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SUMMARY

RNase III Drosha initiates microRNA (miRNA) matu-
ration by cleaving a primary miRNA transcript and
releasing a pre-miRNA with a 2 nt 30 overhang. Dicer
recognizes the 2 nt 30 overhang structure to selec-
tively process pre-miRNAs. Here, we find that, unlike
prototypic pre-miRNAs (group I), group II pre-
miRNAs acquire a shorter (1 nt) 30 overhang from
Drosha processing and therefore require a 30-end
mono-uridylation for Dicer processing. The majority
of let-7 and miR-105 belong to group II. We identify
TUT7/ZCCHC6, TUT4/ZCCHC11, and TUT2/PAPD4/
GLD2 as the terminal uridylyl transferases respon-
sible for pre-miRNA mono-uridylation. The TUTs
act specifically on dsRNAs with a 1 nt 30 overhang,
thereby creating a 2 nt 30 overhang. Depletion of
TUTs reduces let-7 levels and disrupts let-7 function.
Although the let-7 suppressor, Lin28, induces inhi-
bitory oligo-uridylation in embryonic stem cells,
mono-uridylation occurs in somatic cells lacking
Lin28 to promote let-7 biogenesis. Our study reveals
functional duality of uridylation and introduces
TUT7/4/2 as components of the miRNA biogenesis
pathway.
INTRODUCTION

Biogenesis of microRNA (miRNA) involves multiple maturation

steps (Kim et al., 2009). As miRNA sequences are embedded

in the stem of a local hairpin in a nascent transcript (primary

miRNA [pri-miRNA]), a couple of endonucleolytic reactions are

needed to yield a functional miRNA. The nuclear RNase III Dro-

sha initiates the maturation process by cleaving a pri-miRNA to

release an �70 nt hairpin-shaped RNA (pre-miRNA) (Lee et al.,

2003). Together with its cofactor DGCR8 (also known as Pasha),

Drosha cuts the hairpin at 11 bp away from the base of the
hairpin (Denli et al., 2004; Gregory et al., 2004; Han et al.,

2004, 2006; Landthaler et al., 2004). Like other RNase-III-type

endonucleases, Drosha introduces a staggered cut such that

the product acquires a characteristic 2 nt overhang at the 30

terminus. After cleavage, the pre-miRNA is exported to the

cytoplasm by exportin 5 in a complex with Ran-GTP (Bohnsack

et al., 2004; Lund et al., 2004; Yi et al., 2003). The cytoplasmic

RNase III Dicer processes the pre-miRNA further to liberate

a small RNA duplex (Bernstein et al., 2001; Grishok et al.,

2001; Hutvágner et al., 2001; Ketting et al., 2001; Knight and

Bass, 2001). Human Dicer binds to the pre-miRNA with a pre-

ference for the 2 nt 30 overhang (Zhang et al., 2004). The 50 and
30 ends of pre-miRNA are accommodated in two basic pockets

(50 and 30 pockets, respectively) located in the PAZ domain of

Dicer (Park et al., 2011). Dicer measures 22 nt from the 50 phos-
phorylated end of pre-miRNA and cleaves near the terminal

loop (Park et al., 2011; Vermeulen et al., 2005; Zhang et al.,

2002, 2004). The resulting small RNA duplex is loaded on to

Argonaute and one of the strands is selected to form an active

RNA-induced silencing complex (RISC) (Hammond et al., 2001;

Mourelatos et al., 2002; Tabara et al., 1999).

The let-7 miRNA family is highly conserved throughout

bilaterian animals (Pasquinelli et al., 2000; Reinhart et al., 2000;

Roush and Slack, 2008). Let-7 miRNAs suppress cell prolife-

ration and promote cell differentiation by targeting multiple

genes including HMGA2, RAS, and Lin28 (Büssing et al., 2008).

