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1 Introduction

A number of cosmological observations through gravitational interaction indicate that

about 25% of the energy budget of the current Universe consists of nonbaryonic dark

matter (DM). So far almost nothing is known about the physical nature of DM: the num-

ber of DM species in the universe, their masses and spins, and their interactions among

themselves and with the Standard Model (SM) particles. These can be revealed only by

nongravitational observation of physical effects related with DM particles. And various

types of DM searches have been performed all around the globe.
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From the view point of particle physics described by quantum field theory, one of the

most important and fundamental properties of DM is that it should be absolutely stable

or long-lived enough in order to make DM of the Universe. Let us remind ourselves that

electron stability in the SM is related with unbroken U(1)em and massless photon. The

longevity of proton is also attributed to the baryon number being an accidental global

symmetry of the SM and being broken only by dim-6 operators. Likewise, one can assume

that the absolute stability of DM is due to some local dark gauge symmetry, and long-lived

DM is due to some accidental global symmetry of the underlying dark gauge symmetry.1

Then this class of DM models come with extra particles such as dark photon (or dark gauge

bosons), dark Higgs and sometimes excited DM because of the underlying local dark gauge

symmetries. Depending on the mass scales of these new particles and their interaction

strengths, one can imagine new interesting phenomenology would be anticipated in the

dark sectors. In particular if some of them are light, they can play the role of light

mediators which are often introduced to the DM phenomenology in order to solve some

puzzles in the vanilla CDM paradigm. In short one can introduce light mediators in order

to keep gauge invariance, which is well tested principle in the SM.

In the literature, based on the weakly interacting massive particle (WIMP) models,2

scalar/vector light force mediators interchanged among the dark matter particles are some-

times introduced as a solution to some problems that the vanilla CDM models encounter.

Such models are called the self-interacting dark matter (SIDM). The attractive/repulsive

forces between the two dark matter particles can enhance/reduce the annihilation cross

section times the relative speed (σv) which is an important input for determination of

both thermal relic density and indirect detection signatures of DM. This is called the Som-

merfeld effect.3 If the annihilation rate of the dark matter particles in our galaxy is boosted

by this effect, SIDM might become a solution to the positron excess observed by PAMELA

and AMS-02 [17–19]. SIDM also provides the potential to resolve the “missing-satellite

problem” [20, 21], the “core-cusp problem” [22, 23], and the “too-big-to-fail problem” [24–

26]. These problems are beyond the scope of this paper, and due to the controversies on

these issues [27–29], we do not consider these effects, but only point out that the SIDM

models are stringently constrained by the CMB distortion observations [30]. The cluster

observations and simulations, e.g., the bullet cluster also constrains the self-interaction

parameters of the dark matter particles [31–37].

The Sommerfeld effects are the resonant effect of the so-called “zero-energy” bound

state of a dark matter particle pair. If the interaction is sufficiently strong and the mediator

is sufficiently light, the dark matter can also form a real bound state while emitting a medi-

1There are other possibilities: lightest supersymmetric particles (including massive gravitino case) be-

come good cold dark matter (CDM) if R-parity is assumed to be conserved. Or lightness of DM particles

can make them long-lived enough, e.g. light axions or sterile neutrinos. We do not consider these possibili-

ties since there are no light force mediators that can make DM bound states, which is the main theme of

this paper.
2See ref. [1] for example.
3For the original work by A. Sommerfeld, see [2]. And for some early applications in the dark matter,

see [3–16].
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ator particle to keep the energy conservation. Many of the models are built and calculated.4

Refs. [38, 39] had shown the general derivations of the dark matter bound state formations

on various situations with the tools of Bethe-Salpeter wave functions. For the applications

on the WIMP model, ref. [40] calculated the modified Boltzmann equation including the

contributions from the bound state formations. Its eq. (34) clearly shows the competition of

the decay and dissociation of the bound state particles. Refs. [41–74] are the recent papers

which had built or calculated the dark matter models in which bound state can be formed.

In this paper, we shall consider a case where DM is absolutely stable due to the un-

broken Z2 symmetry assumed to be the remnant of an underlying local U(1) dark gauge

symmetry.5 In this case, both the dark photon and dark Higgs boson are mediators of the

dark force. It should be interesting to study the dark matter bound state formation in ad-

dition to the Sommerfeld enhancement in such a scenario. We will find that the emission of

the longitudinal dark photon plays a crucial role compared with the refs. [38, 39]. Together

with the situation of the dark Higgs boson emission, these processes are controlled by the

wave function “overlap” I, and its zeroth order expansion is no longer zero in our case,

unlike in refs. [38, 39]. This will affect significantly the DM relic density after the first-step

annihilation of the DM particles, and such a second epoch process is called the “reanni-

hilation” [85–89] in the literature. In our model, the reannihilation mainly occurs in the

co-annihilation channel of the dark matter and its nearly-degenerated partner. Therefore,

the suppression of the relative number density of the heavier component automatically

switches off the re-annihilation before xf . 106. Such an early re-annihilation does not

disturb the Big-Bang Nucleosynthesis (BBN), as well as the cosmological epochs afterwards.

Another possibility for the DM stability is to assume a global dark symmetry. For

example in ref. [90], S. Weinberg introduces a global dark U(1) symmetry that is spon-

taneously broken into its Z2 subgroup. In that framework, the Goldstone boson becomes

the fractional cosmic neutrinos (or dark radiation) and is constrained by CMB and other

cosmological observations. However DM-stabilizing global symmetry may be broken by

non-renormalizable operators, especially due to the gravity effects, which may induce fast

decay of the DM particle with the O(10) GeV or heavier masses. This issue could be simply

evaded by implementing a global dark gauge symmetry to its local version. Compared with

the global dark U(1) symmetry, the local U(1) dark gauge symmetry could guarantee the

DM stability even in the presence of the non-renormalizable higher dimensional operators

(see discussions in refs. [76, 91]). And due to the existence/absence of the dark photon,

the resulting phenomenology varies significantly in these two situations. For example, the

viable mass ranges of the DM particles would be completely different in both cases.6

In some literature, one introduces the soft-breaking term to explicitly break the local

or global dark U(1) symmetry without a detailed mechanism [92, 93], or considers non-

renormalizable interactions [94]. These models suffer from the potential risk to break the

4See ref. [38] for the references on the early dark matter bound state models therein.
5The case of the scalar DM model with local Z2 and Z3 symmetries were considered in refs. [75] and [76,

77], respectively. Similar models have been discussed in refs. [78–84] in different contexts.
6Work in preparation, with Seungwon Baek, Toshinori Matsui and Wan Il Park.

– 3 –



J
H
E
P
1
0
(
2
0
2
0
)
0
8
2

unitarity.7 One can cure this problem by introducing the dark Higgs mechanism to spon-

taneously break the dark U(1) symmetry and keeping only the renormalizable couplings

between the dark Higgs and the fermionic dark matter.

The paper is organized as follows. In section 2, we show our relied Lagrangian of

the Z2 Fermionic model. Some basic features of this model are also discussed. In sec-

tion 3, we classify the bound states by their quantum numbers. The potentials in the

Schrödinger equations are also derived. These potentials are generated by the mediation

of the dark photon and dark Higgs boson exchanged between the (excited) DM particles,

and in particular, we derive the potential terms induced by the longitudinal dark photon,

or equivalently the Goldstone boson for the first time to our best knowledge. In section 4,

we illustrate the methods to calculate the bound state formation cross sections and the

bound state decay induced by the component annihilation in our model. The modified

Boltzmann equations are also demonstrated. In section 5, we present the numerical results

based on the formulas in the previous sections. Experimental constraints and comparisons

with some earlier literature which ignored the longitudinal dark photon are also presented.

Finally we summarize in section 6 with future prospects. A number of technical issues are

described in detail in appendices.

2 Model setup

We start from a dark U(1) model, with a Dirac fermion dark matter (DM) χ appointed with

a nonzero dark U(1) charge Qχ and dark photon. We also introduce a complex dark Higgs

field Φ, which takes a nonzero vacuum expectation value, generating nonzero mass for the

dark photon. We shall consider a special case where Φ breaks the dark U(1) symmetry

into a dark Z2 symmetry with a judicious choice of its dark charge QΦ.

Then the gauge invariant and renormalizable Lagrangian for this system is given by

L = −1

4
F ′µνF ′µν −

ε

4
F
′
µνB

µν + χ /Dχ−mχχχ+DµΦ†DµΦ (2.1)

−µ2Φ†Φ− λΦ|Φ|4 +

(√
2

2
yΦχCχ+ h.c.

)
− λΦHΦ†ΦH†H

where F ′µν = ∂µA
′
ν − ∂νA′µ, and A′µ is the dark U(1) gauge field. Dµ = ∂µ + iQgA′µ is the

covariant derivative, where g is the dark coupling constant, and Q is the dark charge that

Φ and χ takes. Note that we made a judicious choice,

QΦ = −2Qχ,

in order to allow the (yΦχCχ+ h.c.) term, which will give rise to the mass splitting of the

dark matter components. Here χC means the charge conjugate of the Dirac field χ, and

Bµν = ∂µBν −∂νBµ is the field strength tensor associated with the SM U(1)Y hypercharge

gauge field. The kinetic mixing term (∝ ε) and the Higgs portal interaction (∝ λΦH) com-

municate the dark and the standard model sectors. These parameters are constrained by

7See appendix A for a detailed calculation.
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various experimental results, especially for the ε from the dark photon searches. The λΦH

is constrained by collider searches for the exotic and invisible Higgs decay widths and the

direct detections of fermionic Higgs-portal dark matter. More details on such constraints

will be addressed in section 5.2. However, an appropriate value of λΦH within the con-

straints is enough to contact the dark and the standard model sectors, keeping them to be

in thermal equilibrium in the early universe. We will explain the details in later discussions.

Let us first decompose χ into two Weyl spinors,

χ =

[
χL

iσ2χ∗R

]
.

For µ2 < 0, the dark Higgs Φ will take a nonzero vacuum expectation value vΦ, and we

expand it as the following:

Φ =
vΦ +R+ iI√

2
.

Written in the basis of χL and χR, the mass matrix of the fermions becomes

L ⊃ 1

2
[χTL χTR ]

[
δm mχ

mχ δm

][
χL

χR

]
+ h.c., (2.2)

where δm ≡ yvΦ. After diagonalizing (2.2), we acquire

χ1 =
1√
2

(χL − χR),

χ2 =
i√
2

(χL + χR), (2.3)

and the corresponding mass matrix

1

2
[χT1 χT2 ]

[
mχ − δm 0

0 mχ + δm

][
χ1

χ2

]
+ h.c.. (2.4)

We can clearly see that one Dirac fermion χ splits into two nearly-degenerate Majorana

fermions χ1 and χ2 if δm� mχ. Both of them are odd in a remained dark Z2 symmetry,

while all the other particles are even. The lighter one is the candidate of dark matter. Its

stability is preserved by this dark Z2 symmetry. In this paper, without loss of generality,

we adopt δm > 0 thus χ1 is the dark matter particle.

After Φ(x) takes the nonzero vacuum expectation value

vΦ =

√
µ2

λΦ
, (2.5)

R and dark photon acquires a positive mass

mR =
√

2µ,

mγ′ = |QΦgvΦ|. (2.6)
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The Goldstone boson (GB) “I” is “eaten” by the dark photon to become its longitudinal

mode. However, it is convenient to apply for the “Goldstone equivalent theorem” to cal-

culate and understand some processes. Therefore, the GB I will appear in some following

discussions.

The
√

2yΦχCχ term will induce the following Yukawa interaction terms:

L ⊃ 1

2
[χT1 χT2 ]

[
−yR yI

yI yR

][
χ1

χ2

]
+ h.c.. (2.7)

The dark photon interactions with χ1 and χ2 become

L ⊃ [χ†1 χ
†
2 ]

[
0 QχgA

′ · σ
−QχgA′ · σ 0

][
χ1

χ2

]
+ h.c.. (2.8)

where σµ = (1, ~σ). In the following we shall focus on the case of light mediators,

mγ′ ,mR � mχ1 . mχ2 .

If the dark photon get massive through Stückelberg mechanism and the mass difference

between χ1 and χ2 is generated by soft U(1) breaking term, the dark Higgs degrees of

freedom would be absent. And the usual pair annihilation of (excited) DM occur through

the channels,

χi + χi → γ′ + γ′ (i = 1, 2). (2.9)

On the other hand, if we include the dark Higgs degree of freedom, we have two more

additional channels: the annihilation into a pair of dark Higgs bosons,

χi + χi → R+R (i = 1, 2), (2.10)

and the co-annihilation channel into dark photon and dark Higgs,

χ1 + χ2 → γ′ +R. (2.11)

Both of them could be important during the freeze-out processes. The γ′-mediated s-

channel annihilation,

χ1 + χ2 → γ′∗ → SM particles

would be suppressed by the small kinetic mixing between the γ′ and SM vector bosons, so

it shall be ignored in our paper. In the current universe, χ2 had all decayed away, so (2.11)

is absent when we consider the indirect detection constraints.

3 Dark matter bound state classification

In the parameter space mR,γ′ � mχ, two χ1,2 particles can form bound states by emitting

R and/or γ
′
. Before calculating the χ1,2 bound state formation rates and their relevance

to DM phenomenology, it is beneficial to discuss the dark matter bound states when dark

U(1) symmetry is strictly conserved.

– 6 –
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3.1 The case of unbroken U(1)

In the case of unbroken dark U(1), the dark fermion χ, together with its anti-particle

χ, make a pair of Dirac (anti-)fermions. In this case, the γ′ exchange mediates a repul-

sive interaction in the same charged |χχ〉 or |χχ〉 states, while it becomes attractive in

the different charged |χχ〉 state, just like the situation between electron/electron or elec-

tron/positron pairs in ordinary QED. Interestingly, the interchange of the boson Φ(∗) will

cause the oscillation between |χχ〉 ↔ |χχ〉 states, unlike the usual case that scalars will

always induce an attractive force.

The total wave function of such kinds of fermion pairs can be written as∫
d3~x(ψχχ(~x)|χχ〉+ ψχχ(~x)|χχ〉)⊗ |~x〉 ⊗ |Spin〉,∫
d3~x(ψχχ(~x)|χχ〉+ ψχχ(~x)|χχ〉)⊗ |~x〉 ⊗ |Spin〉, (3.1)

where we define

ψχχ↔χχ(~x) =

[
ψχχ(~x)

ψχχ(~x)

]
,

ψχχ↔χχ(~x) =

[
ψχχ(~x)

ψχχ(~x)

]
(3.2)

as the wave function in the coordinate representation, and ~x is the relative distance between

the two particles. The Schrödinger equations are given by

−
~∇2

mχ
ψχχ↔χχ(~x) + Ṽsψχχ↔χχ(~x) = Eψχχ↔χχ(~x),

−
~∇2

mχ
ψχχ↔χχ(~x) + Ṽdψχχ↔χχ(~x) = Eψχχ↔χχ(~x), (3.3)

where

Ṽs =

[
−Vγ′

−Vγ′

]
, Ṽd =

[
Vγ′ VΦ

VΦ Vγ′

]
, (3.4)

with

Vγ′ = −(Qχg)2

4π

1

r
, VΦ = −2y2

4π

e−mΦr

r
,

which contains the contributions from both real and imaginary parts of the Φ(∗). Note

that mΦ is the mass of Φ in the unbroken U(1) symmetry case. Diagonalizing the V ′d will

simplify each equation in the (3.3) to four decoupled equations.

Although Ṽs has already been diagonalized, we still rotate the basis for further dis-

cussions. The four corresponding particle states with their potential can then be written

– 7 –
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as

1√
2

(|χχ〉+ |χχ〉), − Vγ′ ,

1√
2

(|χχ〉 − |χχ〉), − Vγ′ ,

1√
2

(|χχ〉+ |χχ〉), Vγ′ + VΦ,

1√
2

(|χχ〉 − |χχ〉), Vγ′ − VΦ. (3.5)

It will be convenient to rewrite the above bases in the |χiχj〉 forms. Notice that if we define

the 4-spinor with the Weyl spinors defined in (2.3),

χ̃1 =

[
χ1

iσ2χ∗1

]
, χ̃2 =

[
iχ2

−σ2χ∗2

]
, (3.6)

we find that the four-spinor χ and χC can be written in the form of

χ =
χ̃1 − iχ̃2√

2
,

χC = − χ̃1 + iχ̃2√
2

. (3.7)

This prompts us to

|χ〉 =
1√
2

(|χ1〉 − i|χ2〉),

|χ〉 = − 1√
2

(|χ1〉+ i|χ2〉). (3.8)

Now we rewrite (3.5) to be

1√
2

(|χ1χ1〉 − |χ2χ2〉), − Vγ′ , (3.9)

1√
2

(|χ1χ2〉+ |χ2χ1〉), − Vγ′ , (3.10)

1√
2

(|χ1χ1〉+ |χ2χ2〉), Vγ′ + VΦ, (3.11)

1√
2

(|χ1χ2〉 − |χ2χ1〉), Vγ′ − VΦ, (3.12)

where the unimportant universal minus signs and phases i = eiπ in the states

of (3.10), (3.11) and (3.12), have been neglected. From (3.12) we can clearly see that

only 1√
2
(|χ1χ1〉 + |χ2χ2〉) feels a completely attractive potential. The interactions in

1√
2
(|χ1χ2〉+ |χ2χ1〉) and 1√

2
(|χ1χ1〉 − |χ2χ2〉) are completely repulsive, thus a bound state

cannot be formed.

