Galán, S. , 1998. Dynamic optimization in a

discontinuous world. Ind. Eng. Chem. Res. 37 (3), 966–981 .
iegler, L.T. , 2007. An overview of simultaneous strategies for dynamic optimization.

Chem. Eng. Process. 46 (11), 1043–1053 .
iegler, L.T. , 2007. An overview of simultaneous strategies for dynamic optimization.

Chem. Eng. Process. 46 (11), 1043–1053 .

onvin, D. , Srinivasan, B. , Ruppen, D. , 2001. Dynamic Optimization in the Batch
Chemical Industry. Technical Report .

hang, L. , Liu, X. , Henson, M.A. , 2016. Nonlinear model predictive control of fed–
batch fermentations using dynamic flux balance models. J. Process Control 42,

137–149 .
llis, M. , Durand, H. , Christofides, P.D. , 2014. A tutorial review of economic model

predictive control methods. J. Process Control 24 (8), 1156–1178 .
ujimoto, S. , Van Hoof, H. , Meger, D. , 2018. Addressing function approximation error

in actor-critic methods. In: 35th International Conference on Machine Learning,

ICML 2018, vol. 4, pp. 2587–2601 .
art, W.E. , Laird, C.D. , Watson, J.-P. , Woodruff, D.L. , Hackebeil, G.A. , Nicholson, B.L. ,

Siirola, J.D. , 2017. Pyomo–optimization modeling in Python, vol. 67, second ed.
Springer Science & Business Media .

art, W.E. , Watson, J.-P. , Woodruff, D.L. , 2011. Pyomo: modeling and solving mathe-
matical programs in Python. Math. Program. Comput. 3 (3), 219–260 .

ausknecht, M., Stone, P., 2015. Deep reinforcement learning in parameterized ac-

tion space. arXiv preprint arXiv:1511.04143 .
ang, H., Lee, J.H., Biegler, L.T., 2016. A robust NMPC scheme for semi-batch poly-

merization reactors. IFAC-PapersOnLine 49 (7), 37–42. doi: 10.1016/j.ifacol.2016.
07.213 .

ung, T.Y., Nie, Y., Lee, J.H., Biegler, L.T., 2015. Model-based on-line optimization
framework for semi-batch polymerization reactors. IFAC-PapersOnLine 28 (8),

164–169. doi: 10.1016/j.ifacol.2015.08.175 .

im, J.W. , Park, B.J. , Yoo, H. , Oh, T.H. , Lee, J.H. , Lee, J.M. , 2020. A model-based deep
reinforcement learning method applied to finite-horizon optimal control of non-

linear control-affine system. J. Process Control 87, 166–178 .
ee, J.H. , Yu, Z. , 1997. Worst-case formulations of model predictive control for sys-

tems with bounded parameters. Automatica 33 (5), 763–781 .
ee, J.M., Lee, J.H., 2005. Approximate dynamic programming-based approaches

for input-output data-driven control of nonlinear processes. Automatica 41 (7),

1281–1288. doi: 10.1016/j.automatica.20 05.02.0 06 .
illicrap, T.P. , Hunt, J.J. , Pritzel, A. , Heess, N. , Erez, T. , Tassa, Y. , Silver, D. , Wierstra, D. ,

2016. Continuous control with deep reinforcement learning. In: Conference Pa-
per at ICLR 2016 .

ucia, S. , Andersson, J.A. , Brandt, H. , Diehl, M. , Engell, S. , 2014. Handling uncertainty
in economic nonlinear model predictive control: a comparative case study. J.

Process Control 24 (8), 1247–1259 .

ucia, S. , Finkler, T. , Engell, S. , 2013. Multi-stage nonlinear model predictive con-
trol applied to a semi-batch polymerization reactor under uncertainty. J. Process

Control 23 (9), 1306–1319 .
artinez, E.C., 1998. Learning to control the performance of batch processes. Chem.

Eng. Res. Des. 76 (6 A6), 711–722. doi: 10.1205/026387698525414 .
astan, E., Zhu, S., 2015. Method of moments: a versatile tool for deterministic

modeling of polymerization kinetics. Eur. Polym. J. 68, 139–160. doi: 10.1016/j.

eurpolymj.2015.04.018 .
ayne, D. , 20 0 0. Nonlinear model predictive control: challenges and opportunities.