At the organismal level, let-7 has been implicated in multiple

processes such as larval development inCaenorhabditis elegans

and growth and glucose metabolism in mammals (Grosshans

et al., 2005; Meneely and Herman, 1979; Pasquinelli et al.,

2000; Reinhart et al., 2000; Zhu et al., 2010, 2011). Biogenesis

of let-7 is suppressed in embryonic stage and in certain cancer

cells (Büssing et al., 2008). We and other groups have previously

shown that let-7 maturation is inhibited by an RNA-binding

protein Lin28 (Heo et al., 2008; Newman et al., 2008; Rybak

et al., 2008; Viswanathan et al., 2008). There are two paralogues

of Lin28 (Lin28A and Lin28B) in mammals that are biochemically

similar but are distinct in expression patterns and subcellular

localization (Balzer and Moss, 2007; Guo et al., 2006; Piskou-

nova et al., 2011; Polesskaya et al., 2007; Richards et al.,
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Figure 1. Pre-let-7 Is Mono-Uridylated in the Absence of Lin28

(A) Significant amount of pre-let-7 carries an untemplated uridine at its 30 end
(Mono-U). A total of 145 pre-let-7 clones were obtained from two independent

experiments by using HeLa cells (see Figure S1A for details). ‘‘Trimmed’’ reads

are shorter than pre-let-7 and ‘‘others’’ reads do not belong to any other

categories (see Table S1). Error bars indicate SD.

(B) Expression pattern of Lin28A, Lin28B, and TUT4 in HeLa (human cervical

adenocarcinoma), 293T (human embryonic kidney), A3-1 (mouse embryonic

stem cell), and Huh7 (human hepatocellular carcinoma). Tubulin was detected

as a loading control.

(C) TUT4 catalyzed mono-uridylation of pre-let-7a-1 in the absence of Lin28

(left). Immunopurified wild-type or catalytically dead mutant (D1011A) TUT4

was incubated with 50 end-labeled pre-let-7a-1 and 0.25 mM UTP. (right)

Comparable amounts of proteins were used in the reaction.
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2004; Yang and Moss, 2003). Lin28A is expressed in embryonic

cells and cancer cells and localized mainly in the cytoplasm,

whereas Lin28B is induced in cancer cells that do not express

Lin28A and is predominantly located in the nucleolus. The

Lin28 proteins bind to the terminal loop of let-7 precursors

through a conserved motif GGAG to interfere with Drosha and

Dicer processing (Heo et al., 2009; Loughlin et al., 2012;

Nam et al., 2011). Lin28 also interacts with terminal uridylyl

transferase 4 (TUT4, also known as ZCCHC11, PAPD3, and

Hs3) to induce oligo-uridylation (10–30 nt) of pre-let-7 by TUT4

(Hagan et al., 2009; Heo et al., 2009). TUT7 (also known as

ZCCHC6, PAPD6, and Hs2) has a similar but weaker activity

compared to that of TUT4 (Heo et al., 2009). Because Dicer

disfavors a substrate with such a long single-stranded RNA

tail, oligo-uridylation provides an effective way of suppressing

let-7 maturation. Uridylation has also been associated with

RNA degradation and the U tails are thought to facilitate the

recruitment of exonucleases (Ji and Chen, 2012; Kim et al.,

2010; Ren et al., 2012; Wickens and Kwak, 2008; Wilusz and

Wilusz, 2008; Zhao et al., 2012).

Recent high-throughput studies of miRNA population in

various cell types suggested that miRNAs and their precursors

may undergo multiple types of posttranscriptional modifica-

tions (Burroughs et al., 2010; Chiang et al., 2010; Jones et al.,

2009; Newman et al., 2011; Wu et al., 2009; Wyman et al.,

2011). However, most modification events appear to be rare

and their functional relevance remains unclear. In the current

study, we find that certain pre-miRNAs are frequently mono-

uridylated and that the uridylating enzymes play critical roles in

the maturation and function of miRNAs.

