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ABSTRACT A quantum error mitigation technique based on machine learning is proposed, which learns
how to adjust the probabilities estimated by measurement in the computational basis. Neural networks in two
different designs are trained with random quantum circuits consisting of a set of one- and two-qubit unitary
gates whose measurement statistics in the ideal (noiseless) and real (noisy) cases are known. Once the
neural networks are trained, they infer the amount of probability adjustment to be made on the measurement
obtained from executing an unseen quantum circuit to reduce the error. The proposed schemes are tested
with two-, three-, five-, and seven-qubit quantum circuits of depth up to 20 by computer simulations with
realistic error models and experiments using the IBM quantum cloud platform. In all test cases, the proposed
mitigation technique reduces the error effectively. Our method can be used to improve the accuracy of
noisy intermediate-scale quantum (NISQ) algorithms without relying on extensive error characterization or
quantum error correction.

INDEX TERMS Quantum Computing, Quantum Error Mitigation, Machine Learning, Artificial Neural

Network

. INTRODUCTION

The development of full-fledged quantum computers that
promise revolutionary opportunities is being challenged due
to computational errors that occur when theoretical ideas
are implemented on real quantum devices. The theory of
quantum error correction (QEC) [1]-[3] and fault-tolerance
guarantees scalable quantum computation, but the computa-
tional resource overhead is non-negligible [4]-[6]. Moreover,
the typical error rate of current quantum devices is near or
above the fault-tolerance threshold, hindering the power of
quantum error correction. With this background, the idea of
quantum error mitigation (QEM) emerged recently. Unlike
QEC, QEM does not necessarily aim to fully remove the
entropy increased by unwanted interaction with the environ-
ment to recover the logical state. Instead, it aims to merely
improve the accuracy of estimating the final answer in a given
computational task without having to encode logical quantum
state in a multi-qubit entangled state. Since QEM does not
require extra quantum resources, it is expected to improve
the quantum computation to some extent even when the error
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rate is above the fault-tolerance threshold value. Thus, QEM
is an excellent fit for improving the performance of NISQ
computing [7]-[11]. Moreover, a scalable error mitigation
technique, if exists, can contribute to the fault-tolerant quan-
tum computing beyond the NISQ era by reducing the error at
the physical level.

Several QEM methods exists. Examples of the quantum
circuit error mitigation technique are based on extrapola-
tion [12]-[14], probabilistic error cancellation [13], [14],
quantum subspace expansion [15], [16], and symmetry ver-
ification [17], [18]. A machine learning protocol based on
training with Clifford circuits was used in Ref. [19] to
improve probabilistic error cancellation by replacing the
need of reconstructing an error model in the experiment.
Data regression utilizing the classical simulability of Clifford
circuits is also used in Ref. [20]. Some of these methods
are experimentally verified in Refs. [21]-[23]. Also, error
mitigation methods specifically designed for readout errors
are presented in Refs. [24], [25].

In this paper, we propose a mitigation method that uses

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2020.3031607, IEEE Access

classical machine learning. An artificial neural network
(ANN) is trained with shallow-depth quantum circuits whose
measurement outcomes are known. The counts of gates ap-
plied to individual qubits and the actual outcome probability
of all computational basis measurements are given as the
input layer to the neural network for training. The ANN is
trained with respect to a loss function that quantifies the error
with respect to a true output state derived by computer simu-
lation. Here, the error includes both cumulative gate error and
qubit measurement error. Then given a new quantum circuit,
the ANN infers the error of the probability distribution of
the measurement results. This work serves as a stimulating
example that shows classical machine learning can improve
quantum computation.

The remainder of this paper is organized as follows.
Section II describes the quantum error mitigation methods
considered in this work. Section III presents the proof-of-
principle implementation of QEM methods. The simulation
and experimental setups for the test, such as the noise models
and the device parameters, are described in section III-A and
the results are presented in section III-B. Conclusions are
drawn in section IV.

Il. QUANTUM ERROR MITIGATION

A. EXACT METHODS FOR SIMPLE NOISE MODELS
Analytical methods can be so powerful to eliminate some
types of errors of quantum gates in limited cases. Although
the assumptions made for the application of these methods
may not be realistic in a general experimental setup, the
analytical methods presented here can serve as a reference
to which the machine learning methods are compared.

1) Depolarizing Error
A two-qubit density matrix can be expressed with Pauli
matrices as follows

4
I®I
= 5 +§ Vi, 10k @ O, (D
Kl

where oy,0; € {[,X,Y,Z} and 711 = 0. Since Eq. (1)
describes an arbitrary two-qubit state, the effect of a noisy
channel can be thought of as the modification of the coeffi-
cients 7 ;. Yk, denotes the erroneous coefficients.