Remember that the total state of a fermion pair should be anti-symmetric when we

interchange the two fermionic components in all parts of the state vector. From (3.12) we

– 8 –
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can clearly see the symmetry properties of the wave functions. Therefore, L+S should be

even when combined with the 1√
2
(|χ1χ1〉± |χ2χ2〉), 1√

2
(|χ1χ2〉+ |χ2χ1〉), and L+S should

be odd when combined with the 1√
2
(|χ1χ2〉 − |χ2χ1〉).

3.2 The case of U(1) → Z2 breaking

If the dark U(1) is spontaneously broken into its Z2 subgroup, δm 6= 0. Then it is convenient

to write the Schrödinger equation in the |χiχj〉 basis. The total wave function becomes∫
d3~x(ψχiχj (~x)|χiχj〉)⊗ |~x〉 ⊗ |Spin〉. (3.13)

If we define

ψs =

[
ψχ1χ1(~x)

ψχ2χ2(~x)

]
, ψd =

[
ψχ1χ2(~x)

ψχ2χ1(~x)

]
, (3.14)

the Schrödinger equation can be written as

−
~∇2

mχ
ψs(~x) + Vsψs(~x) = Eψs(~x), (3.15)

−
~∇2

mχ
ψd(~x) + Vdψd(~x) = Eψd(~x), (3.16)

where

Vs =

[
VR (Vγ′ + Vγ′L)

(Vγ′ + Vγ′L) (VR + 4δm)

]
, Vd = −

[
(VR − 2δm) (Vγ′ − Vγ′L)

(Vγ′ − Vγ′L) (VR − 2δm)

]
. (3.17)

Here the three potentials are derived by calculating the Fourier transformation of the

χiχj → χi′χj′ tree-level amplitudes. The results are

VR = − y
2

4π

e−mRr

r
, (3.18)

Vγ′ = −(Qχg)2

4π

e−mγ′r

r
, (3.19)

Vγ′L = − y
2

4π

e−mγ′r

r
. (3.20)

One can diagonalize (3.17) and compare the results with (3.9)–(3.12) in the δm→ 0 limit

for a validation. The Vγ′L = − y2

4π
e
−mγ′r

r originate from the i
q2−m2

γ′

kµkν

m2
γ′

term in the γ′ prop-

agator, where kµ and kν finally contract with the on-shell spinors, inducing a (mχ1−mχ2)2

term, which is proportional to y2v2
Φ. Eliminating the v2

Φ with the m2
γ′ in the denominator,

and Q2
Φg

2 cancels with the coupling constants, we finally realize that Vγ′L is contributed

from the longitudinal polarization of γ′. A similar description with a nearly-degenerate

multi-component dark matter model is described in detail in ref. [95].

– 9 –
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Another analysis of the Vγ′L is through the Goldstone equivalent theorem. This term

can be understood originating from the exchange of the Goldstone boson I. In the non-

breaking limit, vΦ → 0, one can find that I-contribution from the VΦ in the (3.11)–(3.12)

is equivalent to the longitudinal Vγ′L appeared in (3.20).8

For the (3.16), the result is the same as the δm = 0 case: this is because, from the

structure of Vd in the (3.17), we can see the extra δm appearing in both of the diagonal ele-

ments does not disturb the diagonalizing process of the wave functions. Such a δm here only

shift the total energy, so the (3.16) can still be decoupled into two independent equations

by diagonalizing the Vd. A standard “shooting-method” is applicable for these equations.

However, for the (3.15), the final wave functions will be a mixing between the |χ1χ1〉±|χ2χ2〉
basis. In the following text, we will address the method for solving these equations in detail.

The general wave functions described by the eq. (3.15) are given by∫
d3~x(ψχ1χ1(~x)|χ1χ1〉+ ψχ2χ2(~x)|χ2χ2〉)⊗ |~x〉 ⊗ |Spin〉. (3.21)

Let us decompose them into the radial and the angular parts using spherical Harmonics:

ψχ1χ1(~x) = κ
3
2

[
χ1nl(κr)

κr

]
Ylm(Ω~r)

ψχ2χ2(~x) = κ
3
2

[
χ2nl(κr)

κr

]
Ylm(Ω~r), (3.22)

where κ = µrα
′ is the inverse “Bohr radius” and µr is the reduced mass of the χχ system.

The parameter α′ is some arbitrary reference value which reflects the typical dark

interaction strength (see the discussions below). For the value of α′, it can be arbitrary,

and all the α′ dependencies will cancel out in the end, leaving all of the physical observables

are undisturbed. However, an improper α′ selection might cause some instabilities in

our practical numerical calculations, especially when we are manipulating the exponential

suppression of the x→∞ asymptotic condition of the bound states. For this purpose, we

recommend α′ = Max{ (Qχg)2

4π , y2

4π}.
Then, the wave equation for the radial part wave function becomes

χ′′nl(x) +

[
− l(l + 1)

x2
− γ2 − 2Vs,α′

]
χnl(x) = 0, (3.23)

where

χnl(x) =

[
χ1nl(x)

χ2nl(x)

]
(3.24)

is the radial wave function vector, and the potential term is given by

Vs,α′ =

 − c1e
− x
ξ1

x − (c2+c1)e
− x
ξ2

x

− (c2+c1)e
− x
ξ2

x − c1e
− x
ξ1

x + δγ2

 . (3.25)

8We applied the “on-shell approximation” described in ref. [38]. However, for a general Rξ gauge, the

validity of this approximation is a little bit subtle. We illustrate this in the appendix C.
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Here c1 = y2

4πα′ , c2 =
(Qχg)2

4πα′ are the relative interaction strength compared with the α′, ξ1 =
κ
mR

and ξ2 = κ
mγ′

are the characteristic length scales of the Yukawa potentials generated

by dark Higgs R and the dark photon γ
′
, respectively. The parameter γ is related with the

energy eigenvalue in the unit of the “Bohr energy”, and is defined as

γ =

√
−2µrE

κ
, (3.26)

where E is the energy eigenvalue of the Schrödinger equation. Finally we introduce another

new parameter δγ2, which is the reduced 2δm:

δγ2 =
4δmµr
κ2

. (3.27)

3.3 Solving the Schrödinger equations for the bound states

Solving the Schrödinger equations for the bound states is based upon the so-called “shooting

method”. The boundary conditions at the x→∞ are replaced by some finite values. Here

we adopt χnl(x = 12) = 0. Without loss of generality, we assume δγ > 0. Notice that if x

is sufficiently large, the asymptotic behaviors of the χ1nl and χ2nl become{
χ1nl(x→∞) ∼ e−γx

χ2nl(x→∞) ∼ e−
√
γ2+δγ2x.

(3.28)

This means that χ2nl drops faster than the χ1nl in the x → ∞ condition, so a universal

infinite boundary condition χnl(x = 12) = 0 will cause the numerical instability in the

χ2nl calculations. Therefore, we need to reduce the χ2nl boundary area. Observing the

structure of (3.25), we realize that when the absolute value of the off-diagonal element

| (c2+c1)e
− x
ξ2

x | is much smaller than |δγ2|, χ1nl and χ2nl will nearly decouple and evolve

independently. Then if | c1e
− x
ξ1

x | � δ|γ2|, χ2nl ∼ e−
√
γ2+δγ2x which vanishes quickly. The

boundary condition on χ2nl should be determined in the intersection of these two ranges.

Noticing that in our following numerical calculations, we adopt c1 ≤ c2, and ξ1 ∼ ξ2 by

the order of magnitudes, after various trials with the criterion of a smoothly-shaped wave

function, we finally choose to solve the following simple equation

c2e
−x
′
0
ξ2

x′0
=
δγ2

20
. (3.29)

to acquire x′0 > 0 in our following calculations. Obtain x0 = Min{x′0, 12}, fix some γ2,

and adopt the initial condition {
χ1nl(x→ 0) = xl+1

χ2nl(x→ 0) = Axl+1
(3.30)

to use some numerical method to solve the (3.23) from x→ 0 to x0. Then we can find the

appropriate A for χ2nl(x0) = 0, delete all the terms involving χ2nl(x), and solve the χ1nl(x)
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Figure 1. Wave functions of the ground state for different δγ2. Here we adopt c1 = 0.35, c2 = 1,

ξ1 = 200, ξ2 = 100. We can see clearly that the χ2 reduces as the δγ2 accumulates. Here we only

plot the A > 0 case, and the wave functions are normalized.

equation. We continue to solve the χ1nl(x) within the range [x0, 12]. Changing different

γ2 and repeating the above process, we can finally reach χ1nl(12) = 0 and determine the

eigenvalue γ2.

Let us note that when we determine the A in the first step, there might be two solutions.

One is A > 0, and the other is A < 0. Both of them are possible and can give different γ2’s in

the final step. In the δγ → 0 limit, these two solutions degenerate to the 1√
2
|χ1χ1〉+ |χ2χ2〉

and 1√
2
|χ1χ1〉 − |χ2χ2〉 states described in the (3.10), (3.12). As the δγ2 accumulates, the

wave function will depart from the (3.10), (3.12). This can be clearly seen from figure 1.

As the δγ2 accumulates, the χ2χ2 elements will be reduced in the ground-state wave

functions, so the system will become more similar to the one-component situations. In

figure 2, we can see that as δγ2 increases, the bound energy parameter γ2 approaches 0.

This indicates that the χ2 decouples in the large δγ2 limit.

For the completeness of this section, we point out that (3.16) can also be decomposed

into the combinations of the angular and radial components following the similar processes.

The radial functions are similar to (3.23), and the potential term Vs,α′ should be replaced by

Vd,α′ =

 c1e
− x
ξ1

x
(c2−c1)e

− x
ξ2

x

(c2−c1)e
− x
ξ2

x
c1e
− x
ξ1

x

 , (3.31)

where the universal energy shift δm terms are removed. One can still follow the steps

described above, or beforehand diagonalize (3.31) to solve the wave functions.

The above discussions mainly focus on the spatial part of the wave function. The total

wave function of a fermionic pair expressed by (3.1), (3.13) should be anti-symmetric. One

might be familiar with the L+ S being odd or even for an identical particle system, how-

ever, here, we need to take into account the “flavour” wave function |χiχj〉. For example,

if the “flavour” part is given by 1√
2
(|χ1χ2〉 − |χ2χ1〉) which is anti-symmetric, we need an

odd L+S, which is corresponding for a symmetric configuration-spin wave function, so the

– 12 –
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Figure 2. γ2, which indicates the bound-energy, versus different c1 and δγ2. Here c2 is fixed to be

1, and ξ1 = 200, ξ2 = 100.

|χiχj〉 property Sign of A Sign of L+ S n2s+1l
s/d±
J

|χ1χ1〉 ↔ |χ2χ2〉 + Even 11Ss+
0 , 13Ps+

0,1,2, 21Ss+
0

|χ1χ1〉 ↔ |χ2χ2〉 − Even 11Ss−
0 , 13Ps−

0,1,2, 21Ss−
0

|χ1χ2〉 ↔ |χ2χ1〉 − Odd 13Sd−
1 , 11Pd−

1 , 23Sd−
1

|χ1χ2〉 ↔ |χ2χ1〉 + Even Bound state does not exist.

Table 1. Quantum characters of different states.

totally anti-symmetric wave function is acquired. Combining all the descriptions above,

and considering the anti-symmetry character of the fermion pairs, we can then classify the

bound states with the quantum numbers characterized in table 1. We had extended the tra-

ditional spectroscopic notation n2s+1lJ symbol to n2s+1l
s/d
J ±, where “s” or “d” indicates the

“same” or “different” in the |χiχj〉 wave function, and ± indicates the sign of A at the origin

of the wave functions. The bound state does not exist in the last line of table 1, which has

been described in the previous discussions of (3.10). For the second line of table 1, similar to

the (3.9), usually the bound state does not exist. However, notice that because mγ′ 6= mR,

in some particular parameter space, (3.25) can induce some kind of “molecule-like” poten-

tials. In this paper, we only list the quantum number possibilities of the bound state in

the second line of table 1. However such “molecule-like” weird bound states are omitted

in the following discussions for simplicity. This situation is left for our future researches.

In the following of this paper we are going to calculate the contributions from these

bound states listed in table 1 to the freeze-out processes.
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4 Bound state formation cross section and dissociation rate

4.1 Calculation of bound state formation cross section

The dark matter bound states are formed by the scattering of two free dark matter particles,

with emission of γ′ or R that takes the extra energy away from the bound system. Now

we are going to calculate the transition amplitudes. Our discussions and derivations are

based on the symbols in refs. [38, 39]. Although refs. [38, 39] did not consider the multi-

component wave functions, we can just extend the “overlap” integrals I, ~J and K in the

(2.7a-c) of ref. [39] to the two-component case rather than deriving them starting from the

Dyson-Schwinger equations. We omit the radiation from the interchanging mediators due

to the reason described in appendix D.

Below let us first list the integrals required in this paper:

I
s,~k,nlm

(~b) =

∫
d3~rψ∗s,nlm(~r)σ3φ

s,~k
(~r)e−i

~b·~r, (4.1)

I
d,~k,nlm

(~b) =

∫
d3~rψ∗d,nlm(~r)σ3φ

d,~k
(~r)e−i

~b·~r, (4.2)

I+

s → d,~k,nlm
(~b) =

∫
d3~rψ∗d,nlm(~r)(σ1)φ

s,~k
(~r)e−i

~b·~r, (4.3)

I+

d → s,~k,nlm
(~b) =

∫
d3~rψ∗s,nlm(~r)(σ1)φ

d,~k
(~r)e−i

~b·~r, (4.4)

I−
s → d,~k,nlm

(~b) =

∫
d3~rψ∗d,nlm(~r)φ

s,~k
(~r)e−i

~b·~r, (4.5)

I−
d → s,~k,nlm

(~b) =

∫
d3~rψ∗s,nlm(~r)φ

d,~k
(~r)e−i

~b·~r, (4.6)

~J +

s→d,~k,nlm
(~b) = i

∫
d3~r~∇[ψd,nlm(~r)](iσ2)φ

s,~k
(~r)e−i

~b·~r, (4.7)

~J +

d→s,~k,nlm
(~b) = i

∫
d3~r~∇[ψs,nlm(~r)](iσ2)φ

d,~k
(~r)e−i

~b·~r, (4.8)

~J −
s→d,~k,nlm

(~b) = i

∫
d3~r~∇[ψd,nlm(~r)]σ3φ

s,~k
(~r)e−i

~b·~r, (4.9)

~J −
d→s,~k,nlm

(~b) = i

∫
d3~r~∇[ψs,nlm(~r)]σ3φ

d,~k
(~r)e−i

~b·~r, (4.10)

K
s,~k,nlm

(~b) = −
∫
d3~r~∇2[ψ∗s,nlm(~r)]σ3φ

s,~k
(~r)e−i

~b·~r, (4.11)

K
d,~k,nlm

(~b) = −
∫
d3~r~∇2[ψ∗d,nlm(~r)]σ3φ

d,~k
(~r)e−i

~b·~r. (4.12)

Here I and K are related to the R−emission processes, while ~J corresponds to the

γ′−emission process. ~b is the variable for these functions, and will be set to some-

thing like
~pγ′,I,R

2 in our later discussions. ψ(sd),nlm(~r) is the two-component wave func-

tion for the bound state with the notations n2s+1l
s/d
J . and φs/d,k̃(~r) is the two-component

“same/different particle species” wave function for the scattering state with the (unre-

duced) initial relative momentum ~k. In the following texts, we will express all these overlap

integrals with the radial wave functions for further calculations. For the two-component
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Figure 3. Sketch diagrams emitting a R scalar boson. Notice that since the χ1χ1R and χ2χ2R

couplings take different sighs, so the χ∗1l2ki(x)χ1nl1(x) and χ∗2l2ki(x)χ2nl1(x) should also take the

opposite sign.

dark matter model, coupling constants might be different for each component. Therefore,

for notational convenience, we introduce 2 × 2 Pauli spin matrices σi in (4.1)–(4.12) to

connect the two doublet wave functions, although these wave functions have no direct

relationship with any SU(2) group. The reason for us to adopt σ3 in the I and K has

been sketched in the figure 3. Notice that the couplings of χ1 − χ1 − R and χ2 − χ2 − R
take opposite signs, so that ψχ1χ1 ↔ ψχ1χ1 and ψχ2χ2 ↔ ψχ2χ2 , or ψχ1χ2 ↔ ψχ1χ2 and

ψχ2χ1 ↔ ψχ2χ1 contributions are opposite. In figure 4, we can see that the ~J + connects

the crossing components of the

[
ψχ1χ1

ψχ2χ2

]
and

[
ψχ1χ2

ψχ2χ1

]
multiplets if we take i = 1 or 2 into

figure 4. This is the reason why the σ1 and σ2 appear in the (4.1)–(4.12).