RESULTS

Mono-Uridylation of Pre-let-7 in the Absence of Lin28
To investigate posttranscriptional regulation of miRNAs at the

pre-miRNA level, we cloned and sequenced pre-let-7 from

HeLa cells (Figure S1A available online). To our surprise, a

considerable portion of the pre-let-7 clones (20%) carried one

untemplated uridyl residue at the 30 end (Figure 1A). Because

HeLa cells do not express Lin28A or Lin28B (Figure 1B), this

result indicates that pre-let-7 may undergo uridylation even in

the absence of Lin28. Other modifications appear to be rare

events: only 1% carried an untemplated adenosine and there

was no clone with extra guanosine or cytidine (Figure 1A and

Table S1). Most of the remaining clones were shorter than pre-

let-7, likely representing degradation intermediates.

We refer to the nontemplated addition of a single uridine as

‘‘mono-uridylation’’ because the length of the U tail is clearly

distinct from that in ‘‘oligo-uridylation’’ (10–30 nt) observed in
(D) Not only TUT4 but also TUT7 and TUT2 mono-uridylate pre-let-7a-1 (top).

In vitro uridylation was performed by using immunopurified human TUTases

(TUTs). The levels of immunoprecipitated TUTs are shown in Figure S1B.

Bottom: domain organization of human TUTs. (red, nucleotidyl transferase

domain; orange, PAP-associated domain; hatched red, inactive nucleotidyl

transferase domain due to sequence variations; light green, C2H2 zinc finger

domain; green, CCHC zinc finger domain; yellow, RNA recognition motif).

Dashed line indicates discontinuous lanes from the same gel.



Lin28-expressing cells (Hagan et al., 2009; Heo et al., 2008,

2009). In a recent report, Hammond and colleagues made

a similar observation of mono-uridylation in various cell types

(Newman et al., 2011). A caveat of ours and Hammond group’s

findings, however, is that only the steady-state levels were

examined. Thus, it is unclear from these data whether the

mono-uridylated pre-miRNAs are active precursors to be pro-

cessed or they are nonfunctional dead-end products facing

degradation.

TUT7, TUT4, and TUT2 Mono-Uridylate Pre-let-7 In Vitro
To understand the functional significance of mono-uridylation,

it was critical for us to identify the factors responsible for the

modification. Interestingly, from in vitro uridylation assay, we

noticed that TUT4 has a mono-uridylating activity in the absence

of Lin28 (Figure 1C), whereas the same enzyme catalyzes oligo-

uridylation when Lin28 is bound (Heo et al., 2009). We detected

pre-let-7a-1 extended by 1 nt when 50 end-labeled pre-let-7a-1

was incubated with wild-type TUT4 but not with a catalytically

dead mutant (D1011A) (Figure 1C). Consistent with this result,

TUT4 interacts with pre-let-7 even in the absence of Lin28,

albeit transiently, as recently shown by single-molecule detec-

tion technique called SIMPlex (Yeom et al., 2011). The duration

of the interaction between TUT4 and pre-let-7 is very short

(1.1 ± 0.2 s), explaining why we previously failed to detect the

interaction in bulk binding assays (Heo et al., 2009).

We further examined other terminal uridylyl transferases

(TUTases or TUTs, also called poly [U] polymerases) for their

activity toward pre-let-7 (Martin and Keller, 2007; Stevenson

and Norbury, 2006; Wilusz and Wilusz, 2008). We immuno-

precipitated seven TUTases (TUT1, TUT2, TUT3, TUT4, TUT5,

TUT6, and TUT7) for in vitro uridylation experiments (Figures

1D and S1B). Interestingly, TUT7 and TUT2 as well as TUT4

can catalyze mono-uridylation of pre-let-7a-1 (Figure 1D).