In: Nonlinear Model Predictive Control. Springer, pp. 23–44 .
ayne, D.Q. , Kerrigan, E.C. , Van Wyk, E. , Falugi, P. , 2011. Tube-based robust

nonlinear model predictive control. Int. J. Robust Nonlinear Control 21 (11),
1341–1353 .
11
nih, V., Kavukcuoglu, K., Silver, D., Rusu, A .A ., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C.,

Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hass-
abis, D., 2015. Human-level control through deep reinforcement learning. Na-

ture 518 (7540), 529–533. doi: 10.1038/nature14236 .
orari, M., H. Lee, J., 1999. Model predictive control: past, present and future. Com-

put. Chem. Eng. 23 (4–5), 667–682. doi: 10.1016/S0098-1354(98)00301-9 .
ie, Y., Biegler, L.T., Villa, C.M., Wassick, J.M., 2013. Reactor modeling and recipe

optimization of polyether polyol processes: polypropylene glycol. AlChE J. 59

(7), 2515–2529. doi: 10.1002/aic.14144 .
aszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmai-

son, A., Antiga, L., Lerer, A., 2017. Automatic differentiation in PyTorch. NIPS
2017 Workshop Autodiff Submission doi: 10.1145/24680.24681 .

aulson, J.A. , Mesbah, A. , 2018. Nonlinear model predictive control with explicit
backoffs for stochastic systems under arbitrary uncertainty. IFAC-PapersOnLine

51 (20), 523–534 .

eroni, C.V. , Kaisare, N.S. , Lee, J.H. , 2005. Optimal control of a fed-batch bioreactor
using simulation-based approximate dynamic programming. IEEE Trans. Control

Syst. Technol. 13 (5), 786–790 .
etsagkourakis, P. , Sandoval, I.O. , Bradford, E. , Zhang, D. , del Rio-Chanona, E.A. , 2020.

Reinforcement learning for batch bioprocess optimization. Comput. Chem. Eng.
133, 106649 .

uterman, M.L. , 2014. Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. John Wiley & Sons .
in, S.J. , Badgwell, T.A. , 20 0 0. An overview of nonlinear model predictive control

applications. In: Nonlinear Model Predictive Control. Springer, pp. 369–392 .
awlings, J.B. , Amrit, R. , 2009. Optimizing process economic performance using

model predictive control. In: Nonlinear Model Predictive Control. Springer,
pp. 119–138 .

antos, T.L. , Bonzanini, A .D. , Heirung, T.A .N. , Mesbah, A . , 2019. A constraint-tight-

ening approach to nonlinear model predictive control with chance constraints
for stochastic systems. In: 2019 American Control Conference (ACC). IEEE,

pp. 1641–1647 .
ilver, D. , Huang, A. , Maddison, C.J. , Guez, A. , Sifre, L. , Van Den Driessche, G. , Schrit-

twieser, J. , Antonoglou, I. , Panneershelvam, V. , Lanctot, M. , et al. , 2016. Mastering
the game of go with deep neural networks and tree search. Nature 529 (7587),

484 .

ilver, D. , Lever, G. , Heess, N. , Degris, T. , Wierstra, D. , Riedmiller, M. , 2014. Deter-
ministic policy gradient algorithms .

pielberg, S. , Tulsyan, A. , Lawrence, N.P. , Loewen, P.D. , Bhushan Gopaluni, R. , 2019.
Toward self-driving processes: a deep reinforcement learning approach to con-

trol. AlChE J. 65 (10), e16689 .
utton, R.S. , Barto, A.G. , 2018. Reinforcement Learning: An Introduction. The MIT

Press .

utton, R.S. , McAllester, D.A. , Singh, S.P. , Mansour, Y. , 20 0 0. Policy gradient methods
for reinforcement learning with function approximation. In: Advances in Neural

Information Processing Systems, pp. 1057–1063 .
hangavel, S. , Lucia, S. , Paulen, R. , Engell, S. , 2018. Dual robust nonlinear model pre-

dictive control: amulti-stage approach. J. Process Control 72, 39–51 .
sitsiklis, J.N. , Roy, B.V. , 20 0 0. Analysis of temporal-difference learning with function

approximation. J. Adv. Neural Inf.Process. Syst. (1988) .
sitsiklis, J.N. , Van Roy, B. , 1997. Analysis of temporal-difference learning with func-

tion approximation. In: Advances in Neural Information Processing Systems,

pp. 1075–1081 .
hlenbeck, G.E. , Ornstein, L.S. , 1930. On the theory of the brownian motion. Phys.