Equipped with all these overlap integrals, we are now ready to calculate the transition

amplitudes. One can directly follow the processes to derive (5.21), (5.54) in ref. [38],

and just extend all the wave functions in two-component case to acquire the transition

amplitudes for the bound state formation. In the rest frame of the final bound state

system, they are given by

M
s or d,~k→nlm+R

' −yM
√

2µr

[
I

s or d,~k,nlm

(
~pR
2

)
+ I

s or d,~k,nlm

(
~pR
2

)
(4.13)

+
K

s or d,~k,nlm

(
~pR
2

)
+K

s or d,~k,nlm

(
~pR
2

)
2Mµr

]
,

Mj

s→d,~k→nlm+γ′
' −2Qχg

√
2µr

[
2J +j

s→d,~k,nlm

(
~pγ′

2

)
− 2J −j

s→d,~k,nlm

(
~pγ′

2

)]
, (4.14)

Mj

d→s,~k→nlm+γ′
' −2Qχg

√
2µr

[
2J +j

d→s,~k,nlm

(
~pγ′

2

)
− 2J −j

d→s,~k,nlm

(
~pγ′

2

)]
, (4.15)

– 15 –



J
H
E
P
1
0
(
2
0
2
0
)
0
8
2

Figure 4. Sketch diagrams emitting a γ′. All the coupling signs are the same, but ~J + will induce

a cross relation between the components of the ψs and ψd.

where ~pR,γ′ are the momentums of the emitted R, γ′ particles respectively, and M is the

total mass of the two-body system, µr is again the center of mass reduced mass. Since

the two majorana particles are nearly degenerate, we adopt M = 2mχ, and µr =
mχ
2 ,

neglecting δm in the reduced mass µr.

With these amplitudes, we can use

vrel
dσ
{nlm}
BSF

dΩ
=

|~Pφ|
64π2M2µr

|M~k→nlm|
2 (4.16)

to calculate the differential and the total cross sections times velocity. Here ~Pφ indicates ~pR
or ~pγ′ . The calculation of the amplitude for ~k → nlm+R is straighforward: just take (4.13)

directly into (4.16). For the cross section of the process ~k → nlm+ γ′, we have to modify

eq. (3.3) in ref. [39] because the Ward identity pµγ′Mµ = 0 becomes invalid in our case. It

should be replaced with9

Mµp
µ
γ′ = ∆mMGS, (4.17)

where ∆m is the mass difference between the previous and latter fermion species in the

F-F-V vertex times the sign of the corresponding gauge coupling. Simple calculations by

enumerating all the possible vertices in figure 4 give ∆m = 2δm = 2yvΦ. MGS is the

amplitude of changing the emitting γ′ into the Goldstone boson. It is calculated to be

M
GS, s→d, or d→s,~k→nlm+γ′ (4.18)

= 2(Qχg)
√

2µr(M)

[
I+

s→d, or d→s,~k,nlm

(
~pγ′

2

)
+ I−

s→d, or d→s,~k,nlm

(
~pγ′

2

)]
.

Therefore, the

M0 =
pγ′iMi + ∆mMGS

p0
γ′

, (4.19)

9See appendix B for detailed discussions.
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so finally,∑
ε

|M~k→nlm|
2 (4.20)

= −

(
gµν −

pγ′,µpγ′,ν
m2
γ′

)
Mµ
~k→nlm

Mν∗
~k→nlm

= M j
~k→nlm

M j∗
~k→nlm

−
|pjγ′M

j
~k→nlm

+ ∆mM
GS~k→nlm|

2

p2
γ′ +m2

γ′
+

∆m2

m2
γ′
|M

GS~k→nlm|
2.

Notice that (∆m)2

(mγ′ )
2 = 4y2

Q2
χg

2 , and the Q2
χg

2 will be cancelled with the coupling constants

in (4.18). Therefore, the third term in (4.20) is actually the Goldstone-equivalent term.

For all of these overlap integrals, they should be treated differently in two kinematic

regimes. When µv & κ, Born approximation is valid, and many higher angular momentum

partial waves participate the process. And the distortion of the scattering state wave func-

tions compared with the plane wave functions is not that severe, so we can use plane wave

to approximate for the scattering wave functions to preserve the higher angular momen-

tum partial wave contributions. Furthermore, when µv2 . κ, the momentum pγ′/R ∼ Max

{µv2, µα′2} of the radiated γ′/R becomes much smaller than the κ. Therefore its higher

angular momentum partial wave contributions are suppressed due to the small value of

jl(
pγ′/Rx

2κ ) when x . 1
α′ . Also the distortions of the scattering wave functions become sig-

nificant, so we use the lowest partial waves to calculate the boundstate formation processes.

In practical calculations, usually the two ranges µv & κ and µv2 . κ have enough overlaps

for one to determine a boundary point to shift smoothly between these two methods. Practi-

cally, after some trials on some benchmark points, and notice that pγ′/R ∼ max{µv2, µα′2},
we adopt

pγ′/R
2κ = 0.8 as the boundary between these two methods.

In the plane wave approximation (or the zeroth order Born approximation), the plane

wave function

[
e−i

~k·~r

0

]
or

[
0

e−i
~k·~r

]
is applied to estimate φ~k in different initial states. Let

us define ~b′ = ~b+~k, where ~b is still the formal variable to be replaced by
~pγ′/R

2 in the actual

following calculations. Notice that one can express a plane wave in terms of the spherical

Bessel functions jl and Legendre polynomials:

e−i
~b′·~r =

∞∑
l=0

(2l + 1)(−i)ljl(b′r)Pl(b̂′ · r̂). (4.21)

Then, after some expansions and contractions of the integrations, we acquire∫
d3~rψ∗i,s or d,nlm(~r)e−i

~b′·~r = (−i)l 4π
κ

3
2

∫ ∞
0

dzzY ∗lm(~Ω~b′)χinl(z)jl

(
b′z

κ

)
, (4.22)

where ψ∗i,s or d,nlm(~r) or χinl(z) are the i-th element of the two-component wave function

ψ∗s or d,nlm(~r) or χnl(z) (i=1, 2). This can be used to estimate (4.1)–(4.6). For the (4.11)–

(4.12), we can use the Schrödinger equation to eliminate the ~∇2 in ~∇2 [ψs or d,nlm(~r)], then

again apply (4.22). For the (4.7)–(4.10), we can use the partial integration method to cast
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the ~∇ to in front of e−i
~b′·~r to extract a ~b′ factor, and then apply (4.22) to calculate the

remained part.

For the partial wave method, we need to solve (3.15) and (3.16) for the complete φs/d,k̃.

As in (3.22), we extract the radial wave function χ(s/d),k̃

φ
(s/d),~k

(~x) = κ
3
2

[
χ(s/d),lk(κr)

κr

]
Ylm(Ω~r). (4.23)

In the following discussions, we only describe the “same-flavour” case in the non-zero δγ2

case. The “different-flavour” case can be directly inferred by simply setting δγ2 = 0.

Therefore, we omit the (s/d) subscripts for brevity in the rest of this subsection.

Starting from the x→ 0 boundary, eq. (3.30) need to be modified to{
χ1lk(x→ 0) = A1x

l+1

χ2lk(x→ 0) = A2x
l+1

, (4.24)

where χik indicates the two-component radial wave functions

χlk(x) =

[
χ1lk(x)

χ2lk(x)

]
, (4.25)

satisfying (3.23), (3.25), (3.31).

In the −γ2 > δγ2 case, the threshold for the inelastic scattering χ1χ1 → χ2χ2 opens.

There are two linearly independent solutions to (3.23) with potential (3.25), (3.31): A1 = 0,

A2 6= 0 and A1 6= 0, A2 = 0. With these two initial conditions, we can solve (3.23) in the

x → ∞ limit. Then we adjust the absolute value of A1 and A2, and finally acquire the

asymptotic form of χ
(1),(2)
li that correspond to the two initial conditions:{

χ
(1)
1lk(x→∞)→ sin(k1x+ δl1)

χ
(1)
2lk(x→∞)→ t sin(k2x+ δl2)

, for the A2 = 0 boundary condition,

{
χ

(2)
1lk(x→∞)→ t′ sin(k1x+ δ′l1)

χ
(2)
2lk(x→∞)→ sin(k2x+ δ′l2)

, for the A1 = 0 boundary condition, (4.26)

where k1 and k2 are the dimensionless relative momentum of the two particle pairs reduced

by κ. Recombining the two solutions (4.26), we acquire the general solution of eq. (3.23)

Alχ
(1)
lk (x) +Blχ

(2)
lk (x). (4.27)

The sine functions can be decomposed into exponential incoming and outgoing wave func-

tions

sin(kx+ δ) =
ei(kx+δ) − e−i(kx+δ)

2i
.

If we want a pure χ1χ1 initial state, we acquire{
Al1e

−iδl1 +Bl1t
′e−iδ

′
l1 = i 1

k1

Al1te
−iδl2 +Bl1e

−iδ′l2 = 0
. (4.28)
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This is the no-incoming wave function condition for χ2χ2 pair, and the incoming wave

function of χ1χ1 is normalized. The solution for Al and Bl is
Al1 = ieiδl1+iδ′l1+iδl2

e
iδ′
l1

+iδl2−eiδl1+iδ′
l2 tt′

1
k1

Bl1 = ieiδl1+iδ′l1+iδ′l2 t

−eiδ
′
l1

+iδl2+e
iδl1+iδ′

l2 tt′
1
k1

. (4.29)

For the pure χ2χ2 initial state, we have{
Al2e

−iδl1 +Bl2t
′e−iδ

′
l1 = 0

Al2te
−iδl2 +Bl2e

−iδ′l2 = i 1
k2

. (4.30)

The corresponding solutions are
Al2 = ieiδl1+iδl2+iδ′l2 t′

−eiδ
′
l1

+iδl2+e
iδl1+iδ′

l2 tt′
1
k2

Bl2 = − ieiδ
′
l1+iδl2+iδ′l2

−eiδ
′
l1

+iδl2+e
iδl1+iδ′

l2 tt′
1
k2

. (4.31)

With (4.29) and (4.31), we can also calculate the χ1χ1 ↔ χ2χ2 cross sections, and the χiχi
self-scattering cross sections. However, in this paper, we shall only utilize Al1,2χ

(1)
li (x) +

Bl1,2χ
(2)
li (x) in order to calculate the wave functions’ “overlap” between the χ1χ1 or χ2χ2

initial states and the bound states.

In the 0 < −γ2 < δγ2 case, the χ1χ1 → χ2χ2 process is kinematically closed. Only

self-scattering χ1χ1 → χ1χ1 is available. In the language of wave functions,{
χ

(1)
1lk(x→∞)→ κ

k1
sin(k1x+ δl1)

χ
(1)
2lk(x→∞) ∝ e−

√
δγ2+γ2x

.

We need to adjust A1 and A2 in eq. (4.27) properly to acquire this boundary condition. In

this case, neither χ
(2)
1lk(x → ∞) nor χ

(2)
2lk(x → ∞) is available since there is no asymptotic

on-shell χ2χ2 pair on this energy.

In summary, we denote

χlk1(x) = Al1χ
(1)
lk (x) +Bl1χ

(2)
lk (x)

χlk2(x) = Al2χ
(1)
lk (x) +Bl2χ

(2)
lk (x) (4.32)

in the −γ2 ≥ δγ2 case, indicating χ1χ1 and χ2χ2 initial states, respectively. On the other

hand, for the −γ2 < δγ2 case, we would have

χlk1(x) = χ
(1)
lk (x) (4.33)

for the χ1χ1 initial states only. For the χ1χ2 or χ2χ1 initial states, (4.32) is still valid.
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Following ref. [39] and expanding e−i
~b·~r into partial waves, we acquire the following

overlap integrals for the lowest orders in the “spherical Bessel function indices”

It~k,n00
(~b) =

(
4π

κ

) 3
2 1

4π

∫ ∞
0

dxχ∗n,l=0(x)Aχ|~k|,l=0
(x)j0

(
bx

κ

)
−
√

4π

κ3
iP1(k̂·b̂)

∫ ∞
0

dxχ∗n,l=0(x)Aχ|~k|,l=1
(x)3j1

(
bx

k

)
, (4.34)

It~k,l=0→n10
(~b) = −

(
4π

κ

) 3
2

i
1

4π

∫ ∞
0

dxχ∗n,l=0(x)Aχ|~k|,l=1
(x)3j1

(
bx

κ

)
, (4.35)

It~k,l=0→n11
(~b) = −

(
4π

κ

) 3
2

i
−1

4π

√
3

2
sinθe−iφ

∫ ∞
0

dxχ∗n,l=0(x)Aχ|~k|,l=1
(x)3j1

(
bx

κ

)
, (4.36)

It~k,l=1→n10
(~b) = −

(
4π

κ

) 3
2

i

√
3

4π
cosθ

∫ ∞
0

dxχ∗n,l=0(x)Aχ|~k|,l=1
(x)j0

(
bx

κ

)
, (4.37)

It~k,l=2→n10
(~b) = −

(
4π

κ

) 3
2

i

√
3

2π
cosθ

∫ ∞
0

dxχ∗n,l=0(x)Aχ|~k|,l=1
(x)3j1

(
bx

κ

)
, (4.38)

It~k,l=2→n11
(~b) = −

(
4π

κ

) 3
2

i

√
15

4π
sinθe−iφ

∫ ∞
0

dxχ∗n,l=0(x)Aχ|~k|,l=1
(x)3j1

(
bx

κ

)
, (4.39)

where It... indicates the corresponding partial wave expansions for all the overlap inte-

grals, (4.1)–(4.6), with the upper symbol t being either empty or ±. And A is the corre-

sponding σ3 or iσ2 for each integrals. Finally χn,l(x) and χ|~k|,l(x) are the 2-dimensional

radial wave functions for the corresponding bound states or scattering states.

Compared with the ref. [39], we keep the spherical Bessel function jn
(
bx
κ

)
without

expanding them to the
(
b
κ

)n
series for more precise calculations. The indices in the jn

(
bx
κ

)
are similar to the indices of the

(
b
κ

)n
in the order of magnitude approximations. Unlike

in ref. [39], the appearance of A = σ0,1,2,3, and the non-orthogonal wave functions in I
functions leave us non-zero values for the overlap integrals,

∫∞
0 dxχ∗nl(x)Aχ|~k|,lI (x) in the

lowest order of b
κ , so the

(
b
κ

)0
order term should be calculated. However, in some cases,

the
(
b
κ

)0
order term of the I expansions is still rather small: for example, in the δγ2 →∞

case. Therefore, a
(
b
κ

)1
term is still needed, and we have expanded the Itk,n00(~b), Itk,n11(~b),

Itk,n10(~b) up to this level.

For the K’s, let us remember that the ~∇2 in the (4.11)–(4.12) can be replaced by other

parts of the Schrödinger equation in (3.15)–(3.16). Then it is easy to insert these terms

in (4.34)–(4.39) for us to acquire the corresponding K··· expansion terms.
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Finally, we show the leading order expressions for ~J functions.

