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Abstract. According to Suk’s breakthrough result on the Erdős–Szekeres problem, any point set
in general position in the plane, which has no n elements that form the vertex set of a convex n-gon,
has at most 2n+O(n2/3 log n) points. We strengthen this theorem in two ways. First, we show that the
result generalizes to convexity structures induced by pseudoline arrangements. Second, we improve
the error term.

A family of n convex bodies in the plane is said to be in convex position if the convex hull
of the union of no n − 1 of its members contains the remaining one. If any three members are
in convex position, we say that the family is in general position. Combining our results with a
theorem of Dobbins, Holmsen, and Hubard, we significantly improve the best known upper bounds
on the following two functions, introduced by Bisztriczky and Fejes Tóth and by Pach and Tóth,
respectively. Let c(n) (and c′(n)) denote the smallest positive integer N with the property that any
family of N pairwise disjoint convex bodies in general position (resp., N convex bodies in general
position, any pair of which share at most two boundary points) has an n-member subfamily in
convex position. We show that c(n) ≤ c′(n) ≤ 2n+O(

√
n log n).

Keywords. Erdős–Szekeres conjecture, arrangements of pseudolines

1. Introduction

We say that a set of n points in the plane is in convex position if the convex hull of no
n − 1 of them contains the n-th point. If no three elements of the set are collinear (that
is, any three points are in convex position), then the set is said to be in general position.
According to a classical conjecture of Erdős and Szekeres [7], if P is a set of points in
general position in the plane with |P | ≥ 2n−2

+ 1, then it has n elements in convex
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Fig. 1. A pseudoconfiguration of four points with the convex hull shaded.

position. This bound, if true, cannot be improved [8]. In a recent breakthrough, Suk [19]
came close to proving the conjectured bound.

Theorem 1.1 (Suk, 2017). Given any integer n ≥ 3, let e(n) denote the smallest number
with the property that every family of at least e(n) points in general position in the plane
has n elements in convex position. Then

e(n) ≤ 2n+O(n2/3 log n).

Pseudoconfigurations. A set of simple continuous curves in the Euclidean plane that
start and end “at infinity” is called an arrangement of pseudolines if any two of them
meet in precisely one point: at a proper crossing. A pseudoconfiguration is a finite set P

of points in the Euclidean plane such that each pair of distinct points p and q in P span
a unique pseudoline, denoted by `(p, q), such that L(P ) = {`(p, q) : p, q ∈ P, p 6= q}

form a pseudoline arrangement and for any p, q ∈ P , p 6= q we have `(p, q) = `(q, p)

and `(p, q) ∩ P = {p, q}; see [10].
This underlying pseudoline arrangement induces a convexity structure on the point

configuration in a natural way. For any pair of points p, q ∈ P , the bounded portion of
`(p, q) between p and q is called the pseudosegment connecting p and q. If we delete
from the plane all pseudosegments between the elements of P , the plane is divided into
a number of connected components, precisely one of which is unbounded. The convex
hull of the configuration is defined as the complement of the unbounded region, and is
denoted by conv P . We say that a subset Q ⊆ P is in convex position if no point p ∈ Q

is in the convex hull of Q \ {p}.1

1 Pseudoconfigurations also have a purely combinatorial characterization. They can be defined
by several equivalent systems of axioms. Other names for pseudoconfigurations that can be found
in the literature are generalized configurations [10], uniform rank 3 acyclic oriented matroids [4],
and CC-systems [13].
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It turns out that for four points there are only two combinatorially distinct pseudocon-
figurations and both can be obtained from straight lines, but for five or more points there
exist pseudoconfigurations that are not realizable by straight lines. Still, the number of
possible pseudoconfigurations on five points is finite and we will leave the verification of
some simple statements about at most five points in a pseudoconfiguration to the reader.
(This applies in particular to Observations 2.2 and 2.3 below.)

Many basic theorems of convexity hold in this more general setting. For instance, a
set of points is in convex position if and only if any four of its elements are in convex
position [5]. This is Carathéodory’s theorem in the plane.