Such mono-uridylation activity was not detected when point

mutants of the conserved catalytic site in TUT7 (D1060A) or

TUT2 (D215A) were used (Figures S1C and S1D), excluding the

possibility that the observed activity is due to contamination

of another enzyme. When we substituted UTP with other NTPs,

TUT7 and TUT4 failed to utilize other NTPs, whereas TUT2

incorporated ATP and GTP as well as UTP (Figure S1E). Thus,

TUT7 and TUT4 are specific to uridylyl transfer, whereas TUT2

has a broader nucleotide usage.

TUT7 is closely related to TUT4 (Figure 1D), but its oligo-uridy-

lation activity for pre-let-7 is lower compared to that of TUT4

(Heo et al., 2009). It was unexpected that TUT2 (also known as

GLD2 and PAPD4) has uridylating activity and acts on a pre-

miRNA. TUT2 is known to induce translation by poly-adenylating

mRNAs at synapses (Rouhana et al., 2005) and during oogenesis

(Nakanishi et al., 2006). In addition, TUT2 mono-adenylates

and stabilizes mature miR-122 in mammalian liver cells and

fibroblasts (Burns et al., 2011; Katoh et al., 2009).

TUT7, TUT4, and TUT2 Promote let-7 Biogenesis in Cells
We next asked whether TUT7, TUT4, and TUT2 (TUT7/4/2) have

any effect on let-7 biogenesis by transfecting siRNAs against

the TUTs into HeLa cells. Western blotting confirmed the deple-

tion of each protein (Figure 2A). An individual knockdown of
TUTs induced marginal alteration at the levels of mature and

pre-let-7 (Figure 2B, lanes 3-5). Because our uridylation assay

by using immunoprecipitates indicated that TUT7/4/2 have

similar activities (Figure 1D), we reasoned that the three TUTs

may function redundantly in cells. Consistent with this notion,

when all the three TUTs were depleted simultaneously with

a mixture of three siRNAs (siTUT mix), pre-let-7 increased sig-

nificantly, whereas mature let-7 decreased (Figures 2B, lane 2,

and 2C). Of note, the let-7a probe may cross-hybridize to other

let-7 members because of sequence similarities. Our result

indicates that let-7 maturation was blocked at the pre-let-7 level

after depletion of TUTs. Unlike let-7, the change in miR-16 level

was insignificant in TUT-depleted cells (Figures 2B lane 8, and

2C), implicating that TUT7/4/2 may contribute specifically to

let-7 maturation. Similar observations were made with two

additional sets of siRNA mixtures against TUT7/4/2, ruling out

a possibility of off-target effects (Figures S2A–S2C). Notably,

the impact of TUT knockdown on let-7 was as strong as that of

Dicer (Figures 2B, 2C, S2E and S2F), which indicates that

TUT7/4/2 may play an integral role in let-7 biogenesis.

Combinatorial knockdown of two TUTs (siTUT7&4, siTUT7&2,

and siTUT4&2) resulted in similar but less prominent effects on

let-7 maturation compared to that of TUT7/4/2 (siTUT mix)

(Figures S2D–S2F). Thus, all the three TUTs may act redundantly

in let-7 biogenesis. It is noted that TUT7 depletion in single- or

double-knockdown experiments affected let-7 maturation

modestly but significantly, whereas that of TUT4 and TUT2 had

less obvious effects (Figures 2C, S2E and S2F). These data

implicate that TUT7 may be the major enzyme for pre-let-7

mono-uridylation although we cannot rule out the possibility

that TUT4 or TUT2 may function dominantly in other cell types.

TUT7, TUT4, and TUT2 Are Required for Pre-let-7
Mono-Uridylation in Cells
To investigate the uridylation status of pre-let-7 in HeLa cells

depleted of TUT7/4/2, we performed sequencing of pre-let-7

(Figure 2D). The portion of mono-uridylated pre-let-7 (let-7a-1,

d, f-1, f-2, and g) decreased markedly (from 20% to 3%) in

siTUT mix-treated cells. This result clearly demonstrates that

TUT7/4/2 are indeed required for mono-uridylation of pre-let-7

in cells.