~J ±~k,n00
(~b) ' −k̂

√
4π

κ

∫ ∞
0

dx

[
dχ∗n,l=0(x)

dx
−
χ∗n,l=0(x)

x

]
Aχ|~k|,l=1

(x)
3j1
(
bx
κ

)(
bx
κ

) , (4.40)

~J ±~k,n10
(~b) ' i

√
12π

κ

{(
k̂cosθ~k−

êz
3

)∫ ∞
0

dx

[
χ′n,l=1(x)−

2χn,l=1(x)

x

]∗
×Aχ|~k|,l=2

(x)j0

(
bx

κ

)
(4.41)

+
êz
3

∫ ∞
0

dx

[
χ′n,l=1(x)+

χn,l=1(x)

x

]∗
χ|~k|,l=0

(x)j0

(
bx

κ

)}
,

~J ±~k,n11
(~b) ' −i

√
6π

κ

{(
k̂sinθ~ke

iφ~k− êx+ iêy
3

)∫ ∞
0

dx

[
χ′n,l=1(x)−

2χn,l=1(x)

x

]∗
×Aχ|~k|,l=2

(x)j0

(
bx

κ

)
(4.42)

+
êx+ iêy

3

∫ ∞
0

dx

[
χ′n,l=1(x)+

χn,l=1(x)

x

]∗
Aχ|~k|,l=0

(x)j0

(
bx

κ

)}
,

~J ±~k,n1(−1)
(~b) = − ~J~k,n11

(~b). (4.43)

Here, again A is the iσ2 or σ3 corresponding to the + or − upper indices.

4.2 Pair annihilations inside the bound state particles

Once a dark matter bound state is formed, it might dissociate into two free dark matter

particle again after scattering with a dark photon or dark Higgs boson within the sur-

rounding plasma. During the dark matter freeze-out processes, the bound state formation

processes are competing with the bound state dissociation processes. Only when the bound

states decay rapidly enough before their dissociation, can the bound state formation effec-

tively contribute to the total annihilation processes [40]. The dark matter dissociation rate

can be evaluated conveniently by eq. (4.53) in the next subsection 4.3. The annihilation of

the two components inside the bound state particle is the main contribution to the bound

state decay processes. In this subsection, we concentrate at the algorithm to calculate the

such decay widths.

To calculate the decay width, we need to calculate the squared annihilation amplitude

of the particle pair in a particular wave function of relative motion, which is proportional to

the ψ(0)2 → |ψ(0)|2 in the s-wave, and proportional to the ψ′(0)2 → |ψ′(0)|2 in the p-wave

situation. However, it is more convenient to calculate the perturbative squared annihilation

amplitude of a plane wave. For example, if we calculate the squared annihilation amplitude

of two particles with the momentum (E1, 0, 0, p) and (E2, 0, 0,−p) travelling along the ±z
direction, and the total momentum of the particle pair is zero, we write down the phase

space integrated square amplitude in the form of∫ ∑
i

|Mzi(E1, E2, p, θ, φ)|2 sin θdθdφ, (4.44)
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where θ, φ are the final state phase space angles, and i indicates all of the polarization in-

dices in the final states. Then, we need to extract the s-wave and p-wave contributions from

the (4.44). This is done by “somehow” expanding the (4.44) and find the coefficient of the

v0 and v2 terms, where v is the relative velocity of the two particles, and can be expressed by

v =
p

E1
+

p

E2
. (4.45)

Notice that the v dependence of E1,2 should not expanded, which is the meaning of the

“somehow” that we have noted. Then we can make the expansion

Mzi(E1, E2, p, θ, φ) ≈M0
zi(E1, E2, p, θ, φ) +M1

zi(E1, E2, p, θ, φ)v, (4.46)

and take (4.46) into (4.44) to find out the v0 and v2 terms to acquire the s-wave and

p-wave contributions to the amplitudes. We then need to multiply the v0 term with

|ψ(0)|2, and replace v2 term with |ψ
′(0)|2
µ2
r

to acquire the decay amplitudes.10

However, we should note that E1 and E2 also depend on v. Directly expanding on

E1 and E2 will also contribute to v2 terms, which are not the real p−wave contributions

however. Notice that we should not expand E1 and E2 on v during our separation of the

s- and p-wave contributions.

From the (4.21) we can see that the plane wave along the z-direction only contains the

lz = 0 element in the l = 1 partial wave. We will also need the lx = 0 or ly = 0 annihilation

amplitude to calculate the decay of the states in different total angular momentum j’s. This

is done by calculatingMxi(E1, E2, p, θ, φ) andMyi(E1, E2, p, θ, φ), which are corresponding

to the annihilation of two particles travelling along the ±x and ±y directions, with the

total momentum of the two particle system being zero.

We also need to calculate the amplitudes for various total spins of the initial states.

The amplitudes can be generically written as,

M = u . . . v, or v . . . u.

= Tr[vu . . . ], or Tr[uv . . . ]. (4.47)

where u and v are the four-spinors of the initial states. Now v(p1)u(p2), or u(p1)v(p2) can

be written in the form of

v(p1)u(p2) =

[ √
σ · p1X(

√
σ · p2)†

√
σ · p1X(

√
σ · p2)†

−
√
σ · p1X(

√
σ · p2)† −

√
σ · p1X(

√
σ · p2)†

]
γ0

u(p1)v(p2) =

[√
σ · p1X(

√
σ · p2)† −√σ · p1X(

√
σ · p2)†

√
σ · p1X(

√
σ · p2)† −

√
σ · p1X(

√
σ · p2)†

]
γ0, (4.48)

where X indicates the total spin of the particle pair. For the S = 0 case, the X = σ0
√

2
. For

the S = 1 case, the X = σ1,2,3
√

2
, which are corresponding to the Sx = 0, Sy = 0, and Sz = 0

respectively.

10Practically these should be |ψχ1χ1(0) ± ψχ2χ2(0)|2, |ψχ1χ2(0) ± ψχ2χ1(0)|2,
|ψ′
χ1χ1

(0)±ψ′
χ2χ2

(0)|2

µ2
r

, or

|ψ′
χ1χ2

(0)±ψ′
χ2χ1

(0)|2

µ2
r

, depending on the final states.
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χ/χ states χ1,2 states 2S+1LJ JCP two-body decay channels

χχ/χχ |χ1χ1〉+ |χ2χ2〉 1S0 0+− γ′γ′

|χ1χ2〉 − |χ2χ1〉 1P1 1−− IR

3S1 1−+ No two-body decay channel

|χ1χ1〉+ |χ2χ2〉 3P0 0++ RR, II, γ′γ′

3P1 1++ No two-body decay channel

3P2 2++ RR, II, γ′γ′

χχ/χχ |χ1χ1〉 − |χ2χ2〉 1S0 0++ No two-body decay channel

3P0 0+− No two-body decay channel

|χ1χ1〉 − |χ2χ2〉 3P1(2) 1(2)+− Rγ′

|χ1χ2〉+ |χ2χ1〉 3P1(2) 1(2)−− Iγ′

Table 2. Two-body decay channels. The 2S+1LJ and JCP are the usual spectroscopy notations,

indicating the quantum numbers of the total spin S, orbital angular momentum L, total angular

momentum J , C-parity, and parity under space inversion.

Now we are ready to calculate the annihilation amplitude for all the combinations of

different |LLzSSz〉. Notice that in the L = 1, S = 1 case,

|J = 2, Jz = 0〉 = − 1√
6

(|Lx = 0, Sx = 0〉+ |Ly = 0, Sy = 0〉 − 2|Ly = 0, Sy = 0〉),

|J = 1, Jz = 0〉 =
i√
2

(|Lx = 0, Sy = 0〉 − |Ly = 0, Sx = 0〉〉), (4.49)

|J = 0, Jz = 0〉 = − 1√
3

(|Lx = 0, Sx = 0〉+ |Ly = 0, Sy = 0〉+ |Ly = 0, Sy = 0〉),

we can follow this to recombine the amplitudes to calculate the decay width of different

|JJZ〉 states.

Not all of the bound states can have two-body decay channels. Some are prohibited by

the he C/P-parity and the dark U(1) charge conservation laws. This will be discussed in

detail in appendix E. Let us apply the Goldstone-equivalence theorem, and we ignore the

masses of the final state scalar particles since mγ′ � mχ1,2 and mR � mχ1,2 , and the longi-

tudinal polarization of the γ′ is replaced with the Goldstone mode I. It is then convenient to

analyze the two-body decay channels in the basis of χ, χ before the spontaneously symmetry

breaking, and then rotate to the χ1,2 basis for calculations. The result is shown in table 2.

The integrated amplitude of all the possible two-body final states are listed in table 3.

For those states which do not have a two-body decay channel, we need to calculate

the three-body decay amplitudes. For generic values of mχ,mγ′ ,mI and mR, rigorous

analytical results of the transition probabilities are formidable to acquire because of the

intricate phase space structures. We shall neglect the final particle masses by setting

mγ′ = mI = mR = 0,
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Channel 2S+1LJ ,C Kernel Coefficient

γ
′
γ

′ 1S0,+
512E2(E+mχ)2π

(E2+m2
χ)2 2

(
g′

2

)4

|ψχ1χ1(0)+ψχ2χ2(0)|2

3P0,+
128E2(E−5mχ)2π

3(E2+m2
χ)2 2

(
g′

2

)4
1
m2
χ

∣∣ψ′χ1χ1
(0)+ψ′χ2χ2

(0)
∣∣2

3P2,+
1792
15

E2(E+mχ)2π
(E2+m2

χ)2 2
(
g′

2

)4
1
m2
χ

∣∣ψ′χ1χ1
(0)+ψ′χ2χ2

(0)
∣∣2

Rγ
′ 3P1,−

256E4m2
χ(E+mχ)2π

3(E2+m2
χ)4 2

(
g′

2
y
2

)2
1
m2
χ

∣∣ψ′χ1χ2
(0)+ψ′χ2χ1

(0)
∣∣2

3P2,−
256E4m2

χ(E+mχ)2π

5(E2+m2
χ)4 2

(
g′

2
y
2

)2
1
m2
χ

∣∣ψ′χ1χ2
(0)+ψ′χ2χ1

(0)
∣∣2

Iγ
′ 3P1,+

256E4m2
χ(E+mχ)2π

3(E2+m2
χ)4 2

(
g′

2
y
2

)2
1
m2
χ

∣∣ψ′χ1χ1
(0)−ψ′χ2χ2

(0)
∣∣2

3P2,+
256E4m2

χ(E+mχ)2π

5(E2+m2
χ)4 2

(
g′

2
y
2

)2
1
m2
χ

∣∣ψ′χ1χ1
(0)−ψ′χ2χ2

(0)
∣∣2

RR 3P0,+
64E2(E3+7E2mχ+3Em2

χ+9m3
χ)2π

3(E2+m2
χ)4 2

(
g′

2

)4
1
m2
χ

∣∣ψ′χ1χ1
(0)+ψ′χ2χ2

(0)
∣∣2

3P2,+
512E6(E+mχ)2π

15(E2+m2
χ)4 2

(
y
2

)4 1
m2
χ

∣∣ψ′χ1χ1
(0)+ψ′χ2χ2

(0)
∣∣2

IR 3S1,−
16(E+mχ)2

[
E2(−4+

4Q2
χg

2

y2
)+

4Q2
χg

2

y2
m2
χ

]2

π

3E2(E2+m2
χ)2 2

(
y
2

)4 |ψχ1χ2(0)+ψχ2χ1(0)|2

II 3P0,+
64E2(E3+7E2mχ+3Em2

χ+9m3
χ)2π

3(E2+m2
χ)4 2

(
y
2

)4 1
m2
χ

∣∣ψ′χ1χ1
(0)+ψ′χ2χ2

(0)
∣∣2

3P2,+
512E6(E+mχ)2π

15(E2+m2
χ)4 2

(
y
2

)4 1
m2
χ

∣∣ψ′χ1χ1
(0)+ψ′χ2χ2

(0)
∣∣2

Table 3. Two-body decay squared matrix elements, phase-space integrated, final-state summed.

For abbreviation, we define g′ = Qχg. The “LSJC” indicates the quantum numbers of the orbital

angular momentum, total spin, total angular momentum, and C-parity. Compared with the table 2,

the parity is absent, because many states are no longer eigenstates of the parity. Although mχ1
6=

mχ2 , for simplicity, we still use mχ as the mass of both χ1 and χ2 during our calculations. E is the

energy of either initiate particle, as we have calculated in the center of mass frame.

to simplify the 3-body decay formulas. The analytical decay amplitudes and the decay

rates, including the phase space integration of the final three particles are listed in table 4.

However one has to pay the penalty for this simplification. This is the appearance of the

infrared divergences (IR) in the phase space integral. To see this, let us introduce an

explicit IR cutoff parameter a in the corner of the Dalitz-plot. The three momentums of

the final state particles are denoted to be k1, k2, k3., and (k1 + k2 + k3)2 = 4E2. Having

ignored all the final state masses, the three Dalitz plot parameters then become

k1 · k2 = x3E
2,

k2 · k3 = x1E
2, (4.50)

k1 · k3 = x2E
2.

Since x1 + x2 + x3 = 2, there are only two independent parameters. The divergences

usually exist in the xi = 0, xj = 0 (i 6= j) region. If one divergence is located in the,

e.g., x1 = 0, x2 = 0 region, we just modify the phase space integral
∫ 2

0 dx1

∫ 2−x1

0 dx2 into∫ 2
a dx1

∫ 2−x1

a dx2 to avoid it, and leave all the a’s explicitly in table 4.

Notice that in our later numerical calculations, our mγ′ and mR are in the similar

order of magnitude. It seems that the divergence we have encountered is merely an artifact

of ignoring the final state masses, so a naive way to fix this problem would be to replace
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the IR cutoff by the lightest particle mass among the three final state particles. This

is true when mγ′,R & µrα
′2, and will introduce approximately a =

mγ′,R
µr

as a natural

IR cut-off. However, when one of the mγ′,R . µrα
′2, and when it is produced with the

energy/momentum . µrα
′2, some propagators with the . µrα

′2 energy/momentum scale

shall inevitibly appear, and hence the prediction ability of our method here fails as the

commonly used “ladder approximation” only considers the |χiχj〉 Fock’s state and neglects

many comparable µrα
′2-scale energy/momentum terms. As is well-known In the QCD,

this IR divergence problem was first discovered in the context of P -wave charmonium

decays long time ago refs. [96–99], and made a long standing problem until the color-octet

mechanism was proposed by Bodwin, Braaten and Lepage (BBL) refs. [100, 101]. Similar

with the QCD strategy, we need to regard µrα
′2 or µrα

′ as a natural “matching scale”, and

when the energy/momentum of one of the decay product is below this scale, contributions

from the higher Fock’s state |χiχjγ′/I/R〉 arise. Reducing to the phase space parameter,

this is corresponding to the a = |EB |
µr
∼ α′2 or a = α′, where EB is the binding energy.

Studying the precise manipulation below the IR-matching point is beyond the scope of this

paper, however we know that the matching point scale will appear in the final results, and

can be treated as an effective IR cut-off. In table 4, the results are logarithmly dependent

on a so they change little when a varies from α′2, α′ and
mγ′,R
µr

. With these considerations,

we adopt a = MAX[ |EB |µr
, mRµr ,

mγ′
µr

] in this paper. However actual calculations show that

the contributions from the bound states with no 2-body final decay channels are negligible.

With these informations on the relevant amplitudes, we can finally calculate the decay

widths of DM bound states

Γ =
fs

128π2mχ

∫
phase

d(phase)
|MTab|2

2µr
, (4.51)

where
∫

phase d(phase)|MTab|2 is obtained by multiplying the expressions listed in the “Ker-

nel” and “Coefficient” columns in table 3 for each two-body decay channel, and in table 4

multiplied by an additional
m2
χ

4π factor for each three-body decay channel. fs is the factor

for the final state identical particles. fs = 1
2! for two identical particles in the final state,

and fs = 1
3! for three identical particles in the final state.