Goodman and Pollack [11] proposed the generalization of the Erdős–Szekeres prob-
lem to pseudoconfigurations. The original “cup-cap” proof due to Erdős and Szekeres [7]
readily generalizes to this setting:

Theorem 1.2. Let P be a pseudoconfiguration. If |P | ≥ 4n, then P contains an n-
element subset in convex position.

The purpose of this note is to show that Suk’s breakthrough result, Theorem 1.1, carries
over to pseudoconfigurations. In the process we also improve on the error term.

Theorem 1.3. Given any n ≥ 3, let b(n) denote the smallest number such that every
pseudoconfiguration of size at least b(n) has n members in convex position. Then

b(n) ≤ 2n+O(
√

n log n).

Clearly, b(n) ≥ e(n) for all n, thus our result also bounds the function e(n) defined for
the original Erdős–Szekeres problem (cf. Theorem 1.1).

Remark 1.4. In our proof of Theorem 1.3, for the sake of clarity, we do not focus on the
constant in the error term in the bound on b(n). However, with a less wasteful calculation
(given at the end of the paper) we obtain the bound

b(n) ≤ 2n+(8
√

2/3+o(1))
√

n log n.

Families of convex bodies. Bisztriczky and G. Fejes Tóth [2, 3] gave another (seemingly
unrelated) generalization of the Erdős–Szekeres problem in 1989 by replacing point sets
with families of pairwise disjoint convex bodies. They defined n convex bodies to be in
convex position if the convex hull of no n− 1 of them contains the remaining one. If any
three members of a family of convex bodies are in convex position, then the family is
in general position. In their pioneering paper, Bisztriczky and Fejes Tóth proved that for
any n ≥ 3, there exists a smallest integer c(n) with the following property. If F is a fam-
ily of pairwise disjoint convex bodies in general position in the plane with |F | ≥ c(n),
then it has n members in convex position. They conjectured that c(n) = e(n). The first
singly-exponential upper bound on c(n) was established by Pach and Tóth [16]. They ex-
tended the statement to families of pairwise noncrossing convex bodies, that is, to convex
bodies that may intersect, but any pair can share at most two boundary points [17]. This
assumption is necessary.



3984 Andreas F. Holmsen et al.

Theorem 1.5 (Pach–Tóth, 2000). For any integer n ≥ 3, there exists a smallest num-
ber c′(n) with the following property. Any family of at least c′(n) pairwise noncrossing
convex bodies in general position in the plane has n members in convex position.

Clearly, c′(n) ≥ c(n) ≥ e(n) for every n. The original upper bound on c′(n) was subse-
quently improved by Hubard, Montejano, Mora, and Suk [12] and by Fox, Pach, Sudakov,
and Suk [9] to 2O(n2 log n), and later by Dobbins, Holmsen, and Hubard [6] to 4n. More
importantly from our point of view, they showed that there is an intimate relationship be-
tween the generalizations of the Erdős–Szekeres problem to noncrossing convex bodies
and to pseudoconfigurations. The following is the union of Lemmas 2.4 and 2.7 in their
paper.

Theorem 1.6 (Dobbins–Holmsen–Hubard, 2014). Let F be a family of pairwise non-
crossing convex bodies in general position in the plane. There exists a pseudoconfigura-
tion P and a bijection ϕ : P → F such that for any subset S ⊆ P which is in convex
position, the subfamily ϕ(S) is also in convex position.

It follows from this result that c′(n) ≤ b(n) for all n. (In fact, it was shown in [6] that
c′(n) = b(n) for all n ≥ 3.) In view of this, Theorem 1.3 immediately implies the follow-
ing.

Theorem 1.7. Given any n ≥ 3, let c′(n) denote the smallest number such that every
family of at least c′(n) pairwise noncrossing convex bodies in general position in the
plane has n members in convex position. Then

c′(n) ≤ 2n+O(
√

n log n).