Interestingly, the trimmed forms of pre-let-7 (mostly 1 nt

shorter at the 30 end than unmodified pre-let-7) increased con-

siderably upon TUT knockdown (Figure 2D and Table S1),

suggesting that mono-uridylation may protect pre-miRNA from

30-exonuclease-mediated trimming. Because the 30 trimm-

ing enzyme for mammalian miRNA is unknown, it is currently

unclear by which mechanism pre-miRNAs are degraded and

how mono-uridylation influences trimming.

Mono-Uridylation of Pre-let-7 Enhances Dicer
Processing
How does mono-uridylation promote let-7 biogenesis? We

found that pre-let-7a-1 has an unusual end structure: a 1 nt 50

overhang and a 2 nt 30 overhang (Figure 3A, unmodified).

Because this structure is equivalent to a 1 nt 30 overhang as far

as Dicer processing is concerned (Park et al., 2011), it is ex-

pected that pre-let-7a-1 is a suboptimal substrate for Dicer.
Cell 151, 521–532, October 26, 2012 ª2012 Elsevier Inc. 523
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Figure 2. TUT7, TUT4, and TUT2 Redundantly Promote Biogenesis of let-7
(A) TUT7, TUT4, and TUT2 proteins were depleted in HeLa cells. GAPDH was detected as a loading control. An asterisk indicates a nonspecific band.

(B) Concurrent knockdown of TUT7, TUT4, and TUT2 increased pre-let-7a levels, whereas decreasingmature let-7a levels (left). The samemembranewas probed

for miR-16 (right). tRNA-lys was detected as a loading control.

(C) The levels of mature and precursor of let-7a (left) and miR-16 (right) were quantified from two independent northern blot experiments that include the data

shown in (B) and normalized against tRNA levels. Error bars indicate SDs. Paired one-tailed t test was used to calculate the statistical significance of decrease

in the ratio of mature to pre-let-7a level (*p < 0.05, **p < 0.01). See also Figure S2.

(D) Pre-let-7 was sequenced following the knockdown of TUTs (Figure S1A). A proportion of mono-uridylated pre-let-7 significantly decreased in TUT-depleted

HeLa cells (***p < 0.001, Fisher’s exact test). Percentages of each let-7 population were calculated from biological duplicates (Table S1). Error bars indicate

SDs. y: siTUT mix represents a mixture of equal amounts of siTUT7, siTUT4, and siTUT2, which applies for all figures.
This unusual end structure is generated by Drosha cleavage

(not by trimming), which we confirmed by performing in vitro

Drosha processing of pri-let-7 and cloning the products from

the reaction (Figure S3). Given that a 2 nt 30 overhang of pre-

miRNA is favored by Dicer (Park et al., 2011; Zhang et al.,

2004), we expected that mono-uridylation of pre-let-7 would

create an optimal substrate for Dicer processing (Figure 3A,

mono-U). Consistent with our prediction, in vitro assay with

immunopurified human Dicer demonstrated clearly that mono-
524 Cell 151, 521–532, October 26, 2012 ª2012 Elsevier Inc.
uridylated pre-let-7a-1 is processed more efficiently than the

unmodified counterpart (Figure 3B). Another family member,

pre-let-7b, gave a similar but more dramatic result (Figures 3C

and D). Mono-uridylated pre-let-7b was cleaved by Dicer

efficiently, whereas unmodified counterpart was barely pro-

cessed in our assay, which clearly shows that mono-uridylation

is necessary for efficient Dicer processing (Figure 3D). Taken

together with the results from the knockdown experiments

(Figure 2), our data indicate that mono-uridylation of pre-let-7
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Figure 3. Mono-Uridylation of Pre-let-7

Enhances Dicer Processing

(A and C) Shown are the structures of human

pre-let-7a-1 and pre-let-7b. Mono-uridylation

makes pre-let-7 an optimal substrate for Dicer

cleavage by elongating the overhang from 1 nt to

2 nt. Arrows indicate Dicer processing sites and

untemplated uridine addition is represented in red.