The computational basis state of a qubit is defined as the
eigenstates of Z. Therefore, the measurement in the compu-
tational basis uncovers only the information about 1 4, V4,1,
and 4 4. Thus, the goal of the error mitigation in this work
can be reduced to estimating 7y; 4, 4,1, and 44 from the
estimators of ¥1 4, V4,1, and y4,4. Once 71 4, ya,1, and Y4 4
are estimated, the correct probabilities in the noiseless case
can be calculated by

T+ 74+ 71 +va4, ab=00
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Given the gate-independent depolarizing error (see Ap-
pendix A) with single-qubit gate error rate denoted by £; and
two-qubit gate error rate denoted by e2, the error-free coeffi-
cients v can be expressed in terms of the noisy coefficients
v, which can be estimated from the actual measurement
probabilities Tr(|ab)ab| pe) (c.f. Eq. (2)), as
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where Gy, is the number of single-qubit gates acting on the
kth qubit and G5 is the number of two-qubit gates.

2) Measurement Error

A simple measurement error mitigation (MEM) scheme is
presented in Ref. [26], which we summarize in this section.
The measurement error in an N-qubit experiment can be
modeled as a linear transformation of the ideal measurement
probabilities as

Perror = EmeasPideah (4)

where Pigeal and Peyor are column vectors with 2V ele-
ments indicating the probabilities for measuring the basis
states in ideal and real cases, respectively, and E .5 1S a
2N x 2N matrix that characterizes the measurement error.
The jth column of E,..s is constructed by measuring the
input state ideally prepared in the jth computational basis
state. In other words, the matrix element at row 7 and column
J indicates the probability to obtain ¢ when measuring the jth
computational basis state. With this matrix in hand, the mea-
surement error mitigation is performed by applying E 0
the probability vector obtained in a given experiment.

-1
meas t

B. ERROR MITIGATION VIA MACHINE LEARNING

The primary goal in this work is to mitigate errors that
cannot be described solely as a gate-independent depolariz-
ing noise and without relying on any noise characterization
methods, such as randomized benchmarking and process to-
mography [27]-[39]. This section is dedicated to explaining
machine learning methods to achieve such a goal.

1) Error Quantity Definition

As a preliminary step, we first define the error quantity
that is to be minimized in the circuit of Fig.l1. Given an
arbitrary input state described by the density matrix p; and
the ideal unitary transformation denoted by U, the probability
to obtain an outcome |j) can be expressed as

P(jli) :== Tr (M;Up;UT) (5)

where M; is a measurement operator. But in practice, the
intended unitary transformation cannot be perfectly realized
due to unwanted interaction with the environment and im-
perfections in the control. By denoting the actual (noisy)
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FIGURE 1. A schematic of ANN input extraction from a quantum circuit. p;
represents an input state. G, indicates the number of k-qubit gates applied
to the Ith qubit. The number of single-qubit gates (G1 = [G11, ..., Gin])
and two-qubit gates (G2 = [G21, ..., Gan]) applied to each qubit , the error
at depth a (E, = P, — P,), and the noisy measurement outcome at depth b
(P,) are used as the input values of a ANN.

quantum process by A, the actual probability estimated in a
given experiment can be expressed as

P(jli) := Tr (M;A (py)) - ©6)
Based on the above, we can quantify the error as
E(jli) := P(jli) — P(j4)- (7)

Our error mitigation technique seeks to directly adjust P so
that E(j]¢) is minimized. We quantify such correction (i.e.
quantity of mitigation) as C'(j]¢). Then, the final amount of
error after applying the mitigation technique as

Ey(jli) == E(j]1) — C(jl7) ®)

Finally, we define the root mean squared error (RMSE) as

\/211 Zé:l Ef(ﬂi)g
Im '

€))

Erms =

Of course, P(j|¢) is not known to experimenters, and our
goal is to find the distribution of C(j|¢) which minimizes
Erus.