Here is a summary of the known bounds on the various functions discussed above:

2n−2
+ 1 ≤ e(n) ≤ c(n) ≤ c′(n) = b(n) ≤ 2n+O(

√
n log n).

(Note that none of the inequalities are known to be strict.)
The rest of this note is organized as follows. After highlighting two auxiliary results

in Section 2, we present the proof of Theorem 1.3 in Section 3. In the end of Section 3
we show how to optimize the constant appearing in the error term.

2. Auxiliary results

To follow Suk’s line of argument, we recall two results needed for the proof: a com-
binatorial version of the “cup-cap” theorem (Theorem 2.1) and a variant of a positive
fraction Erdős–Szekeres theorem [1] (Theorem 2.4). For future reference, we also collect
some simple observations on pseudoconfigurations in convex position (Observations 2.2
and 2.3).
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Transitive colorings. Let S be a finite set with a given linear ordering ≺, and suppose
the ordered triples si ≺ sj ≺ sk are partitioned into two parts T1 ∪ T2. This partition is
called a transitive coloring if any s1 ≺ s2 ≺ s3 ≺ s4 in S and i ∈ {1, 2} satisfy

(s1, s2, s3), (s2, s3, s4) ∈ Ti =⇒ (s1, s2, s4), (s1, s3, s4) ∈ Ti .

Transitive colorings were introduced in [9] and [12]. The following statement can be
proved in precisely the same way as the “cup-cap” theorem; see [14] for an alternative
proof.

Theorem 2.1 ([9, 12]). Let S be a finite set with a given linear ordering and let T1 ∪ T2
be a transitive coloring of the triples of S. If

|S| >

(
k + l − 4

k − 2

)
, (2.1)

then there exists a k-element subset S1 ⊆ S such that every triple of S1 is in T1, or there
exists an l-element subset S2 ⊆ S such that every triple of S2 is in T2.

Convex hulls of pseudoconfigurations. Below we collect a few simple observations on
the convexity structure of pseudoconfigurations. These statements are trivial for the usual
notion of convexity, and easy to prove in this more general context.

Observation 2.2. Let P be a pseudoconfiguration.

(i) The convex hull is a monotone operation. That is, for any X ⊆ Y ⊆ P , we have
conv X ⊆ conv Y .

(ii) conv X is a simply connected closed set, for any X ⊆ P .
(iii) If X ⊆ P is in convex position, then all points of X appear on the boundary of

conv X.
(iv) Let k ≥ 3, and assume that X = {x1, . . . , xk} ⊆ P is in convex position, where the

points xi appear on the boundary of conv X in this cyclic order. Then the boundary
of conv X is the union of the pseudosegments conv {xi, xi+1} for 1 ≤ i ≤ k. Further-
more, for each i, the pseudoline `(xi, xi+1) intersects conv X in the pseudosegment
conv {xi, xi+1}, and (the rest of ) conv X lies entirely on one side of `(xi, xi+1).
(Indices are understood modulo k.)

Convex clusterings. Consider the pseudoconfiguration described in Observation 2.2(iv):
Let X = {x1, . . . , xk} be a k-element subset of P in convex position, where k ≥ 3,
and suppose that the points xi appear on the boundary of conv X in this cyclic order.
We define the i-th spike of X, denoted by Si , to be the open region consisting of the
points of the plane separated from the interior of conv X by the pseudoline `(xi, xi+1),
but not separated from conv X by `(xi−1, xi) and by `(xi+1, xi+2). This is a connected
region bounded by the pseudosegment conv {xi, xi+1} and by portions of the pseudolines
`(xi−1, xi) and `(xi+1, xi+2). It is either a triangle-like bounded region or an unbounded
region of three sides; see Fig. 2.
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Fig. 2. A pseudoconfiguration in convex position where the spikes are shaded.