4.3 Boltzmann equations

Now let us discuss the Boltzmann equations for our model. In principle, we need to write

down the Boltzmann equations of all the components, including χ1, χ2, γ′, R and all of the

bound states as well as their temperatures. This will result in a set of complicated coupled

equations, which is beyond our current computing resources. Therefore, we shall simplify

the situation with the following considerations:

• When Tγ � mγ′ , mR, where Tγ is the photon temperature of the plasma, although γ′

or R might have already frozen out from the thermal plasma quite early, being nearly

massless particles, they cool down approximately synchronously with the plasma due

to their red-shifts. Therefore, the kinetic equilibrium keeps Tχ = Tγ′ = TR ≈ Tγ ,

where Tχ is the temperature of χ1, χ2, and Tγ′ , TR are the temperatures of the γ′

and R.
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Channel 2S+1LJ ,C Kernel Coefficient

γ
′
γ

′
γ

′ 1P1,− 64(136−7π2−8ln4+48lna)
3m2

χ
4
(
g′

2

)6
1
m2
χ

∣∣ψ′χ1χ2
(0)−ψ′χ2χ1

(0)
∣∣2

Rγ
′
γ

′ 1S0,+
128[−132+48a+π2+48(1+a) ln 2

a ]

3m2
χ

4
(
y
2
g′

2
g′

2

)2

|ψχ1χ1(0)−ψχ2χ2(0)|2

3P0,+
1
3

−128[1072−432a+3π2−432(1+a) ln 2
a ]

3m2
χ

4
(
y
2
g′

2
g′

2

)2
1
m2
χ

∣∣ψ′χ1χ1
(0)−ψ′χ2χ2

(0)
∣∣2

Iγ
′
γ

′ 1S0,−
32(−132+π2+48ln 2

a )

3m2
χ

+
512(1+ln 2

a )a

m2
χ

4
(
y
2
g′

2
g′

2

)2

|ψχ1χ2
(0)+ψχ2χ1

(0)|2

3P0,−
1
3

[
−32(1072+3π2−432ln 2

a )

3m2
χ

+
4608(1+ln 2

a )a

m2
χ

] 4
(
y
2
g′

2
g′

2

)2
1
m2
χ

∣∣ψ′χ1χ2
(0)+ψ′χ2χ1

(0)
∣∣2

IRγ
′ 1S0,+

16(−228+23π2)
3m2

χ
4
(
y
2
y
2
g′

2

)2

|ψχ1χ1(0)+ψχ2χ2(0)|2

3P1,+

1
3

[
16(56+67π2−96ln2+256lna)

3m2
χ

− 128(1+24ln2−72lna)a
3m2

χ

] 4
(
y
2
y
2
g′

2

)2
1
m2
χ

∣∣ψ′χ1χ1
(0)+ψ′χ2χ2

(0)
∣∣2

RRR 3P0,+

2
3m2

χ
[9λΦ(32+λΦ)

+8π2(−8+9λΦ)

+128(−28+75ln2)

−9600lna]

4
(
y
2

)6 1
m2
χ

∣∣ψ′χ1χ1
(0)−ψ′χ2χ2

(0)
∣∣2

IRR 3P0,−

2
27m2

χ

[
72π2(8+λΦ)

+9λΦ(32+λΦ)

+128(−320+231ln2)

−29568lna]

4
(
y
2

)6 1
m2
χ

∣∣ψ′χ1χ2
(0)+ψ′χ2χ1

(0)
∣∣2

IIR 3P0,+

2
27m2

χ

[
72π2(8+λΦ)

+9λΦ(32+λΦ)

+128(−320+231ln2)

−29568lna]

4
(
y
2

)6 1
m2
χ

∣∣ψ′χ1χ1
(0)−ψ′χ2χ2

(0)
∣∣2

III 3P0,−

2
27m2

χ

[
72π2(8+λΦ)

+9λΦ(32+λΦ)

+128(−320+231ln2)

−29568lna]

4
(
y
2

)6 1
m2
χ

∣∣ψ′χ1χ2
(0)+ψ′χ2χ1

(0)
∣∣2

Table 4. Three-body decay squared matrix elements, phase-space integrated, final-state summed.

Here, for abbreviation, we define g′ = Qχg. The “LSJC” indicates the quantum numbers of the

orbital angular momentum, total spin, total angular momentum, and C-parity. We still use mχ

to replace the mχ1,2 as in the table 3, and since the three-body modes are not counted in the

annihilation processes, we only show the results in the E → mχ limit.
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• χ1χ1 → χ2χ2 processes by interchanging the γ′ particles are rapid enough to keep a

number density equilibrium between χ1 and χ2.

• When Tγ . mγ′ , mR, the light components become non-relativistic and their number

densities drop dramatically. The kinetic equilibrium between mγ′ and χ1,2 is broken.

The red-shift of χ1 and χ2 will imply Tχ ∝ T 2
γ .

Also based upon the steps listed in ref. [40], we define

FX =
〈Γ〉X

〈Γ〉X + 〈Γ〉X,dis
, (4.52)

where 〈Γ〉X and 〈Γ〉X,dis are the thermal averaged decay width and the dissociation rate of

the bound state, respectively. Their definitions are

〈Γ〉X =
K1(mXTχ )

K2(mXTχ )
ΓX ,

〈Γ〉X,dis =
1

2

∑
i,j

〈σv〉Tχ,χiχj→X+γ′/R

neq
χi(Tχ)neq

χj (Tχ)

neq
X (Tχ)

, (4.53)

whereK1 andK2 are the Bessel functions, and ΓX is the decay width calculated from (4.51).

i,j = 1, 2 indicate the χ1, χ2 components, and neq
A (T ) is the thermal-equivalent number

density of component A at the temperature T . The 〈σv〉T,χiχj→X+γ′/R is the thermal-

averaged bound state formation cross section:

〈σv〉χiχj→X+γ′/R =
1

nχinχj

4T

32π4

∫
ds′s′

3
2K1

(√
s′

T

)
λ

(
1,
m2
χ1

s′
,
m2
χ2

s′

)
×σχiχj→X+γ′/R(s′), (4.54)

where nχi is the number density of component χi. σχiχj→X+γ′/R is calculated following

the steps listed in section 4, and λ(1, a, b) = (1 − a − b)2 − 4ab. We should note that in

ref. [40], there is also an additional term 〈σv〉g̃R̃→g̃gng̃, which should be something like, e.g.,

〈σv〉χiX→χjγ′nχi in our paper. We ignore this term because this term will be suppressed

by nχ compared with the 〈Γ〉X,dis, when the temperature drops below the χi,j mass.

For a pair of DM particle χiχj , their effective cross section times velocity is defined as

〈σv〉χiχj ,eff = 〈σv〉χiχj ,anni +
∑
X

FX〈σv〉χiχj→X+γ′/R, (4.55)

where 〈σv〉χiχj ,anni indicates the annihilation rate including the Sommerfeld effect. In this

paper, we only consider the 2-body final state when calculating the 〈σv〉χiχj ,anni. Although

refs. [102, 103] provided a complete unitarity-preserved calculation of the Sommerfeld effect

in the large boost situation, we only perform a rough numerical scan on the parameter

space while missing the resonances in this paper, so the methods in ref. [16] are sufficient.

Therefore, the phase space integrated squared amplitudes are again from the table 3,

and the ψ
(′)
χiχj (0) there plays the role of the “boost factor”. For the multi-component dark
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matter models, refs. [95, 104] performed a Wrongskian-based method to acquire these zero-

point wave functions (or derivatives). However, in this paper, we shall use the definitions

of these wave function at the origin straightforwardly. For the acquired scattering wave

functions χlk given by (4.27) satisfying the asymptotic conditions (4.28) or (4.30),

ψi(0) = lim
x→0

χilk(x)

x
(for l = 0), (4.56)

ψ′i(0) = iµrv lim
x→0

3χilk(x)

kix2
(for l = 1). (4.57)

Here i is the index of the wave function components. We have testified the accuracy of

straightforwardly applying the definitions in (4.56)–(4.57) of the Coulomb potential and

the no-interaction limit by comparing the numerical results with the analytical solution,

and found they are precisely compatible. Since the Yukawa potential is somehow the

intermediate state between Coulomb interaction and no interaction limit, and for our two

component situation, the potential does not deviate from the Yukawa potential very much,

so we expect a sufficient precision for this simple “method”. Once we obtain the squared

amplitudes, we then calculate the cross section in the center of momentum frame with

σχiχj ,anniv =
fs

4Eχ1Eχ2

2|~p|
32πEcm

∫
Ω
dΩcm|Mχiχj ,Tab|2, (4.58)

where Eχi is the energy of component χi, |~p| is the magnitude of the 3-momentum of either

particle in the center of momentum frame, and Ecm is the center of mass energy of the

initial particle pair. The angular integration
∫

Ω dΩcm|MχiχjTab|2 is calculated by summing

over all the annihilation channels listed in table 3 for the initial particles χiχj . To calculate

the MTab, we need the values of the wave functions at the origin ψχiχj (0) or their first

derivatives ψ′χiχj (0) of the scattering state. These can be extracted from the radial wave

functions χ1lk(x) and χ2lk(x) according to (4.56)–(4.57), and the coefficients Ali, Bli should

also be multiplied for the corresponding initial states. Thus, sommerfeld effects have also

been automatically included through all these processes.

Besides the amplitudes listed in the table 3, we should also note that there is an

interference term between S and D waves which contribute to the IR final state. This

is absent in the table 3, because it is not relevant to the decay width calculations. The

“Kernel” part of the squared amplitude is calculated to be

2πv2

9(E2 +m2
χ)4

(−4E8T + E8T 2 − 96E7mχ + 24E7mχT − 128E6m2
χ + 20E6Tm2

χ

+4E6m2
χT

2 − 224E5m3
χ + 80E5m3

χT − 128E4m4
χ + 52E4m4

χT + 6E4m4
χT

2 + 56E3m5
χT

+28E2m6
χT + 4E2m6

χT
2 +m8

χT
2), (4.59)

where E is again the energy of each particle in the center of momentum frame, and

T =
2Qχg
y . In the “Coefficient” part, there should include the Sommerfeld boost factor

“ψ(0)ψ′′(0)”. However, the interference term is sub-dominant, so we do not consider this

term and set the boost factor to be 1, so the total “Coefficient” becomes 2
(y

2

)4
.
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Then the total effective annihilation cross section is given by

〈σv〉Tχ,eff =
∑
i,j

neq
χi(Tχ)neq

χj (Tχ)

neq (Tχ)2
〈σv〉χiχj ,eff, (4.60)

where neq =
∑

i n
eq
χi . The Boltzmann equation is then written in the familiar form

dY

dxf
= − zs

H(mχ)

(
1−

xf
3g∗s

dg∗s
dxf

)
〈σv〉Tχ,eff(Y 2 − Y 2

eq), (4.61)

where H(T ) is the Hubble constant at temperature T , mχ is the mass of the dark matter,

xf =
mχ
Tγ

, and g∗s is the effective degree of freedom entering the entropy density. Y is the

effective dark matter particle number per co-moving volume, or n
s , where n is the particle’s

number density, and the s is the plasma’s entropy density. To solve (4.61), we also need to

know the relationship between Tχ and Tγ . This requires another equation. However, in our

paper, we simplify this by setting the kinetic decoupling constant Tkd = min{mγ′ ,mR}, and

Tχ =

 Tγ , when Tγ > Tkd

T 2
γ

Tkd
, when Tγ ≤ Tkd

. (4.62)

5 Numerical results and discussions

5.1 Numerical results

Using the internal functions embedded in the micrOMEGAs [105, 106], we solve the differ-

ential equation in (4.61). Among the parameters for the numerical analysis, we choose two

different values of DM masses: mχ = 3 TeV and mχ = 10 TeV. Then we vary αg =
(Qχg)2

4π

and 2c1
c2

= 2y2

(Qχg)2 to show the results for Ωh2 in figures 5 and 6 for mχ = 3 TeV and

mχ = 10 TeV, respectively.

In these figures, we have adopted

ξ1 =
1

1.03
×
[

(2c1 + c2)2α′

2

]−1

, and ξ2 = 1.5ξ1.

The reason for this choice are the following. First let us notice that δγ2 � 1 and ξ1,2 � 1

in our concerned parameter space to be discussed, so that the binding energies of the

ground states can be approximated by the hydrogen atom’s formula. For the radial equa-

tion (3.23), this is estimated to be Egnd. stat. ' − (2c1+c2)2α′2µr
2 . Reduce this by the inverted

“Bohr radius”
−Egnd. stat.

κ = γ2

α′ ≈
(2c1+c2)2α′

2 , and recall that ξ1,2 = κ
mR,γ′

. It is easy to see

that if ξ1 .
[

(2c1+c2)2α′

2

]−1
, the emission of R is kinematically prohibited in the low tem-

perature situation to escape the CMB constraints. When ξ2 >
[

(2c1+c2)2α′

2

]−1
, significant

γ′ emission occurs and will induce the second-stage annihilation processes to be discussed

below. However, we will keep ξ2
ξ1

small enough to evade the unitarity constraints on λΦ.

Finally, ξ1 = 1
1.03 ×

[
(2c1+c2)2α′

2

]−1
and ξ2 = 1.5ξ1 are enough for both these two purposes.

Details of the unitarity bounds mentioned before will be addressed in section 5.2.
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Figure 5. Dark matter relic density Ωh2 in

the mχ = 3 TeV, ξ1 = 1
1.03 ×

[
(2c1+c2)2α′

2

]−1

and ξ2 = 1.5ξ1 situation. c2 =
(Qχg)2

4πα′

and c1
c2

= y2

(Qχg)2 vary. The pannels are

the tree-level perturbative results, the

Sommerfeld results, and the bound state

formation effects included results from up to

down, respectively.
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Figure 6. mχ = 10 TeV. Other parameters

and the meaning of the three pannels are the

same as figure 5.
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Figure 7. Contributions to the 〈σv〉 as the

temperature evolves. Other parameters not

mentioned in the titles are the same as fig-

ure 5. “B.S.F main contribution” indicates

the χ1χ2 → 11Ss+0 +γ′ channel, which is the

main contribution to the bound state forma-

tion channels. Parameters are chosen for Ωh2

is close to 0.11.
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Figure 8. Evolutions of the Ωh2 as the tem-

perature evolves. The parameters are the

same as the corresponding panels in figure 7.

We can easily see that the Sommerfeld effect can modify the relic density significantly,

while the bound state formation effects further alter the results. To see how this can

happen, we plot the thermally averaged cross section times velocity and the evolution of

the dark matter relic density in figures 7 and 8, respectively.
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In figures 7 and 8, we show and compare the contributions of the perturbative cal-

culations, the calculations including Sommerfeld effects, and including also the bound

state formation effects. In the top and middle panels, we adopt the mχ = 3TeV and

mχ = 10 TeV respectively.
(Qχg)2

4π and 2y2

(Qχg)2 are shown in the figures. For the mχ = 3 TeV

case, ξ1 = 34.5, ξ2 = 51.7, corresponding to mR = 0.957 GeV and mγ′ = 0.638 GeV. For

the mχ = 10 TeV case, ξ1 = 25.3, ξ2 = 37.9, corresponding to mR = 5.93 GeV and

mγ′ = 3.96 GeV. Both of these two benchmark points can be safe within the constraints,

especially for the dark Higgs boson decay bound in the BBN constraint to be described in

section 5.2. We can also learn that when y takes some moderate value, the main contri-

butions from the dark matter bound state formations mainly become effective in a later

time. In the usual re-annihilation processes induced by Sommerfeld enhancement in the

literature, e.g., in the refs. [85–89], the re-annihilation can only happen after the “kine-

matical decoupling” of the dark matter particles, when the kinematical temperature of

the dark matter particles accelerate to cool down due to the rapid kinematical energy

reduction of the non-relativistic particle compared with radiations. Detailed calculations

show that the annihilation cross section times velocity 〈σv〉eff of the dark matter should

be at least proportional to 1
vt where t > 1 for a successful re-annihilation process. This

can only happen in some resonance area of the Sommerfeld enhancements. Compared

with the usual re-annihilation process induced by Sommerfeld enhancement, in our model,

the main contribution to enhance the effective total annihilation cross section times ve-

locity is the bound state formation process though the χ1χ2 → 11Ss+0 + γ′ channel. This

process becomes significant because of the large longitudinal γ′ emissions, which is equiv-

alent to the Goldstone emissions, and described by the (4.18). This becomes large due to

its non-zero 0th order expansions. The dark matter bound state formation cross section

〈σv〉χ1χ2→11Ss+0 +γ′ ∼
1
vt , where t � 1 when xF . 104, inducing a significant second-stage

annihilation. Then, numerical calculation shows that when v . 0.01, 〈σv〉χ1χ2→11Ss+0 +γ′

rapidly saturate before the breaking the unitarity bound. Finally, after T � δm, we will

have
neq
χ2

neq
χ1
∼ e−

δm
T � 1, so that the contributions from the χ1χ2 channels will be suppressed

according to the (4.60). Finally, the re-annihilation processes cease when xF & 105.