2) Training Data Generation

The training data for machine learning is generated by using
random quantum circuits of depth K whose output state at
depth £k = 1,..., K is known a priori (by pre-calculation)
for given input state. The ideal measurement statistics at each
depth is compared with the actual measurement statistics
obtained under noisy computation during the training. We
extend the notations introduced in the previous section with
a subscript k as P, Pk7 Ey, Ef ) to indicate the quantities
at depth k£ of a given quantum circuit. We also introduce
probability vectors P, and P}, to denote the measurement
probabilities. Of these matrices, the ¢th column corresponds
to having the input basis state |¢), and the jth row corresponds
to the probability to measure the basis state |j). The error
vector E;, = f’k — Py, is also introduced to denote the
error between the actual measurement outcome and the ideal
measurement outcome. In Fig. 1, by computing the circuit
at depth a, we can have P, and by measuring the circuit at
depth a and b, we can have P, and Py, respectively.
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The training dataset is generated using a set of random
circuits of chosen depth, consisting of elementary single-
and two-qubit gates. The single-qubit gates are the phase
gate S = |0)0| + i|1)1]|, the T gate T = +/S, and the
hadamard gate H = (X + Z) /v/2. The controlled-Z gate
CZ =10)0| @ I + |1)1] ® Z is used as the two-qubit gate.

3) Machine Learning Structure
We propose and investigate two different designs of machine
learning methods, namely an artificial neural network (ANN)
and a concatenated artificial neural network (Concatenated
ANN). The input of the ANNs consists of three parts: the
known error information E,, the measured probability vector
f’b for 0 < a < b < K, and the number of one- and two-
qubit gates applied to each qubit between depth a and depth
b denoted by G1(a,b) and Gz(a,b), respectively. During
the training, the input state for a quantum circuit is fixed.
Thus, for a system of N qubits, there are 2N + 2V *1 input
nodes: 2N for the number of single- and two-qubit gates,
Gi(a,b) and Gz(a,b), and 2V*! for ith columns of E,
and Py, given the input state |i). Then the known correction
Cy(4]9) is placed in the output node for training. Thus, there
are 2"V nodes at the output. The ANN has two hidden layers
and all layers are fully connected. The sigmoid activation is
used except for the last layer. The output of the ANN is the
weighted sum of the values in the last layer. Concatenated
ANN has one more hidden layer. The first hidden layer is
split into two groups such that the first group is connected
only to the input nodes for the number of gates while the
second is connected only to the input nodes for E, and
Pb. As an ANN works better with normalized data, we add
batch normalization for the number of gates after the first
hidden layer. Then these two groups are concatenated (fully
connected) to the next layer. Afterward, the concatenated
ANN has the same structure as that of the ANN explained
above. The neural network structures used in this work are
depicted in Fig. 2.

The ANN trained with various input states |¢) and pairs of
a and b is used to infer the amount of correction for a target
quantum circuit of depth L > K. The input nodes consist
of E;, Py, and the number of gates applied to each qubit
between [ and L, and the ANN outputs C7,(j|i). The use of
E; improves the error mitigation when the error is known for
some [ > 0. In the absence of such information, the error
mitigation is performed with only Eg, which indicates the
measurement error. The workflow to train the machine is in
Fig. 3.

lll. SIMULATION AND EXPERIMENT

As a proof of principle, we use simulation with two different
noise models and experiment with an IBM quantum com-
puter to validate the performance of QEM.

A. SETUP
In this example, 100 random circuits with KX = 10 are
used for training, and [ = 0 and L = 20 for inference.

3
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FIGURE 2. The neural network architectures used in this work. Two different ANN models are used, (a) ordinary ANN and (b) concatenated ANN. The ordinary
ANN has two hidden layers. All layers are fully connected using weight summation and sigmoid is used for activation function. In the concatenated ANN, the first two
layers are concatenated after applying batch normalization to the number of gates. After that, all hidden layers are fully connected using weight summation and
activated by sigmoid. The ANN infers the error of a quantum circuit at depth b with the given information at depth a < b. G1(a, b) and Gz (a, b) are the vector of
the number of single- and two-qubit gates applied to each qubit between depth a to b, respectively. Input nodes are the ith column vectors of E, and P, which are
for a particular input state |z). Then ANN outputs the ith column vector of the correction matrix C,. The input quantity in the circuit is explained in Fig. 1.

Seta=0,b=1,i=0
Choose K and ipq, < 2V

Ub Ua+1Ua|1pi>

After all g, b, :
increase i

Repeat for a, b,
in0<a<b<K

Compute Pp(. i)
Measure Py, (. |i)

l

Train DNN with

FIGURE 3. The workflow for training a ANN for one sample circuit. Initial
states are chosen from the computational basis set. The workflow repeats until
all circuits in the training set are used.