See also Figure S3.

(B and D) Mono-uridylated pre-let-7a-1 or pre-let-

7b was processed more efficiently by purified

Dicer than their unmodified counterparts. Pro-

cessing efficiency was measured from two inde-

pendent experiments. Error bars indicate SDs.
by TUT7/4/2 promotes let-7 biogenesis by enhancing Dicer

processing.

The let-7 Family Is Subdivided into Two Groups Based
on the End Structure of the Precursor
In humans, nine distinct let-7 members are generated from 12

different precursors. To see whether all let-7 members are

regulated by the same mechanism, we examined the end

structure of let-7 precursors (Figures 4A and S4A). We inferred
Cell 151, 521–532,
the 30 end of pre-let-7 based on the 30

end of mature let-7-3p sequences from

multiple small RNA deep sequencing

data (See Experimental Procedures for

details). In the case of let-7a-1 and let-

7d, we performed in vitro Drosha pro-

cessing and cloned the products in

order to annotate the exact Drosha

cleavage sites (Figure S3). Based on

these analyses, we redetermined the 30

end of several let-7 precursors (let-7b,

c, d, f-1, f-2, i, and miR-98) that appear

to be misannotated in miRBase data-

base. By analyzing the end structure of

precursor, we found that three let-7

sisters (let-7a-2, c, and e) are predicted

to carry a typical end structure (2 nt 30

overhang) as seen in most other pre-

miRNAs outside the let-7 family (Figures

4A and S4A). We refer to this prototypic

subset as ‘‘group I.’’ On the other hand,

the precursors of nine let-7 miRNAs (let-

7a-1, a-3, b, d, f-1, f-2, g, i, and miR-98)

have a 1 nt 30 overhang. We name this

unusual class as ‘‘group II’’ (Figures 4A

and S4A). The pri-miRNAs of group II

let-7 contain a bulged uridine (adeno-

sine in the case of let-7d) next to Drosha

processing site. It is likely that Drosha

does not recognize this bulged nucleo-

tide, which is expected to loop out

without disrupting the stem, as often

found in structural studies on small

bulges in dsRNA (Tian et al., 2004).
Thus, Drosha processing of a group II pri-miRNA would result

in a 1 nt 50 overhang (the bulged uridine) and a 2 nt 30 over-
hang, which, together, is equivalent to a 1 nt 30 overhang

structure.

When we examined the let-7-3p reads from small RNA

deep sequencing libraries from various human tissues (listed

in Table S2), in the case of group II let-7, mono-uridylated

let-7-3p was more abundant than the unmodified let-7-3p

(Figures 4B and S4B). For group I let-7, however, the unmodified
October 26, 2012 ª2012 Elsevier Inc. 525
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Figure 4. TUT7, TUT4, and TUT2 Are

Required for the Biogenesis of Group II let-7

(A) Shown are the pri-miRNA structures of repre-

sentative group I (let-7c) and group II (let-7a-1)

let-7 in humans. Mature miRNA sequences are

shown in uppercase with blue (group I let-7-5p),

red (group II let-7-5p), or black (let-7-3p). Arrows

indicate Drosha processing sites. Structures

of other let-7 members in humans are illustrated

in Figure S4A. xThe 30 end of pre-let-7c (mis-

annotated in miRBase) was redetermined based

on our analysis.