Observation 2.3. Let 1 ≤ i ≤ k.
(i) The line `(xi, xi+1) is disjoint from every spike and separates Si from all other spikes

Sj (j 6= i). In particular, the spikes are pairwise disjoint.
(ii) A point p ∈ P \ X belongs to the spike Si if and only if X′ = X ∪ {p} is in convex

position and p appears on the boundary of conv X′ between xi and xi+1. In partic-
ular, whether X ∪ {p} is in convex position is determined by which region p belongs
to in the arrangement of pseudolines spanned by X.

For the usual notion of convexity in the Euclidean plane, the following statement was
proved by Pór and Valtr [18]. It is a slight strengthening of a result of Pach and Soly-
mosi [15] that can be obtained by simple double counting. Since we will use this state-
ment for pseudoconfigurations, to make our paper self-contained, we translate its proof
into this setting.

Theorem 2.4. Let k ≥ 3 be an integer, and let P be a pseudoconfiguration with |P | =
N ≥ 24k . Then there exists a subset X = {x1, . . . , xk} ⊂ P in convex position such that
the sets Pi of all points of P lying in the i-th spike, i = 1, . . . , k, satisfy the inequality

k∏
i=1

|Pi | ≥
Nk

28k2 . (2.2)

Proof. Let P be a pseudoconfiguration with |P | = N ≥ 24k . By Theorem 1.2, every
42k-element subset Q ⊆ P contains a 2k-element subset R ⊂ Q in convex position.
Therefore, by double counting, P has at least(

N
42k

)(
N−2k

42k−2k

) = (
N
2k

)(42k

2k

) >

(
N

42k

)2k

distinct 2k-element subsets in convex position.
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Given a 2k-element subset Y in convex position, we say that a k-element subset
X ⊂ Y supports Y if the points of Y along the boundary of conv Y alternately belong
to X and to Y \X. Note that Y is supported by two subsets.

Since the number of k-element subsets of P in convex position is at most
(
N
k

)
, there

exists a k-element subset X which supports at least

( N

42k )2k(
N
k

) >
Nk

28k2

distinct 2k-element subsets in convex position. By Observation 2.3(ii), if X supports Y ,
then the points of Y \X belong to distinct spikes of X, which implies inequality (2.2). ut

3. Proof of Theorem 1.3

Consider a sufficiently large fixed pseudoconfiguration P , let k ≥ 4 be an even inte-
ger, and let X = {x1, . . . , xk} ⊂ P be a k-element subset in convex position whose
points appear on the boundary of conv X in this cyclic order. Suppose that X meets the
requirements of Theorem 2.4. As before, let S1, . . . , Sk denote the spikes of X and let
Pi = P ∩ Si . The indices are taken modulo k.

Vertical and horizontal orderings on Pi . Let p and q be distinct points in Pi . We write

p ≺v
i q ⇐⇒ conv {xi−1, p, xi+2} ⊂ conv {xi−1, q, xi+2},

p ≺h
i q ⇐⇒ conv {xi−1, q} ∩ conv {xi+2, p} 6= ∅,

where the superscripts v and h stand for “vertical” and “horizontal”, respectively.

Observation 3.1. Let 1 ≤ i ≤ k.

(i) Both ≺v
i and ≺h

i are partial orders on Pi .
(ii) Any two distinct elements of Pi are comparable by either ≺v

i or ≺h
i , but not by both.

Proof. The definition of ≺v
i clearly implies that it is a partial order. To see that the same

is true for ≺h
i , one has to show that if p ≺h

i q ≺h
i r for three points p, q, r ∈ Pi , then

p ≺h
i r . This can be done by checking the few possible pseudoconfigurations of the five

points xi−1, xi+2, p, q and r .
To prove (ii), it is sufficient to consider the pseudoconfigurations consisting of only

four points: xi−1, xi+2, and two points p and q from Pi . Using the fact that p and q lie
on the same side of `(xi−1, xi+2), one can show that out of the four relations p ≺v

i q,
q ≺v

i p, p ≺h
i q, and q ≺h

i p, precisely one will hold. Consider the four open regions
into which the pseudolines `(p, xi−1) and `(p, xi+2) partition the plane. The region in
which q lies uniquely determines which of the above four relations will hold. ut