For each circuit, we use four states randomly chosen from
the computational basis states are used as input. Each prob-
ability vector is estimated by repeating the same quantum
circuit followed by the projective measurement 8192 times.
Simulations were carried out with quantum circuits with

4

the number of qubits ranging from two to seven. First, we
perform the simulation with the depolarizing noise defined
in Appendix. A. This noise model allows for the exact error
cancellation via analytical solution as discussed in Sec. II-A.
Thus, we use such oversimplification to test the performance
of our method to the theoretical upper bound. For testing
under more realistic noise, we use the noise model and
parameters provided by the IBM Q cloud service [40]. In
this case, the noise model consists of the depolarizing noise,
longitudinal and transversal relaxations characterized by T}
and 75, and the measurement error. Hereinafter, we refer to
this noise model as IBM Q noise model. The noise model
is described in detail in Ref. [41]. For simulations with the
IBM Q noise model, the error mitigation performance was
tested with and without the measurement error mitigation
technique described in Sec. II-A2. For simulations with up
to five qubits, we took the data of the ibmq_5_yorktown
quantum processor [42], which consists of five supercon-
ducting qubits, from June 25th, 2020. The single-qubit gate
error rate was 6.25 x 1074 and 6.70 x 10~* for qubit
0 and qubit 1 respectively. Two-qubit gate error rate was
1.65 x 10~2. For the seven-qubit simulation, we use the
data of a quantum processor with 15 superconducting qubits
named ibmq_16_melbourne [43]. For this device, the single-
qubit error rate ranges from 4.49 x 1074 to 4.18 x 1073,
and the two-qubit error rate ranges from 1.09 x 1072 to

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3031607, IEEE Access

IEEE Access

(b) Ibmq_16_melbourne

FIGURE 4. Physical qubit layouts of the IBM superconducting-qubit devices
used in this work. (a) A five-qubit device called ibmqg_5_yorktown is used for
the two-qubit experiment. The noise parameters for this device are used for
simulations with up to five qubits. The qubits used for the experiment are
labeled as 0 and 1 in the figure. (b) A 15-qubit device called
ibmqg_16_melbourne. The noise parameters for this device are used for the
seven-qubit simulation. Qubits 0, 1, 2, 3, 11, 12 and 13 are used for the
simulation.

1.66 x 10~1. The physical qubit layouts of the IBM quantum
devices are shown in Fig. 4.

The experimental error mitigation was tested for two-qubit
quantum circuits by using ibmq_5_yorktown.

B. RESULT
Table 1 presents simulation and experimental results for two-
qubit error mitigation applied to 100 random test circuits that
are not in the training set. The values in the table are the root
mean squared error defined in Eq. 9 averaged over all test
circuits, and the parenthesis contains the ratio of the Frass
after error mitigation to before. The smaller the number in
the table is the better the error mitigation performance. In all
cases, the applied error mitigation technique always reduces
the RMSE. As expected, the analytical method performs
the best when only the depolarizing noise is present. The
machine learning based methods also work reasonably well
when compared to the analytical method; the RMSE of all
three approaches is in the same order of magnitude. For more
complex but relevant error models (i.e. IBM Q noise model),
the machine learning based methods prevail. For the real
quantum device, the concatenated ANN performs the best.
The simulation results for the seven-qubit system error
mitigation are shown in Table 2. The machine learning re-
duces the error, although the amount of reduction is less than
that for the two-qubit system. Indeed, our machine learning
based error mitigation method always reduces the error for
all cases that we tested as shown in Fig. 5. We also plot
the ratio of the Frpsg after error mitigation to before in
Fig. 6. The figure shows that the Concatenated ANN achieves
slightly better results than the ANN. The numerical values for
the simulation of three- and five-qubit systems are provided
in Appendix B. Another interesting observation is that the
RMSE obtained from the simulation with the measurement
error mitigation explained in Sec. II-A2 does not provide a
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TABLE 1. ERras in two-qubit error mitigation obtained from simulations
under the depolarizing and IBM Q noise model and experiments with the IBM
quantum device. The value in the parenthesis shows the ratio of the Er s
after error mitigation to before.

Error Model Unmitigated ANN  CANN  Analytical
Depolarizing 2.5e-4 8.0e-5  7.0e-5 4.1e-5
(0.32)  (0.28) (0.11)
IBM Q Noise 4.2e-4 1.6e-4 1.5e-4 3.3e-4
w/o MEM 0.37)  (0.35) (0.70)
IBM Q Noise 2.1e-4 1.6e-4 1.3e-4 1.9¢e-4
with MEM (0.75)  (0.63) (0.89)
Experiment 1.8e-3 1.1e-3  9.7e-4 1.7e-3

(0.63)  (0.54) 0.97)

TABLE 2. ERrs in seven-qubit error mitigation obtained from simulations
under the depolarizing and IBM Q noise model. The value in the parenthesis
shows the ratio of the Erass after error mitigation to before.