On the lowest pannels of the figures 7 and 8, we plot a benchmark point for the y � 1

situation. In this situation, the global symmetry on χ1,2 as well as the Ward identity

MµP
µ
φ = 0 in the symmetric phase recovers, therefore the longitudinal contributions in

the (4.19) disappears. Compared with the longitudinal contributions, the emissions of

the transverse γ′ described by the (4.7)–(4.10) will be suppressed by the v2, so the re-

annihilation process vanishes. However, a sufficiently small relic abundance of the dark

matter requires a larger
(Qχg′)2

4π , inducing a much larger bound state formation rate in the

freeze-out epoch. At the parameter point we selected in the lowest panels of figures 7 and 8,

the bound state formation corrects the relic density result by several percent. If we assume

that the χ1 particles only contribute to a fraction of the now observed dark matter density,

the corrections on the relic density result can be much larger.
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5.2 Constraints from the experiments

In this paper, we have ignored the λΦH |Φ|2H†H and εFµνBµν terms to simplify the relic

density calculations. As have been mentioned, these are the only interactions that commu-

nicate between the dark and visible sectors. Practically, λΦH receives loop corrections and

is unable to be non-zero in all energy scales. A strict ε = 0 also induces a dark photon relic

which is not the main topic to be described in this paper. For the non-zero λΦH and ε, the

dark matter direct detection bounds constrain both of these two interactions. Higgs exotic

decay data mainly confine λΦH , and ε is limited through various collider experiments. One

should also be careful to avoid the big bang nucleosynthesis (BBN) to be disturbed by

the long-life dark Higgs and dark photon boson decay. Although the details are beyond

the discussions of this paper, we will briefly go through all these constraints to show the

possibility to evade all of them.

According to ref. [107], the spin-independent (SI) cross section for a fermionic dark

matter particle scattering with a nucleon is given by

σSI '
y2f2m4

Nµ
2
φh

πm4
hm

4
φ

, (5.1)

where mh is the SM Higgs boson mass, mN is the mass of a nucleon, and f ' 0.35. µφh is

the mixing parameter between a SM Higgs boson and a dark Higgs boson. In our model,

it is given by

µφh = λΦHvΦ. (5.2)

If, e.g., we would like σSI . 10−45cm2, this requires y2µ2
φh . 2 × 10−10GeV2 if mφ ∼

0.3GeV. Then, λΦHvΦ . 1.5 × 10−5 GeV. If we would like the dark photon mass to be

mγ′ ∼ 0.5 GeV, this implies vΦ ∼ 0.5 GeV, therefore λΦH . 10−5 ∼ 10−6.

Such a constraint is much more stringent than the Higgs exotic decay results. The

sum of h→ RR and h→ γ′γ′ partial width is

Γh→RR + Γh→γ′γ′ =
(λΦHvEW)2

32πmh
+

2Q4
Φg

4v2
Φ

16πmh

[
2 +

(m2
h − 2m2

γ′)
2

4m4
γ′

]
sin2 θRh,

' (λΦHvEW)2

16πmh
, (5.3)

where vEW is the electroweak vev. In the above we have applied the mγ′ = |QΦ|gvΦ, and

the mixing angle between the SM Higgs and dark Higgs boson sin θRh ' λΦHvΦvEW

m2
h

. Higher

order
v2
Φ

m2
h

terms had also been neglected. It is easy to realize that the main contributions to

the (5.3) are h→ RR and h→ γ′Lγ
′
L, and can be analysed by h→ RR/II, or be combined

into h → ΦΦ∗ channels with the Goldstone equivalence theorem. We just estimate the

bounds Γh→RR + Γh→γ′γ′ . ΓhSM
= 4.07 MeV (For the standard model Higgs widths, one

can see the reviews in refs. [108–111], which requires λΦH . 2×10−2. Therefore, the direct

detection bounds on λΦH are far beyond the sensitivity of the collider searches for Higgs

exotic decay channels.
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The coupling λΦ is mainly constrained by the unitarity bound, or somehow equiv-

alently, perturbative unitarity. A rigorous discussion would involve the complete cal-

culations of the S-wave amplitudes (a0’s) for the channels, RR ↔ RR, RR ↔ γ′Lγ
′
L,

γ′Lγ
′
L ↔ γ′Lγ

′
L, Rγ′L ↔ Rγ′L. The unitarity bounds are extracted from |a0|2 < 1 [112–

114], or Re(a0) < 1
2 [115, 116]. In this paper, we derive this bound in the limit of large

center of mass frame energy. In such a case, the γ′L can be directly replaced by its corre-

sponding Goldstone boson I due to the Goldstone equivalence theorem. Furthermore, the

dark gauge symmetry can also be regarded as have been recovered in this limit, so we can

directly calculate the amplitudes for the following processes,

1√
2

ΦΦ→ 1√
2

ΦΦ,
1√
2

Φ∗Φ∗ → 1√
2

Φ∗Φ∗, Φ∗Φ→ Φ∗Φ,

for simplicity. Then we can obtain the unitarity bounds on λΦ: λΦ < 4π from |a0|2 < 1,

or λΦ < 2π from Re(a0) < 1
2 .

From (2.5) and (2.6), we can easily derive that

λΦ =

(
ξ2

ξ1

)2 Q2
Φg
′2

2
=

(
ξ2

ξ1

)2

2πα′
Q2

Φ

Q2
χ

. (5.4)

Here, α′ =
Q2
χg
′2

4π as we have suggested in subsection 3.2. Therefore, the adopted ξ2 = 1.5ξ1

values in figures 5 and 6 can induce λΦ = 18πα′ < 4π, which in turn results in α′ < 0.22

for the |a0|2 < 1 bound, and λΦ = 18πα′ < 2π → α′ < 0.11 for the Re(a0) < 1
2 bound.

However, this bound changes a lot as the ξ2
ξ1

varies in the range 1.2-2. Our calculations

show that at least the relic density results in the lowest panels in figure 5–6 do not change

a lot within this range when mR is set to be slightly larger than the threshold energy of

χ1χ1 → X+R. Therefore, in order not to mislead the readers as if it is a universal bound on
(Qχg)2

4π for all of the ξ2
ξ1

values, we do not explicitly show the unitarity bounds on figure 5–6.

The BBN constrains the lifetime of the R particle.11 Roughly speaking, if τR . 1 sec,

the cosmological R particles disappear before the BBN epoch. The non-hadronic partial

width of the R decay width is calculated to be [107]

ΓR→2(e/µ/γ) =

{
GFm

2
emR

4
√

2π

(
1− 4m2

e

m2
R

) 3
2

Θ(mφ − 2me)

+
GFm

2
µmR

4
√

2π

(
1−

4m2
µ

m2
R

) 3
2

Θ(mR − 2me)

+
GFα

2m3
R

128
√

2π3

[
A1 + 3A1/2

]2}µ2
φhv

2

m4
h

. (5.5)

The previous upper bound we had acquired y2µ2
φh . 2 × 10−10GeV2 will result in τφ &

0.02 sec, for y . 1 and mφ = 0.3 GeV which is above the dimuon threshold. This is enough

for the dark Higgs bosons to decay away before the beginning of the BBN.

11One can also consult the axion(-like) particle results in ref. [117] for a careful constraints on light scalar

particles. However, this is beyond our current scope.
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Compared with the dark Higgs boson R with the width suppressed by the Yukawa

couplings of the electrons and muons, the couplings between the dark photon γ′ and the

charged leptons are universal. Currently, for the mφ > 2mµ ≈ 0.2 GeV, the lifetime of the

dark photon is expressed as [118]

τγ′ '
3

ε2α
= 6× 105 yr× 10 MeV

mγ′
× 10−35

ε2α
. (5.6)

A rather tight constraint on ε < 10−10 implies a safe τγ′ & 0.1 sec, which can still be much

smaller than the beginning period of the BBN. The results in refs. [117, 118] show that the

ε can be larger than 10−7 or 10−5, further reducing the τγ′ to avoid the dark photon decay

after the beginning of BBN.

The non-zero ε can also give rise to the direct detection signals. Since the photon

couplings with the χ1,2 induced from the γ′-γ mixing always flip the χ1-χ2, the dark matter

scattering with the nucleon becomes inelastic. We rely on the dark photon results in the

ref. [119] to show that most of the parameter space discussed in this paper is safe with the

indirect detection bound, although refs. [120–122] show more recent general experimental

data. Since it is difficult to follow the detailed numerical processes in ref. [119], we only

compare the results qualitatively. In the figure 5–6, the correct dark matter’s relic density

requires
(Qχg)2

4π & 0.02, so mγ′ = µrα′

ξ2
& 0.3GeV. For most region of our interested

parameter space, say, when 2y2

(Qχg)2 > 0.01, mχ2−mχ1 = 2yvΦ is calculated to be well above

1 MeV. From figure 5 of ref. [119], this is much larger than the analysed ER ∼ 1-1000 keV,

so the sensitivity of the detector on such a dark matter is significantly suppressed. From

the tendency of two panels in the figure 8 when the δm varies, we can also expect to release

the dark matter direct detection bound when δm � 1 MeV, exposing scarcely constraint

compared with other non-DM constraints.

The lowest panels in figure 7–8 correspond to y � 1 when mχ2 −mχ2 � 1 MeV. Such

a small mass difference is expected to be excluded according to the ref. [119]. However,

these radical parameters are calculated only for a comparison of the contributions from the

dark matter bound state formation processes. A larger y ∼ 0.01 can still leave the main

results intact, while amplify mχ2 −mχ2 ∝ yvΦ to suppress the direct detection signals.

Refs. [119, 123, 124] introduced the loop-level dark photon scattering cross sections. A

rigorous study should include the interference between the tree-level and loop-level ampli-

tudes, which is beyond our scope. The loop induced scattering cross section contributions

are much less sensitive on the mχ2−mχ1 values, and might be the main contribution when

mχ2 −mχ1 � 1 MeV. Here, we adopt the loop-level formula in refs. [123, 124]

σχp→χp =
a2
X

2π

m2
χm

2
p

(mχ +mp)2
, (5.7)

where

aX =
εeQχg

m2
χ

. (5.8)

ε . 10−3 and mχ & 100 GeV are sufficient to reduce σχp→χp . 10−46cm2. Obviously, our

choices of the parameters can easily evade the direct detection bounds.
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Finally, the strongly interacting dark matter (SIDM) models are robustly constrained

by the CMB spectrum [30]. Since our model includes quite light mediators R and γ′, and

our dark matter-mediator interactions are expected to be significant enough to induce the

sufficient dark matter bound state formation rates, our model can be regarded as a SIDM.

The enhancement of the dark matter annihilation cross section in a SIDM in the very late

epoch may disturb the CMB observations, if the mediator particles decay into the SM

particles faster than the Hubble rate. Then at the recombination epoch,

〈σv〉rec

Nχ
. 4× 10−25cm3s−1

(
feff

0.1

)−1 ( mχ

100 GeV

)
, (5.9)

where 〈σv〉rec is the annihilation rate at recombination epoch, Nχ = 1(2) for Majorana

(Dirac) dark matter. Generally, feff & 0.1 for the SM particles in the final states other

than neutrinos. Generally, such a constraint is very difficult to escape. Ref. [125] provides

a model that is similar with ours. In their model, there is no dark photon, so the χ1χ1

annihilation is controlled by the p-wave channels to the RR or II. In our model, the mass

difference between χ1 and χ2 is sufficient for the χ2 to nearly disappear in the recombination

epoch, therefore only the s-wave χ1χ1 → γ′γ′ might affect the CMB [126]. The bound

state formation processes χ1χ1 → X+γ′/R are also set to be prohibited by the insufficient

threshold energy in the parameter space we had studied in this paper. This is Sommerfeld

enhanced and might contribute to the 〈σv〉rec. Fortunately, from (3.17) we can learn that

the Sommerfeld boost factor is mainly controlled by the Yukawa coupling terms. Firstly,

we are interested in the y < Qχg region, and a sufficiently small but moderate y is enough

for us to acquire a significant bound state formation effect while small enough Sommerfeld

boost factor. Secondly, mR =
√

2µ is independent of all the other parameters, and can be

adjusted to reduce the saturated Sommerfeld factor. All of these can help us easily evade

the bound in (5.9).

Finally, we discuss about the cluster constraints on dark matter self-interactions. A

complete calculation involves the full solution to the Schrödinger equation. Practically, it

is done by a calculation up to l . 20 in the partial wave expansions. In the parameter

space adopted in this paper, the kinetic energy for a dark matter particle inside a halo is

far below the threshold to produce χ2. In this situation, only the R-mediated force takes

place, and for the correct dark matter relic density, the Yukawa coupling strength should

be weaker than the usual values in the literature. From ref. [127], we can see that it is

quite easy to evade such bounds,

σT

mχ
. 1cm2g−1

in the usual case, let alone our smaller Yukawa coupling situations.

5.3 Comparison with other similar situations in the literature

Before closing, let us compare our results based on the model Lagrangian (2.1) with those

in other approaches in the literature. We shall emphasize that the model (2.1) is based

on the spontaneously breaking of a local dark gauge symmetry, respecting the unitarity of
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the amplitudes involving massive dark photons through dark Higgs contributions. Some

earlier studies ignored the contributions from the longitudinal dark photon.

In the literature, most studies of excited fermionic DM are based on the model without

dark Higgs, based on the following model Lagrangian:

Lw/o dark Higgs = −1

4
F ′µνF ′µν +

1

2
m2
A′A

′
µA
′µ + χ /Dχ−mχχχ+ (δ χCχ+ h.c.). (5.10)

In this case dark photon is assumed to get its mass by Stückelberg mechanism, and

the mass splitting (δ) between χ1 and χ2 is simply generated by the soft U(1)-breaking

dim-3 operator put in by hand, and the dark U(1) symmetry is only approximate and

explicitly broken in (5.10). On the other hand, in our case the original local dark U(1)

gauge symmetry is broken down to its Z2 subgroup by dark Higgs mechanism. And the

above Lagrangian (5.10) can be obtained from (2.1) by integrating out the physical dark

Higgs boson after the dark U(1) symmetry breaking. Our model is based on spontaneous

breaking of local dark gauge symmetry, and thereby keep all the nice features of gauge

theories such as unitarity and renormalizability.

Refs. [92, 93] made attempts on solutions for some line-shaped photon excesses observed

from near the galactic center. Both these papers are based upon one single model, in which

the dark Higgs sector is eliminated compared with our model. There the mass difference of

the nearly-degenerate dark matter particles is introduced with a soft breaking term, which

breaks the dark U(1) symmetry explicitly. Interestingly, ref. [93] utilized the annihilation

process χχ → γ
′
γ
′

followed by γ
′ → SM to explain the continuous gamma-ray spectrum

from the galactic center, but detailed calculations were not proceeded. We performed such

calculations in appendix A and found that the contributions from the longitudinal dark

photon can become catastrophic. This is similar to the case of the unitarity violation of

Higgsless case in the SM in the longitudinal W scattering. The simplest way to cure this

problem is to introduce a dark Higgs boson Φ, and generate the dark photon mass. And

the mass difference of the dark matter particles originates from the ΦχCχ + h.c. term as

in our model, (2.1). In this situation, in addition to the purely dark photon annihilation

channels, Rγ′, RR final states also arise. From table 3, we can learn that the Rγ′L, in which

γ′L indicates the longitudinal polarization of a dark photon, or equivalently RI channel

contribute to an additional s-wave annihilation term, which can be significant compared

with the γ′Tγ
′
T process, in which γ′T indicates a transverse polarization of a dark photon.

Ref. [94] provides another approach to the excited fermion DM scenario. There the

dark matter mass difference originate from the vacuum expectation value of the dark Higgs

boson, however the dark matter and dark Higgs interaction term is non-renormalizable:

L ⊃ − y
Λ

(φ†φ†χCχ+H.c.) (5.11)

which induces the mass splitting δ = yv2
φ/Λ after φ develops a nonzero VEV vφ.12 There

the renormalizable dim-4 operator (the last term in eq. (2.1)) was ignored without any

reasons. In fact, the coupling described by (5.11) requires mγ′ � Λ for the effective

12φ in (5.11) is not the same as Φ in eq. (2.1), since their U(1) charge assignmets are different from ours.
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“Yukawa coupling constant”
2yvφ

Λ < 1, as well as a cross section well below the unitary

bound. The amplitude is calculated to be ∝ 1
Λ2 ∝ g2δm

m2
γ′

. This is somehow similar to the

results without a Higgs cancellation in appendix A. In fact, the non-renormalizable model

introduced by ref. [94] still has a diagram similar to the third one with a s-channel Higgs

boson listed in figure 9, however the h-γ′-γ′ coupling constant is only one half compared

with our model. Therefore, a precise cancellation does not occur, so the g2δm
m2
γ′

term remains,

and the resulting amplitude is not unitary at high energy limit, unlike our case.

In the refs. [72, 92–94], compared with our paper, the longitudinal contribution to the

off-diagonal element of the potential matrix which is proportional to c1 in our (3.25) is

absent. This is a good approximation if δm � mγ′ . However, in refs. [92, 93], the longi-

tudinal contribution can be absorbed by redefining the αD, with all the phenomenologies

unchanged.