Rev. 36 (5), 823 .
ächter, A. , Biegler, L.T. , 2006. On the implementation of an interior-point filter

line-search algorithm for large-scale nonlinear programming. Math. Program.
106 (1), 25–57 .

ilson, J.A., Martinez, E.C., 1997. Neuro-fuzzy modeling and control of a batch pro-

cess involving simultaneous reaction and distillation. Comput. Chem. Eng. 21
(SUPPL.1). doi: 10.1016/s0098- 1354(97)87671- 5 .

http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0001
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0001
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0001
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0001
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0001
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0001
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0002
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0002
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0002
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0002
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0002
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0003
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0003
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0004
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0004
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0005
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0005
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0005
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0005
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0006
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0006
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0006
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0006
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0007
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0007
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0007
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0007
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0008
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0008
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0008
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0008
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0009
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0009
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0009
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0009
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0009
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0009
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0009
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0009
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0010
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0010
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0010
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0010
http://arxiv.org/abs/1511.04143
https://doi.org/10.1016/j.ifacol.2016.07.213
https://doi.org/10.1016/j.ifacol.2015.08.175
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0014
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0014
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0014
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0014
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0014
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0014
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0014
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0015
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0015
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0015
https://doi.org/10.1016/j.automatica.2005.02.006
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0017
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0017
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0017
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0017
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0017
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0017
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0017
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0017
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0017
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0018
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0018
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0018
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0018
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0018
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0018
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0019
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0019
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0019
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0019
https://doi.org/10.1205/026387698525414
https://doi.org/10.1016/j.eurpolymj.2015.04.018
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0022
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0022
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0023
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0023
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0023
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0023
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0023
https://doi.org/10.1038/nature14236
https://doi.org/10.1016/S0098-1354(98)00301-9
https://doi.org/10.1002/aic.14144
https://doi.org/10.1145/24680.24681
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0028
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0028
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0028
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0029
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0029
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0029
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0029
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0030
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0030
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0030
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0030
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0030
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0030
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0031
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0031
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0032
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0032
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0032
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0033
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0033
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0033
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0034
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0034
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0034
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0034
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0034
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0035
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0035
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0035
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0035
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0035
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0035
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0035
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0035
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0035
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0035
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0035
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0035
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0036
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0036
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0036
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0036
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0036
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0036
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0036
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0037
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0037
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0037
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0037
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0037
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0037
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0038
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0038
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0038
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0039
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0039
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0039
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0039
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0039
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0040
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0040
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0040
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0040
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0040
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0041
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0041
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0041
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0042
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0042
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0042
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0043
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0043
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0043
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0044
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0044
http://refhub.elsevier.com/S0098-1354(20)30791-2/sbref0044
https://doi.org/10.1016/s0098-1354(97)87671-5

	Reinforcement learning based optimal control of batch processes using Monte-Carlo deep deterministic policy gradient with phase segmentation
	1 Introduction
	2 Preliminaries
	2.1 MPC and RL
	2.2 MC and TD learning
	2.3 Deep deterministic policy gradient (DDPG) algorithm

	3 RL based batch process control strategy
	3.1 Reward design
	3.2 Phase segmentation
	3.3 Monte-Carlo DDPG (MC-DDPG)

	4 Case study
	4.1 Propylene oxide (PO) batch polymerization
	4.2 RL problem formulation
	4.3 Training environment

	5 Results & discussion
	5.1 Phase segmentation
	5.2 TD-DDPG vs MC-DDPG
	5.3 Control performance comparison
	5.4 Sensitivity analysis of phase segmentation
	5.5 Sensitivity analysis of reward hyperparameter

	6 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgement
	References