Error Model Unmitgated ANN  CANN
Depolarizing 3.7e-5 3.0e-5 3.le-5

(0.80)  (0.83)
IBM Q Noise 8.2e-4 6.4e-4  6.4e-4
w/o MEM .77y (0.77)
IBM Q Noise 8.3e-4 6.5e-4  6.5e-4
with MEM .77y (0.78)

noticeable enhancement to the simulation result without it.
This implies that our machine learning based error mitigation
takes care of the measurement error to some extent.

IV. CONCLUSION

We developed a quantum error mitigation scheme based
on classical machine learning methods. The artificial neural
network and the concatenated artificial neural network are
used for machine learning. The neural networks are trained
with quantum circuits for which the error behavior can be
trained by numerical simulations and hardware experiments,
in order to infer the amount of error in the result measurement
of quantum output states. The performance of our method
was tested using simulations with realistic noise models
and experiments accomplished by the IBM quantum cloud
service for quantum circuits consisting of two, three, five, and
seven qubits. In all cases, our method was able to reduce the
error. In particular, in the two-qubit experiment, our method
reduced the error by a factor of 1/2.

The proposed error mitigation is designed to reduce the
error of a target experiment conducted under the same noise
model with which the neural networks are trained. Thus our
method can effectively mitigate time-dependent noise with
frequencies lower than the frequency of which the training
is carried out. To optimize the error mitigation performance
in a systematic way, the training should be done as a sub-
routine of the device calibration. Also, the ANN should be
trained more frequently than the known frequency of the
most dominant time-dependent noise. The development of a
noise-independent error mitigation method will be of great
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impact, which we plan to investigate in future work.

Another crucial future work is the development of a
scalable ANN architecture in which the number of nodes
increases polynomially with the number of quantum circuit
elements. If the process of training can be done in polynomial
time, it will be possible to apply the error mitigation method
to a large number of qubits beyond the NISQ era. Although
our method is limited in practice to small quantum systems,
it sets an important milestone in the advancement of quantum
computing, opening up tremendous opportunities for the
application of machine learning to improve quantum control.

APPENDIX A DEPOLARIZING ERROR

The density matrix of one qubit can be expressed as

I
p= §+Z%‘Uu (10)

where 0; € {X,Y, Z}. Under the depolarizing error with an
error rate of €1, the density matrix changes to

S
pe = (1—e)p+ 22711(2 0ipoi)
= (1- <) + Yo
= €1 D) i YiOi
€1 I
+ ﬁ Zai(§ + Z’j/jO'j)O'i
i J
I €1 3

I 4
:57(1751)2%, (11)

where 0; € {X,Y, Z}.
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We can express a two qubit density matrix as
4

I®lI
p= 92 +Z’}/1'7j0'¢®0'j, (12)
(2%
where 0;,0; € {I,X,Y,Z} and 711 = 0. Under the two-
qubit depolarizing error with an error rate of €3, the density
matrix transforms as

4
I®I
pe=(1—e2)(——+ > ijoi®0;)

ij
c 4
2
+ Qi ®ay)
ij
4
I®I
( e T Z’Yk,lffk ® 01)(0i ® 7))
kel
® 4
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The one-qubit depolarizing error acting on the first qubit

changes the two-qubit density matrix as
4
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When the single-qubit and two-qubit depolarizing errors
are combined, the two-qubit density matrix can be expressed
with the number of single-qubit gates /N1 and the number of
two-qubit gates No as

4
I®1 1 16
pe =+ (- =)V (1 - o)™ ;(%,jfh‘ ®0;).

(16)
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APPENDIX B MITIGATION RESULTS

TABLE 1. Error mitigation result for the five-qubit case.

Error Model Unmitigated ANN  CANN
Depolarizing 7.8e-5 6.1e-5  6.0e-5
(0.79) 0.77)
IBM Q Noise 6.0e-4 3.1e-4 2.7e-4
w/o MEM (0.52) (0.44)
IBM Q Noise 4.6e-4 3.0e-4  2.6e-4
with MEM (0.65) (0.55)
TABLE 2. Error mitigation result for the three-qubit case.
Error Model Unmitigated ANN  CANN
Depolarizing 1.7e-4 l.le-4  l.le-4
(0.65) (0.62)
IBM Q Noise 6.9e-4 2.4e-4 2.1e-4
w/o MEM (0.36) (0.30)
IBM Q Noise 3.8e-4 2.4e-4  2.0e-4
with MEM (0.62) (0.52)
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