Finally, we need to mention that although refs. [38, 39, 68] had classified nearly all

the emission product cases during the dark matter bound state formation, the longitudinal

dark photon emission is not included there. In their models involving a massive dark vector

boson, the Ward-Takahashi identity was utilized, e.g., in the eq. (3.3) of ref. [39]. Therefore,

only transverse polarization dark photon emission was concerned. In our paper, we have

applied a general version of the Ward-Takahashi identity given by (4.17). Therefore, the

longitudinal polarization of a dark photon is considered through an equivalent Goldstone

boson emission term. This term can be neglected in the ref. [72], once the mass difference

of the dark matter is much smaller than the dark photon mass.

6 Conclusions and future prospect

In this paper, we considered Z2 fermion dark matter model with a pair of nearly-degenerate

fermions defined by Lagrangian (2.1). The Yukawa potential induced by the real scalar R

between the same component particle pairs χ1χ1 and χ2χ2 are attractive, while it is repul-

sive between different component pair χ1χ2. The longitudinal vector boson, or equivalently,

Goldstone boson, also contributs to an additional off-diagonal term in the potential matrix.

In our model, besides the emission of the scalar R and the usual transverse vector

boson γ′ to form a dark matter bound state, emission of a longitudinal dark photon γ′, or

somehow equivalently a Goldstone boson I also arises because of our dark charge assignment

of the dark matter particle. The mass difference between the two components plays a

crucial role in this process. Unlike refs. [38, 39], the zeroth “mono-pole” contributions to

the (4.1)–(4.6) in our paper are non-zero, because we either need to replace the direct inner

product by something inserted with a σ1,3, or need to compute the inner products of the

wave functions acquired under different potentials. Finally, we find that the contribution

from the longitudinal vector boson emission is extremely important. This leads to a re-

annihilation process, reducing the relic abundance of the dark matter significantly. Because

this reannihilation process ceased before the BBN, the following cosmological parameters

remain undisturbed.13

13We choose benchmark parameters such that ∆m � TBBN and Γχ2 � HBBN. Therefore we can safely
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Constrained by our current computing resources and programming techniques, we

are only able to calculate a simple approximation (4.61) rather than a complete version of

Boltzmann equation, like those appeared in ref. [89]. In the future, we are planning to make

more complete calculations by considering various effects which were not included in this

paper. For example, the deviation of the velocity distributions of each component from the

Maxwell-Boltzmann distributions should also be taken into account. A careful scanning

of the parameter space considering all the experimental constraints and the properties

including the SIDM scenarios will also be considered.
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A A dark matter annihilation problem in the higgsless soft-breaking

model

If we get rid of the Higgs sector, and introduce the soft mass terms for the dark photon and

the mass differences between χ1 and χ2, we can still calculate the Higgsless diagrams of the

dark matter pair χ1χ1 → γ′Lγ
′
L. The polarization of the longitudinal γ′ can be written as

εL(k) =

(
|~k|
mγ′

,
E

mγ′

~k

|~k|

)
E�m′γ−−−−→ k

mγ′
+O

(mγ′

E

)
, (A.1)

where k = (E, ~k) is the 4-momentum of the dark photon. For simplicity, we replace εL(k)

with k
mγ′

, and omit the sub-dominant O
(
mγ′
E

)
terms.

We then compute the first and second diagrams shown in (9). The χ1χ1 → γ′Lγ
′
L

amplitude is given by

Mχ1χ1→γ′Lγ
′
L

=
Q2
χg

2

m2
γ′

[
v(k1 + k2 − p1)/k2

i

/p1
− /k1 −mχ2

/k1u(p1) (A.2)

+ v(k1 + k2 − p1)/k1

i

/p1
− /k2 −mχ2

/k2u(p1)

]
.

Now we can replace the slashed k1 with p1 − (p1 − k1) in the first term, and with (p1 −
k2) − (p1 − k1 − k2) in the second term. Applying the equation of motion and cancelling

ignore χ1 + χ2 ↔ X + γ
′
. And χ1 + χ1 → X +R is set to be kinematically forbidden.
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Figure 9. χ1χ1 → γ′γ′ diagrams. Compared with the Higgsless soft-breaking model, the third

diagram arises in our model.

the redundant terms, we acquire

Mχ1χ1→γ′Lγ
′
L

=
Q2
χg

2

m2
γ′

(mχ1 −mχ2)

[
v(k1 + k2 − p1)/k2

i

/p1
− /k1 −mχ2

u(p1) (A.3)

− v(k1 + k2 − p1)
i

/p1
− /k2 −mχ2

/k2u(p1)

]
.

Then we continue to replace the slashed k2 with p1 − k1 − (p1 − k1 − k2) in the first term,

and with p1 − (p1 − k2) in the second term. Again, applying the equation of motion, we

acquire

Mχ1χ1→γ′Lγ
′
L

=
Q2
χg

2

m2
γ′

(mχ1 −mχ2)2

[
−v(k1 + k2 − p1)

i

/p1
− /k1 −mχ2

u(p1) (A.4)

− v(k1 + k2 − p1)
i

/p1
− /k2 −mχ2

u(p1)

]
+
Q2
χg

2

m2
γ′

(mχ1 −mχ2)

×2iv(k1 + k2 − p1)u(p1).

The first term is proportional to
(mχ1−mχ2 )2

m2
γ′

, and the second one is proportional to

mχ1−mχ2

m2
γ′

. In the moderate parameter space mχ1−mχ2 ∼ mγ′ , the second term will induce

a ∝ 1
m2
γ′

cross section, and would violate immediately the unitarity bound if mγ′ � mχ1,2 .

The introduction of a dark Higgs boson can cancel this dangerous term. A direct

calculation of the third diagram in figure 9 gives rise to

Mχ1χ1→h→γ′Lγ
′
L

=
y′A

m2
γ′

ik1 · k2

(k1 + k2)2 −m2
h

v(k1 + k2 − p1)u(p1), (A.5)

where y′ and A are the χχh and hγ′γ′ couplings, respectively. In the large momentum

limit, we have k1 · k2 ≈
(k1+k2)2−m2

h
2 . Therefore, if

y′A = −4Q2
χg

2(mχ1 −mχ2), (A.6)

the unitarity violating term is precisely cancelled. Notice that in our model, mχ1 −mχ2 =

−2yvΦ. If y′ = y, A = 8Q2
χg

2vΦ, the unitarity breaking term is automatically cancelled in

our model. This shows that the Z2 DM model with dark Higgs mechanism behaves better

than the models withourt dark Higgs.
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Figure 10. The same as one of the key figure appeared in ref. [128]. Here the polarization vector

of the photon with the symbol of its momentum “k” will replaced by this momentum.

B Modified Ward identity in the broken phase

In (4.17), we modified the Ward identity by adding a non-conserving term on the right-

handed side. A path-integral proof can be found in ref. [129] for a general Rξ gauge.

Inpsired by the section 7.4 of ref. [128], we only provide a diagrammatic proof in the uni-

tary gauge depending on the model of this paper for brevity rather than in a lengthy general

Rξ gauge situation. Let us consider an external photon, with its polarization vector εµ(k)

replaced by the momentum kµ. We have to decompose the amplitude into several parts. We

will see that some of the parts remain, which can be understood to be the Goldstone boson

equivalent replacements. Other parts will be expected to be cancelled by the corresponding

parts from some other diagrams. If we enumerate every type of the diagram connections, ex-

cept the “Goldstone equivalent terms”, and if we find out that each “cancelled” part in one

diagram’s amplitude has a corresponding “countered” term in another diagram, we com-

plete the proof. We need to note that in this appendix, we only enumerate the several types

of the diagram connections which are essential to the “ladder-approximation”. It looks as if

the external photon to be inserted is “sliding” along the “charged skeleton” of the diagrams.

The first connection type is provided in figure 10, characterized by the external line

neighboured with two vector bosons. Notice that

iQχgkµγ
µ = iQχg

[
(/pi + /k −mχb)− (/pi −mχa) + (mχb −mχa)

]
. (B.1)

Therefore, part of the amplitude as shown in the (7.65) in ref. [128] should be modified to

i

/pi + /k −mχb

(iQχg/k)
i

/pi −mχa

=Mγγ
cancel,1 +Mγγ

cancel,2 +Mγγ
GS, (B.2)

where

Mγγ
cancel,1 = −Qχg

i

/pi −mχa

Mγγ
cancel,2 = Qχg

i

/pi + /k −mχb

Mγγ
GS =

i

/pi + /k −mχb

iQχg(mχb −mχa)
i

/pi −mχa

. (B.3)
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Figure 11. Dark photon outer leg “skipping” over a dark Higgs vertex.

Just similar to the section 7.4 of ref. [128], one immediately find out that Mγγ
cancel,1 is

cancelled by the corresponding term when the external vector boson “slide” to the pi+1 +k

fermionic line, andMγγ
cancel,1 is cancelled when the vector boson “slide” to the pi−1 fermionic

line. Mγγ
GS has the structure of the Goldstone emission term which are not to be cancelled.

However, unlike the simplest situation of the QED, a dark photon external leg might “skip

over” a Higgs vertex. See figure 11 for the diagrams. Since the χ1χ1R and χ2χ2R couplings

differ by an extra minus sign, the corresponding terms in the first two diagrams in figure 11

can no longer cancel with each other. We then need to take into account the third diagram

in figure 11. Parts of the amplitude by the third diagram give the result

i

/p+ /k + /k
′ −mχb

(
4Q3

χg
3vΦ

) [
/k − k · (k + k′)(/k + /k

′
)

m2
γ′

]
i

/p−mχa

(−i)
(k + k′)2 −mγ′

. (B.4)

The middle factor can be reduced to

2Q2
χg

2mγ′

[
(/k − /k′)− (k + k′) · (k − k′)

m2
γ′

(/k + /k
′
) +

m2
γ′ − (k + k′)2

m2
γ′

(/k + /k
′
)

]
. (B.5)

Therefore, we decomposite (11) at first into two parts,

MRγ3
GS +MRγ3

cancel, (B.6)

where

MRγ3
GS =

2iQ2
χg

2mγ′

/p+/k+/k
′−mχb

[
(/k−/k′)− (k+k′) ·(k−k′)

m2
γ′

(/k+/k
′
)

]
i

/p−mχa

(−i)
(k+k′)2−mγ′

,

which is actually the same structure for a Goldstone boson replacing the k-momentum

dark photon, and then times a mγ′ . MRγ
cancel is given by

MRγ3
cancel =

i

/p+ /k + /k
′ −mχb

(
2Q2

χg
2
) /k + /k

′

mγ′

i

/p−mχa

(i).

It is then decomposed into three parts,

MRγ3
cancel =MRγ3

cancel,1 +MRγ3
cancel,2 +MRγ3

cancel,3,
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where

MRγ3
cancel,1 = −

(
2Q2

χg
2
) 1

mγ′

i

/p−mχa

,

MRγ3
cancel,2 =

(
2Q2

χg
2
) 1

mγ′

i

/p+ /k + /k
′ −mχb

,

MRγ3
cancel,3 =

i

/p+ /k + /k
′ −mχb

(
2Q2

χg
2
) mχa −mχb

mγ′

i

/p−mχa

(i),

=
i

/p+ /k + /k
′ −mχb

(2Qχgy · sgn(mχa −mχb
))

i

/p−mχa

(i). (B.7)

Notice that
2Q2

χg
2(mχa−mχb )

mγ′
= 2Qχgy · sgn(mχa − mχb

) in the third term MRγ3
cancel,3. To

cancel the MRγ3
cancel,3, we calculate the first diagram in figure 11.

MRγ1 =MRγ1
GS +MRγ1

cancel,1 +MRγ1
cancel,2, (B.8)

where we do not show the MRγ1
cancel,1 for brevity, and

MRγ1
cancel,1 = −iQχgy · sgn(mχb

−mχa)
i

/pi
+ /k −mχb

i

/p−mχa

,

MRγ1
cancel,2 = iQχgy · sgn(mχb

−mχa)
i

/pi
+ /k −mχb

i

/p+ /k −mχa

. (B.9)

A similar calculation of the second diagram in figure 11 will also contribute to term exactly

equivalent to theMRγ1
cancel,1, so their summation cancels theMRγ3

cancel,3 in the (B.7). MRγ1
cancel,2

in the (B.9) will be cancelled with other diagrams recursively by the same discussions

above if the next right neighbour of the external line with the momentum k is again a dark

photon or a dark Higgs boson. Therefore, in (B.7), only MRγ3
cancel,1 and MRγ3

cancel,2 remain.

These terms will never be cancelled if we fix all the other skeletons of diagrams. However,

MRγ3
cancel,1 and MRγ3

cancel,2 looks very similar to the Mγγ
cancel,1 and Mγγ

cancel,2 in the (B.3), and

they only differ by a factor of
2Qχg
mγ′

. This prompts us that in this case, the k + k′ internal

vector boson line can be treated as a new “external line”, carrying exactly the same k+ k′

momentum, however missing the corresponding “Goldstone equivalent term”. We can

then reuse all the above discussions recursively to cancel these terms by “sliding” the new

k + k′ “external line” along the fermionic skeleton. For example, if the right neighbour of

the k + k′ line is a vector boson line, as in the first diagram of the figure 12, the second

diagram in the figure 12 will then contribute to a term through a similar decomposition

like (B.3), which cancels the MRγ3
cancel,2 in the (B.7). If the right neighbour of the k + k′

line is a dark Higgs line, as in the first diagram in the figure 13, the rest diagrams in the

figure 13 will contribute to terms through the similar decompositions like the whole (B.7)

to cancel MRγ3
cancel,2. Of course, this will leave another term similar to MRγ3

cancel,2 which is

not cancelled, then repeat the recursive processes to cancel this. . .

Finally, after “sliding” the external line with the momentum k to the ends of the

fermionic lines, the diagrammatic result becomes

kµ
mγ′
Mµ =MGS +Mbegin −Mend, (B.10)
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Figure 12. Treat the k+k′ line as a new “external” line recursively when it has a vector neighbour.

Figure 13. An example to treat the k + k′ line as a new “external” line recursively when it has a

scalar neighbour.

in which MGS are the corresponding diagrams that replace all of the dark photon k-

leg with a Goldstone boson. In this paper, as we have mentioned, we have ignored the

contributions that dark boson radiation from the interchanging mediators due to the extra

vertices multiplied when calculating the wave function overlap, so only emissions from the

fermions are calculated. Therefore, (B.10) finally becomes the MGS term in the (4.17).

Mbegin/end are diagrams without the dark photon insertion, and the mass input of the

fermionic line had been shifted by increasing/reducing k. Note that when we are calculating

the diagrams in figure 4, we need to amputate the initial/final bound state poles to extract

the S-matrix by adopting the coefficients of the double-poles, but Mbegin/end only indicate

one bound state propagator, which contain only single-poles. Therefore, Mbegin/end does

not contribute to the transition amplitude in (4.17).

One might consider a proof in the general Rξ gauge. At first we show the Feynmann

gauge propagator,

−i
k2 −m2

γ′

[
gµν − kµkν

k2 − ξm2
γ′

(1− ξ)

]
. (B.11)

Rather than give a lengthy and complete proof, we only note that the ξ-dependent part of

this propagator can also be decomposed similarly as in the (B.5), with all the m2
γ′ replaced

by k2−m2
γ′ , and a 1− ξ factor should also be supplemented in the second and third term.

Goldstone and ghost propagators are also required. Then, with the similar logic, proof in

the general Rξ gauge can be derived.

Before closing this appendix section, we need to note that in order to derive the

complete modified Ward identity, not only the “straight” ladder diagrams are considered.

Figure 12 prompts us that all the diagrams, including all of the possible “crossed ladders”
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Figure 14. 2-2 diagram interchanging a dark photon (left) and a Goldstone boson (right).

and all the “vertex correction” diagrams, should be taken into account. However, the

previous processes of the proof tells us that all the terms which are expected to disappear

due to the cancellation among different diagrams contain less fermionic propagator(s) then

the originally ladder diagrams, so they indicate the “off-shell corrections” of the internal

fermionic lines. (And in fact, in the general Rξ gauge, these terms are all ξ-dependent.)

Although in the large ξ-limit (unitary gauge), these terms cannot be simply omitted (as

will be discussed in the next appendix section), if we apply the “on-shell approximation” to

keep only the nearly “pinched pole” contributions of all the fermionic lines, the remained

“straight-ladder” contributions still satisfy the modified Ward identity. All the remained

terms in the other “crossed-ladder”, “vertex correction”, etc., diagrams all contribute less

“pinched poles” then the “straight ladder”, thus they are safely omitted (Similar to the

discussions in section II-A, ref. [130]).