For 1 ≤ i ≤ k, let vi denote the length of the longest chain in Pi with respect to ≺v
i , and

let hi denote the length of the longest chain in Pi with respect to ≺h
i . By Observation 3.1

and by (the easy part of) Dilworth’s theorem, we have

|Pi | ≤ vihi . (3.1)
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Further observations concerning points and spikes. As before, the following obser-
vations are trivial for the usual notion of convexity in the Euclidean plane. Here we show
that they also hold for pseudoconfigurations.

Observation 3.2. For any pair of distinct points p, q ∈ P , the pseudoline `(p, q) inter-
sects at most two spikes of X.

Proof. Assume for contradiction that `(p, q) intersects three separate spikes Si , Sj , and
Sl in this order. By Observation 2.3(i), this line should intersect `(xj , xj+1) twice, a con-
tradiction. ut

Observation 3.3. Let p and q be distinct points of Pi . If p ≺v
i q, then the pseudoline

`(p, q) separates spikes Si−1 and Si+1.

Proof. Since p ∈ conv {xi−1, q, xi+2}, the pseudoline `(p, q) intersects the pseudoseg-
ment conv {xi−1, xi+2}. This implies that `(p, q) has to intersect one of the spikes Si+2,
Si+3, . . . , Si−2. By Observation 3.2, `(p, q) intersects at most two spikes, one of which
is Si . Thus, it cannot intersect Si−1 and Si+1, which implies that Si−1 and Si+1 must be
separated by `(p, q). ut

Observation 3.4. Let p and q be distinct points of Pi . If p ≺h
i q, then all the spikes

Si+2, Si+3, . . . , Si−2 must lie on the same side of the pseudoline `(p, q).

Proof. All spikes Sj with j /∈ {i − 1, i + 1} are on the same side of both pseudolines
`(xi−1, xi) and `(xi+1, xi+2). The angular region determined by these two pseudolines
and containing the above spikes (and the interior of conv X) is cut into two parts by
the pseudosegment conv {xi−1, xi+2}, so that Si lies on one side and the spikes Sj with
j /∈ {i − 1, i, i + 1} on the other. Our assumption p ≺h

i q implies that the pseudoline
`(p, q) does not intersect the pseudosegment conv {xi−1, xi+2}, so the part of the angular
region on the other side of this pseudosegment (including all relevant spikes) is on the
same side of `(p, q), as claimed. ut

Vertical convex chains. Let C ⊆ Pi be a chain with respect to ≺v
i . If {xi−1} ∪ C is in

convex position, we call C a left convex chain in Pi . If {xi+2} ∪ C is in convex position,
we call C a right convex chain in Pi .

Note that if |C| = 3, then C is either a left convex chain or a right convex chain,
but not both. This can be verified by checking the pseudoconfiguration C ∪ {xi−1, xi+2}.
Moreover, if p1 ≺

v
i p2 ≺

v
i p3 ≺

v
i p4 and both {p1, p2, p3} and {p2, p3, p4} are left

[right] convex chains, then {p1, p2, p3, p4} is also a left [right] convex chain. Therefore,
the same holds for both {p1, p2, p4} and {p1, p3, p4}. This can be verified by checking
the pseudoconfiguration {p1, p2, p3, p4, xi−1, xi+2}. See Fig. 3.

Take a chain C ⊆ Pi of maximal size |C| = vi , totally ordered by ≺v
i . Partition the

triples of C into left and right convex chains. In this way, we obtain a transitive coloring.
Letting ai and bi denote the length of the longest left convex chain and the length of the
longest right convex chain in C, respectively, by Theorem 2.1 we have

vi ≤

(
ai + bi − 2

ai − 1

)
. (3.2)



Two extensions of the Erdős–Szekeres problem 3989
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Fig. 3. A left convex chain p1 ≺
v
i

p2 ≺
v
i

p3 ≺
v
i

p4 in Pi with conv {p1, p2, p3, p4, xi−1} in
darker shade.