(B) Reads of let-7c (group I) and let-7a-1 (group II)

from 100 different deep sequencing libraries

from human cells (Table S2) were aligned to

their reference sequences. Reads of mono-

uridylated let-7a-1* (let-7a-1-3p) are even more

abundant than those of unmodified counter-

parts, whereas mono-uridylated let-7c* (let-7c-

3p) is rarely detected. Reference sequences

of 5p and 3p (gray box) were annotated ac-

cording to the most frequent read among the

reads perfectly mapped to genomic sequences

in total libraries. Total read numbers of each

sequence combined from all libraries are pre-

sented on the left and right side. Mono-

uridylation on 3p sequence is shown in red

inside a yellow box. Uppercase in sequences

indicates untemplated modification. See also

Figure S4B.

(C) The levels of mature miRNAs were deter-

mined by quantitative RT-PCR (Q-PCR) for let-7,

miR-151a-3p, and miR-148b, and northern blot-

ting for miR-21, miR-20a, and miR-93. The levels

of group II let-7 (let-7b, f, and a) were reduced

significantly upon knockdown of TUTs, whereas

levels of other miRNAs (group I) remained

largely unaltered (*p < 0.05, Paired one-tailed

t test). Note that all detected miRNAs were

reduced upon knockdown of Dicer (right side).

SDs are from biological duplicates. See also

Figure S4C.
let-7-3p was dominant (Figures 4B and S4B). These data

suggest that mono-uridylation may be required specifically for

group II let-7 members.
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Group II miRNAs, but Not Group I
miRNAs, Depend on
Mono-Uridylation
To test whether group I and group II

miRNAs are controlled differentially by

TUTs, we performed quantitative RT-

PCR or northern blotting of miRNAs

from HeLa cells depleted of TUT7/4/2.

Group II let-7 (let-7a, b, and f) decreased

significantly upon TUT knockdown

(Figure 4C, red bars), whereas the

group I let-7 (let-7c) was unaltered (Fig-

ure 4C, blue bar). The levels of other

group I miRNAs (miR-21, miR-20a, miR-

151a-3p, miR-148b, and miR-93) did
not change in the TUT knockdown sample (Figure 4C, gray

bars). Our data indicate that TUT7/4/2 play a critical role in

the biogenesis of group II let-7.
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Figure 5. TUTs Act Specifically on dsRNAs with a 1 nt 30 Overhang

(A) Unmodified pre-let-7a-1 bearing a 1 nt 30 overhang (group II) underwent

mono-uridylation more efficiently than pre-let-7c (group I) and their mono-

uridylated variants. In vitro uridylation assay was performed by incubating

immunopurified TUT7 with 50-end labeled RNA. See also Figure S5.

(B) The optimal substrate for mono-uridylation of TUT are dsRNAs with a 1 nt 30

overhang. Immunopurified TUT7 was incubated with dsRNAs (ds-35) carrying

an extra 30 tail of different lengths. An asterisk indicates a radio-labeled

phosphate.

(C) Cloning of group I pre-let-7 shows that only a small portion of group I

pre-let-7 carries an extra uridine in HeLa cells (2%, 2 out of 99) (see also

Figure S1A). Percentages of each let-7 population were calculated from

biological duplicates (Table S4). Error bars indicate SDs.
We also performed small RNA deep sequencing to investigate

the global changes of miRNA upon knockdown of TUTs

(Figure S4C and Table S3). Consistent with the quantitative RT-

PCR result, all of the group II let-7 decreased after depletion of

TUT7/4/2, whereas group I let-7 remained unchanged or

modestly increased. It is noted that some of the group I miRNAs

appeared to have been affected by TUT depletion in deep

sequencingdata (e.g.,miR-21andmiR-93 inFigureS4C)although

we could not confirm such changes by quantitative RT-PCR

and northern blotting (Figure 4C), indicating that our sequencing

data may not have been highly quantitative. Nevertheless, our

results collectively demonstrate that TUT7/4/2 are required

specifically for the biogenesis of group II let-7.