C Gauge dependence of the bound state

We have calculated the (3.20) with the 2-2 diagrams shown in figure 14 by assuming

the on-shell external legs (on-shell approximation [38]). The ξ-dependent terms in both

diagrams disappear by the on-shell conditions. The most convenient way to describe the

potential is working in the Feynman gauge. The left-panel in figure 14 exchanging the dark

photon leads to (3.19), while the right-panel exchanging the Goldstone boson contributes

to the (3.20). In the unitary gauge, equivalently, kµkν

m2
γ′

term in the dark photon propagator

contributes to the (3.20).

However, the diagrams in figure 14 are only a fraction inside the ladder diagrams, and

usually the fermionic external legs in them are slightly off-shell. Therefore, the ξ-dependent

kµkν terms in the dark photon propagator cannot be simply contracted with the fermionic

lines. The “off-shellness” of a fermionic component is typically ∼ µα′2 in a bound state.

If ξ � 1
α′2 , and notice that k ∼ µα′, the kµkν

k2−m2
γ′

(1 − ξ) � 1, this term can be safely

neglected, and the final result is (nearly) ξ-independent. However, if ξ � 1
α′2 , e.g., in the

unitary gauge, since µα′2 is much larger than the typical dark photon mass mγ′ , we will

have a large deviation ∝ µ2α′4

m2
γ′

compared with the on-shell approximation, which cannot

be simply neglected. Although we can confine ourself in the ξ � 1
α′2 area to apply the

“on-shell approximation” to directly write down the (3.19)–(3.20) both for on-shell and
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slightly off-shell fermionic legs, we still want to see whether the large ξ, especially the

unitary gauge will ruin all of our previous discussions. Since Feynmann gauge ξ = 1 is the

most “natural” gauge to generate the potentials in (3.19)–(3.20), we will compare other ξ

with the Feynmann gauge to illustrate the gauge independence of the physical results in

the following text of this appendix.

Showing a complete proof on this issue is far beyond the main topic of this paper, so

we only give the most important instructions. For a general Rξ gauge, we again apply the

standard trick in (B.3) to decompose the kµkν terms in all of the exchanging dark photon

propagators (B.11). Notice that only the mχa − mχb term preserves all the fermionic

propagators, and combined with the (B.11), part of its contributions can be attributed to

the Feynmann gauge Goldstone, while the other part is cancelled with the general Rξ gauge

Goldstone propagators. The (/pi + /k −mχb) and (/pi −mχa) terms in (B.3) will kill one of

the fermionic propagators when it is internal, and will be finally cancelled with other terms

if we sum over all the possible mediator connections between the bound state component

lines. Finally, we acquire a complete series of Feynmann-gauge diagrams with all the gauge

dependent terms only remaining in the external legs. These terms are proportional to the

/pi −mi for each external fermionic leg with the momentum pi and mass mi.

For the scattering state, all the external legs are on-shell, so all the gauge dependent

/pi − mi terms disappear. Therefore, the scattering state calculations are eventually ξ-

independent. On the other hand, for the bound state, the external leg /pi−mi remains. With

the symbols of (2.16) in ref. [130], we define Lξ as the diagram summation over all possible

mediator connections, and Lξ=1 will be the Feynmann gauge results. After decomposing

and cancelling all the dark photon and dark Goldstone propagator corresponding terms in

Lξ, we acquire such kind of format:

Lξ = Lξ=1 + iSL(ξ)Lξ=1 − iLξ=1SR(ξ)− SL(ξ)Lξ=1SR(ξ) + finite terms, (C.1)

where SL,R(ξ) contains the /pi − mi terms for the external legs. We did not write down

the loop integrals explicitly between SL,R(ξ) and Lξ=1 for brevity. Notice that SL and SR
should have the same dependence on the corresponding external momentums. Therefore,

it is easy to see that the general Lξ and Lξ=1 share the same pole if we define

ΨP,ξ(p) = ΨP,ξ=1(p) + SL(ξ, P, q)ΨP,ξ=1(q),

Ψ∗P,ξ(p) = Ψ∗P,ξ=1(p) + Ψ∗P,ξ=1(q)SR(ξ, P, q), (C.2)

where the q should be integrated out in a loop integration, and ΨP,ξ=1 is the wave function

of some bound state extracted from Lξ=1,

Lξ=1 ≈
ΨP,ξ=1ΨP,ξ=1

P 0 −
√
~P 2 +M2

+ . . . (C.3)

Then Lξ can be written in the form of

Lξ ≈
ΨP,ξΨ

∗
P,ξ

P 0 −
√
~P 2 +M2

+ . . . , (C.4)
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which has exactly the same pole structures with the Lξ=1, and ΨP,ξ is the corresponding

wave function. This means that the bound state energies are exactly gauge (or ξ-) indepen-

dent. However, the wave functions need to be transformed according to (C.2). We should

also note that for large ξ, Bethe-Salpeter wave function ΨP,ξ can not even be reduced

to the equal-time Schrödinger equation, so we need to solve the Bethe-Salpeter equation

in this situation. This is because when ξ � 1
α′2 , large awkward time-dependent gauge

transformations are introduced, disrupting the time dependence of the wave functions.

We then point out that the ξ-dependence on the wave functions do not affect the

physical S matrix calculations. For an example, if we want to calculate the state transition

characterized by the diagrams in figure 4, we acquire

Lξ,outKξLξ,in, (C.5)

where Kξ is the perturbative kernel to emit the dark photon. Note that after summing over

all possible mediator connections to attribute all of the ξ-dependent terms to the external

legs, and then adopt the poles of the initial and final states, the internal mediators in (C.5)

finally become Feynmann gauge propagators, and the final result is of the format

ΨPi,ξΨ
∗
Pi,ξ=1

P 0
i −

√
~Pi

2
+M2

Kξ=1

Ψ∗Po,ξ=1ΨPo,ξ

P 0
o −

√
~Po

2
+M2

. (C.6)

According to the principles of the LSZ reduction formula, the
ΨPi,o,ξ

P 0
i,o−

√
~Pi,o

2
+M2

can be re-

garded as the bound state propagator as well as the “renormalzation factor” compared

with the (C.4), and it should be amputated, leaving us only the Ψ∗Pi,ξ=1Kξ=1ΨPo,ξ=1.

Then what if we calculate the Ψ∗Pi,ξKξΨPo,ξ? Note that when we transform all the wave

functions according to (C.2), the SL,R will also exert on the interaction kernel K by adding

lots of off-shell terms proportional to /pi − mi. This changes Kξ=1 to Kξ. Therefore,

Ψ∗Pi,ξ=1Kξ=1ΨPo,ξ=1 = Ψ∗Pi,ξKξΨPo,ξ, which is exactly the gauge (or ξ-) independent phys-

ical S-matrix. Finally, we can see that the off-shell corresponding terms SL,R does not

contribute to this matrix element because their contributions to the ΨPi,ξ, Kξ, ΨPo,ξ re-

spectively cancel with each other.

Furthermore, although we need to calculate all the possible mediator connections be-

tween the bound state component fermions, contributions other than ladder diagrams

are actually ignored in our paper for the same reason demonstrated in section II-A from

ref. [130]. We can easily verify that most of the ξ-dependent off-shell contributions in the

ladder diagrams are actually also absorbed by these non-ladder diagrams. The remained

terms are attributed to the external legs and does not disturb all of the physical results

as we have discussed. Therefore, we finally recover the “on-shell” approximation princi-

ple in the most general Rξ gauge even for large ξ � 1
α′2 : when calculating the diagrams

in figure 14, we shall safely assume all the external legs to be on shell. Because all the

off-shell contributions are ξ-dependent and will be exactly cancelled and absorbed into the

non-ladder diagrams and the physical state definitions.
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Figure 15. Original diagrams of the emission from the mediators.

Figure 16. Derived diagrams of the emission from the mediators.

D Reasons for neglecting the emission from the mediators

Ref. [68] had calculated the emission from one of the “ladder” mediators. Naively, such

terms contain more vertices and can be considered as higher-order contributions. However,

the momenta exchanging among these diagrams p−q are of the order µα′, which appears in

the propagator as 1
|~p−~q|n , canceling the extra coupling constants in the numerator. Ref. [68]

calculated and showed that such a contribution is nearly equivalent to the diagrams where

vector bosons emit from the bounded components.

In our situation, we have only two diagrams where a dark Higgs boson or a dark

photon emit from a mediator, which are listed in figure 15. All the out leg fermions

are nearly on-shell, as the process described in ref. [38]. The unitary gauge propagator

for a dark photon −i
k2−m2

γ′+iε

(
gµν − kµkν

m2
γ′

)
can be decomposed into two parts,

−igµν
k2−m2

γ′+iε

and i
k2−m2

γ′+iε

(
kµkν
m2
γ′

)
, roughly symbolize the transverse and longitudinal (or Goldstone)

contributions. Contracting out the kµ and gµν generate the original diagrams in figure 15,
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and extra three diagrams listed in figure 16, in which all of the dark photons are
−igµν
q2−m2

γ′

“transverse” propagators.

In each diagram of figure 15 and the first diagram in figure 16, one of the vertices

include a vΦ. For the second diagram in figure 16, note that since K−P ∼ µrα′2, therefore

only p − q with their spatial components ~p − ~q ∼ µrα
′ are picked up in the R and γ′

propagators. The metrix gµν in the γ′ propagator contracts this p − q with the χiχjγ
′

vertex and gives a mχi −mχj . Ignoring the mediator masses, this diagram becomes

∝ yQΦQχg
2(mχi −mχj )

1

(~p− ~q)4
. (D.1)

Comparing this with (2.23a), (2.24) in ref. [68], we need to replace their “(T b1 )i′i(T
c
2 )j′j ×

8gBSF
s g2

s
~q−~p

(~q−~p)4 ” by (D.1). Hence the eq. (B.1) in ref. [68], will be replaced by

yQΦg(2µr)(mχi −mχj )

∫
d3~p

(2π)3

d3~q

(2π)3

1

(~p− ~q)4
ψ∗s/d,nlm(~p)(σ1)φ

d/s,~k
(~q). (D.2)

the 1
(~p−~q)4 term will induce an integration∫

d3~q

(2π)3

e−i~q·~r

(~q2)2
. (D.3)

This gives an infrared divergence. By analysing the precise momenta flows (which means

considering both the masses of the mediator’s propagators and the sub-leading O(µrα
′2)

momenta ignored by usual bound state ladder approximation analysis), we can learn that

the physical cut-off on this divergence can be very complicated and depends on 1
2µrv

2,

mχ1 −mχ2 , and µrα
′2, mR and mγ′ . We define the effective infrared cut-off scale ΛIR ∼

max
{

1
2µv

2, mχ1 −mχ2 , µα
′2, mR, mγ′

}
. With this cut off, (D.3) will then become ∼

i
2π2

πe−ΛIRr

4ΛIR
. Since usually ΛIR � κ = µα′, the numerator e−ΛIRr ∼ 1 in the usual spatial

area where the bound state wave function dominates, therefore (D.1) finally becomes

∼ yQΦg(2µr)(mχi −mχj )
1

8πΛIR

∫
d3~rψs/d,nlm(~r)σ1φ

d/s,~k
(~r). (D.4)

The “(25παBSF
s M2/µ1/2)” factor in (2.25) of ref. [68] will also be replaced by 4

√
2
√
µrQχ.

Connecting this with D.4 and compare with the (4.18), we can finally see a suppression

factor of
yQΦg(|mχ1−mχ2 |)

4πΛIR
=

y2mγ′
2πΛIR

. Since ΛIR should be roughly the same order of magni-

tude with mγ′ , and in this paper we are interested in the y < Qχg parameter space, and

considering the further factor of 1
2π , we can assert that the final result of this mediator

emission channel is roughly ΛIR
µr

suppressed compared with the (4.18).

Only the last diagram in figure 16 might be problematic. Here the transverse dark

photon was emitted from the mediator. The momenta dependence of this diagram is

exactly similar to the (2.23a) in ref. [68], with all the other group factors disappeared.

And the factor of 8 that equation also disappear in our model due to the different Lorentz

structures of the vertices. This means that our result will be suppressed by at least a

factor of 1
8 . Compared with the (B.4d) in ref. [68], we also have a y2

Q2
Φg

2 < 1 factor, which is
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usually smaller than 1 to evade the CMB recombination bound described in (5.9), giving

an extra suppression. Finally, a practical calculation had shown that the transverse dark

photon emitting process is far from the main contribution compared with other bound

state formation channels. Therefore, we also neglect this diagram.

One might concern whether the extended Ward identity is satisfied if we drop out

these diagrams, since from the section B, we have learned that the extended Ward identity

establishes only when we sum over all the possible diagrams in the same order. However,

according to eq. (2.12) in ref. [130], we actually acquiesce to drop out all the off-shell contri-

butions when we are calculating the Schrödinger equations to resum the ladder diagrams.

Analysis in appendix C also reveals that we can safely apply the “on-shell” approximation

to calculate the perturbative kernel in a general R-ξ gauge. It is easy to verify that if all

the external fermions to be on-shell, all the ξ-dependent terms then disappear separately

for a χiχjγ
′ kernel and the emission from mediator described in figure 15. Therefore, Ward

identity can still be satisfied even if we neglect some of the diagrams.

E Quantum numbers of the DM bound states

In this paper, before the spontaneously symmetry breaking, the Lagrangian we have

adopted in (2.1) keeps both the parity and C-parity conserved, if we define the intrin-

sic parity of the dark Higgs boson Φ to be odd, so PΦ(t, ~x)P = −Φ(t,−~x). This can

derived if we notice

PCχ(x)CP = −CPχ(x)PC, (E.1)

or

PχC(x)P = −(Pχ(x)P )C , (E.2)

where C and P are the charge conjugate and parity operators. Therefore,

C(ΦχCχ+ h.c.)C = (ΦχCχ+ h.c.),

P (Φ(x)χC(x)χ(x) + h.c.)P = (Φ(x̃) χC(x̃)χ(x̃) + h.c.), (E.3)

where x̃ = (t,−~x) are the parity transformed coordinates. After we decompose χ into χ4
1

and χ4
2 through (3.7), it is easily known that the C-parities for χ1 and χ2 are “+” and “−”,

respectively.

The (C-)parity of the dark photon is similar to the visible photon, which is defined to

be odd.

For a two-fermion system, the total C-parity is calculated to be (−1)L+S for the χχ/χχ

system, or equivalently, it is (−1)i+j for all the |χiχj〉 systems, while the total parity should

be (−1)L for two same charged fermions, and (−1)L+1 for opposite charged fermions. One

can compare the angular momentums and the (C-)parity informations listed in the table 2.

For the two-boson systems RR, II, IR, Rγ′, Iγ′, or γ′γ′, the total C-parity can be

directly acquired through multiplying all the C-parities of the particle components. They

are +, +, −, −, +, + respectively. While all of their parities are (−1)L.

Then we are ready to present how we acquired the selection rules shown in table 2.
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For the χχ/χχ initial states, the dark charge conservation could only permit the γ′γ′,

and Φ∗Φ final states. Φ∗Φ can be decomposed into RR, II and IR. From the C-parities of

these boson pairs, we know IR can only be decayed through |χ1χ2〉 − |χ2χ1〉 initial states.

For the 101−+ situation, it was prohibited by the parity conservation law. RR and II

might appear in other combinations, however their orbital momentums are constrained to

be even, so their parity are always +. Therefore, they are ruled out in the 1S0(0+−) case

due to the parity conservation, and are forbidden in the 111++ situation due to the angular

momentum conservation. Finally, γ′γ′ channel was forbidden in all the J = 1 initial states

because of the Landau-Yang theorem.

For the χχ/χχ initial states, the dark charge conservation only permits the Φ(∗)γ′ final

states. This can be composed into Rγ′ and Iγ′. J = 0 situations are eliminated because

a transverse photon cannot form a J = 0 state together with a scalar. Rγ′ and Iγ′ were

separately placed because of the C-parity conservation law.

After the symmetry breaking, the parity-odd scalar Φ takes a vacuum expectation

value. This means that the parity is spontaneously broken, and the bound state eigen-

states can no longer be discriminated by the parity. Therefore, in table 3 and 4, we

eliminate the parity. However, the selection rules discussed before P breaking are very

good approximations in calculating the dark matter annihilation S-matrices because of the

small vΦ we have adopted in this paper.
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