Actually, Theorem 2.1 only guarantees the existence of large subsets C1, C2 ⊆ C such
that all triples in C1 are left convex chains and all triples in C2 are right convex chains.
However, using the above observations and the generalization of Carathéodory’s theorem
to pseudoconfigurations, it follows that C1 and C2 themselves must form a left convex
chain and a right convex chain, respectively.

Observation 3.5. If R is a right convex chain in Pi and L is a left convex chain in Pi+1,
then R ∪ L is in convex position.

Proof. First, note that for any pseudoconfiguration P consisting of four points, if a point
p ∈ P lies in the convex hull of P \ {p}, then any pseudoline passing through p and
any other point of P crosses the pseudosegment determined by the remaining two points
of P .

To prove the observation, it is enough to show that any four points p, q, r, s ∈ R ∪ L

are in convex position. If all of them lie in one of R or L, then we are clearly done. Assume
first that r, s ∈ R and p, q ∈ L. By Observation 3.3, the pseudolines `(p, q) and `(r, s) do
not intersect the pseudosegments conv {r, s} ⊂ Si and conv {p, q} ⊂ Si+1, respectively.
Therefore, by the discussion above, the points p, q, r, s are in convex position.

Now consider the case where p, q, r ∈ L and s ∈ R. Again by Observation 3.3, none
of the pseudolines `(p, q), `(p, r), and `(q, r) intersects the spike Si . Therefore, xi and
s lie in the same open region determined by the arrangement of these three pseudolines.
By the assumption, the set {p, q, r, xi} is in convex position, so by the last statement of
Observation 2.3(ii), {p, q, r, s} is in convex position as well. The other case, p ∈ L and
q, r, s ∈ R, can be settled in a similar manner. See Fig. 4. ut

Horizontal convex chains. Let C ⊆ Pi be a chain with respect to ≺h
i . If the set

{p, q, r, xi−1, xi+2} is in convex position for any three distinct elements p, q, r of C,
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xi+1

xi
xi+2

Si Si+1

Fig. 4. Joining a right convex chain R ⊆ Pi and a left convex chain L ⊆ Pi+1 to form a subset in
convex position (convex hull in darker shade).

we call C an inner convex chain. If {p, q, r, xi−1, xi+2} is not in convex position for any
three distinct elements p, q, r of C, we call C an outer convex chain.

Note that chains of at most two elements are both inner and outer convex chains by
this definition.

Observation 3.6. Let 1 ≤ i ≤ k.

(i) The partitioning of the triples in a horizontal chain C (ordered by ≺h
i ) into inner and

outer convex chains is a transitive coloring.
(ii) The inner and outer convex chains in Pi are in convex position.

Proof. Consider a horizontal chain p ≺h
i q ≺h

i r in Pi . By checking the pseudoconfigu-
ration {p, q, r, xi−1, xi+2} we can verify that the following are equivalent:

• (p, q, r) is an outer [inner] convex chain.
• conv {xi−1, xi+2} and r are separated by [lie on the same side of] `(p, q).
• conv {xi−1, xi+2} and p are separated by [lie on the same side of] `(q, r).
• conv {xi−1, xi+2} and q lie on the same side of [are separated by] `(p, r).

Now consider a horizontal chain p1 ≺
h
i p2 ≺

h
i p3 ≺

h
i p4. The pseudolines

`(xi−1, p4) and `(xi+2, p1) divide the plane into four quadrants, each containing one of
the pseudosegments conv {p1, p4}, conv {p4, xi+2}, conv {xi+2, xi−1}, conv {xi−1, p1}, in
this cyclic order. By the ordering ≺h

i , p2 and p3 are contained in the quadrant contain-
ing conv {p1, p4}. Furthermore, the pseudoline `(p2, p3) must cross this quadrant, enter-
ing the boundary ray containing p1, then meeting p2 before p3 and finally exiting the
boundary ray containing p4. If both (p1, p2, p3) and (p2, p3, p4) are outer (inner) con-
vex chains, it follows by the observations above that conv {p1, p4} and conv {xi−1, xi+2}
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Fig. 5. An outer convex chain p1 ≺
h
i

p2 ≺
h
i

p3 ≺
h
i

p4 in Pi with conv {p1, p2, p3, p4} in darker
shade.

are separated by [lie on the same side of] `(p2, p3). This implies that conv {xi−1, xi+2}

and p4 are separated by [lie on the same side of] `(p1, p2) and `(p1, p3). Hence,
(p1, p2, p4) and (p1, p3, p4) are both outer [inner] convex chains, which proves part (i).
By Carathéodory’s theorem, it suffices to check part (ii) for inner and outer convex chains
p1 ≺

h
i p2 ≺

h
i p3 ≺

h
i p4. However, it follows from the discussion above that `(p1, p4)

does not intersect conv {p2, p3} and that `(p2, p3) does not intersect conv {p1, p4}. As
in the proof of Observation 3.5, we conclude that {p1, p2, p3, p4} is in convex position.
See Fig. 5. ut

Letting ci and di denote the length of the longest inner convex chain and the length of
the longest outer convex chain in Pi , respectively, applying Theorem 2.1 to the longest
horizontal chain in Pi and using Observation 3.6, we obtain

hi ≤

(
ci + di − 2

ci − 1

)
. (3.3)

Observation 3.7. Suppose that k ≥ 4 is even, and let A1 ⊆ P1, A2 ⊆ P2, . . . , Ak ⊆ Pk .
If each Ai is an inner convex chain, then A1 ∪A3 ∪ · · · ∪Ak−1 is in convex position, and
so is A2 ∪ A4 ∪ · · · ∪ Ak .

Proof. The proof goes as that of Observation 3.5, and we repeatedly use the fact men-
tioned at the beginning of the latter. It suffices to prove that any four points p1, p2, p3, p4
∈ A1∪A3∪· · ·∪Ak−1 are in convex position. If all the points lie in one chain, we are done.
Consider the case where three points belong to the same chain, say p1, p2, p3 ∈ Ai1 , and
p4 ∈ Ai2 with i1 6= i2. By Observation 3.4, xi1−1 and p4 belong to the same open
region determined by the pseudolines `(p1, p2), `(p1, p3), `(p2, p3). Therefore, by the
last statement of Observation 2.3(ii), the convexity of {p1, p2, p3, xi1−1} implies that
{p1, p2, p3, p4} is in convex position.
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x1 x2

x3

x4x5

x6

Fig. 6. Joining inner convex chains A1 ⊆ P1, A3 ⊆ P3, and A5 ⊆ P5 to form a subset in convex
position (convex hull in darker shade).

If one of the chains contains exactly two of our points, say p1, p2 ∈ Ai , then neither
p1 nor p2 can be in the convex hull of the other three points, as Observation 3.4 implies
that the pseudoline `(p1, p2) does not intersect the pseudosegment conv {p3, p4}.

To finish the proof, we need to verify that if one of the chains contains exactly one of
our points, say p1 ∈ Ai , then p1 is not in the convex hull of the other three points. This
follows from the fact that `(xi, xi+1) separates p1 from p2, p3 and p4. See Fig. 6. ut

Proof of Theorem 1.3. Let P be a pseudoconfiguration on N points, and suppose that
P does not contain n points in convex position. Let k be an even integer to be specified
later, and let X = {x1, . . . , xk} ⊆ P be a subset in convex position whose existence is
guaranteed by Theorem 2.4. As above, for the sets Pi of all points of P contained in the
i-th spike of X, i = 1, . . . , k, we define

vi = the length of the longest chain Cv
i with respect to ≺v

i ,
hi = the length of the longest chain Ch

i with respect to ≺h
i ,

ai = the length of the longest left convex chain in Cv
i ,

bi = the length of the longest right convex chain in Cv
i ,

ci = the length of the longest inner convex chain in Ch
i ,

di = the length of the longest outer convex chain in Ch
i .

By Observation 3.6(ii), we have di < n. By Observation 3.5, we have

bi + ai+1 < n (3.4)
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for all i, and, by Observation 3.7,

c1 + · · · + ck < 2n. (3.5)

Combining these with inequalities (2.2)–(3.3), we obtain

Nk

28k2 ≤

k∏
i=1

|Pi | ≤

k∏
i=1

vihi ≤

k∏
i=1

(
ai + bi − 2

ai − 1

)(
ci + di − 2

ci − 1

)

<

k∏
i=1

2ai+bi d
ci

i < 2kn+2n log n,

which gives us

N < 2n+
2n log n

k
+8k.

Setting k to be the smallest even integer greater than or equal to 1
2

√
n log n gives the

estimate
N = O

(
2n+8
√

n log n
)
. ut

Optimizing the error term. Here we improve the error term in our previous estimate by
showing the bound

b(n) ≤ 2n+(8
√

2/3+o(1))
√

n log n.

The first improvement is a refinement of Theorem 2.4.

Proposition 3.8. Let k ≥ 3 be an integer, and let P be a pseudoconfiguration with |P | =
N ≥ 2(1+o(1))4k . Then one of the following holds.

(1) There exists a subset X = {x1, . . . , xk} ⊂ P in convex position such that the sets Pi

of all points of P in the i-th spike of X, i = 1, . . . , k, satisfy

k∏
i=1

|Pi | ≥ 2−
8
3 k2

Nk.

(2) There exists a subset X′ = {x′1, . . . , x
′

2k} ⊂ P in convex position such that the sets
P ′i of all points of P in the i-th spike of X′, i = 1, . . . , 2k, satisfy

2k∏
i=1

|P ′i | ≥ 2−
40
3 k2
−o(k2)N2k.

Proof. Let fj = fj (P ) denote the number of j -element subsets of P that are in convex
position. Looking back at the proof of Theorem 2.4, we see that for the optimal set X, the
quantity

∏k
i=1 |Pi | is bounded below by f2k/fk . Similarly

∏2k
i=1 |P

′

i | ≥ f4k/f2k for the
optimal set X′. Trivially fk ≤ Nk , and using our (preoptimized) bound on b(n), with the
same double counting as before we have f4k ≥ 2−16k2

−o(k2)N4k . The claim now follows
from whether or not f2k ≥ 2−

8
3 k2

N2k . ut
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Here is another improvement. In the proof of Theorem 1.3 we used the estimate
(
ci+di−2

di−1

)
< d

ci

i , where di < n and
∑

i ci < 2n, which gave us
∏

i

(
ci+di−2

di−1

)
< n2n. Instead, if we

use the more precise estimate(
ci + di − 2

ci − 1

)
<

(
2n

ci

)
<

(
2en

ci

)ci

≤ kci e2n/k,

then we get
k∏

i=1

(
ci + di − 2

ci − 1

)
< (ek)2n. (3.6)

Now we combine these two improvements. Let P be a pseudoconfiguration on N

points and suppose P does not contain n points in convex position. We apply the same
argument as before to each of the cases in Proposition 3.8, using the better estimate from
(3.6). In case (1) we obtain

2−
8
3 k2

Nk
≤

k∏
i=1

|Pi | < 2kn+2n log(ek),

and in case (2) we obtain

2−
40
3 k2
−o(k2)N2k

≤

2k∏
i=1

|P ′i | < 22kn+2n log(2ek).

Setting k to be the smallest even integer greater than or equal to
√

n log n

2
√

2
, either case gives

us the desired bound N < 2n+(8
√

2/3+o(1))
√

n log n.
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[7] Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2, 463–470
(1935) Zbl 0012.27010 MR 1556929
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