Note that we classified let-7a (which are produced from three

loci, let-7a-1, a-2, and a-3) as group II miRNA in Figures 4C and

S4C because the contribution of let-7a-2 (group I) to total let-7a

population is expected to be trivial (�1%), judging from the rela-

tive abundance of let-7a-2* compared to let-7a-1*/3* from small

RNA sequencing data in HeLa cells (data not shown).

TUTs Specifically Mono-Uridylate Group II miRNA
In order to understand the mechanism underlying the specificity

of uridylation, we compared a group II precursor (let-7a-1) and

a group I precursor (let-7c) in uridylation assay. Interestingly,

pre-let-7a-1 was mono-uridylated more efficiently than pre-let-

7c (Figure 5A, lanes 1 and 2 and lanes 5 and 6). Another group

II miRNA, pre-let-7b, was also mono-uridylated with higher effi-

ciencycompared topre-let-7c (FigureS5A, lane1and2and lanes

7 and 8). Thus, TUT7 acts selectively on group II pre-miRNAs.

We hypothesized that TUT7 may discriminate the substrates

based on the 30 overhang structure. Consistent with this notion,

mono-uridylated pre-let-7a-1 was not uridylated efficiently

by TUT7 (Figure 5A, lanes 3 and 4), indicating that TUT7

recognizes the 30 overhang and transfers one uridylyl residue

only when the pre-existing overhang is 1 nt in net length.

Mono-uridylated pre-let-7a-1 may not be extended further

because a 2 nt 30 overhang is disfavored by TUT7. TUT4

and TUT2 also showed similar preference for unmodified pre-

let-7a-1 (with 1 nt 30 overhang) compared to its mono-uridylated

counterpart (with 2 nt 30 overhang) (Figures S5B and S5C). To

further validate our hypothesis, we incubated immunopurified

TUT7 with dsRNAs containing 30 overhang of variable length

(0 to 4 nt). Interestingly, only the substrate with 1 nt 30 overhang
was significantly mono-uridylated (Figure 5B, lane 4). Our results

demonstrate that TUT7 specifically recognizes dsRNAs with 1 nt

30 overhang to generate an optimal substrate for Dicer.

Consistently, when we cloned precursors of group I miRNAs

(pre-let-7c and a-2), we found that only 2% of the precursors

have an extra U at the 30 end and that the U residue is genome

templated (Figure 5C and Table S4). Furthermore, the proportion

of mono-uridylated group I let-7 was not reduced in TUT-

depleted cells (Figure 5C), indicating that mono-uridylation of

group I is a rare event, if any.

Functional Significance and Evolutionary Conservation
of Group II let-7
Group II let-7 is expressed more abundantly than group I let-7 in

HeLa cells (accounting for 98% of total let-7 reads) (Table S3).
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Figure 6. Mono-Uridylation Is Critical for

Functionality of Group II let-7

(A) Group II let-7 miRNAs are expressed

predominantly in most human cells as well as in

other vertebrates. Let-7 reads were analyzed in

sequencing libraries from 104 different human

cells (from nine distinct organs) and from various

tissues of vertebrate species (listed in Table S2).

Average percentages are presented with error

bars corresponding to SDs. Number of libraries

used: blood, 37; colon, 2; lung, 2; cervix, 14;

skin, 25; breast, 3; bone, 2; brain, 4; liver, 15;

H. sapiens, 104; Pan troglodytes, 3; Macaca

mulatta, 3; Bos taurus, 1; Sus scrofa, 7;

M. musculus, 75; Rattus norvegicus, 16; G. gallus,

2; X. tropicalis, 2.

(B) Let-7 target genes were specifically dere-

pressed in mRNA deep sequencing from

TUT-depleted HeLa cells. (left) Shown is the

cumulative distribution of mRNA changes. Two-

sided Kolmogorov-Smirnov test was used to

calculate the statistical significance of mRNA

derepression. (right) The x axis represents

a median derepression of mRNAs that contain

target sites of each miRNA. The y axis repre-

sents a significance of mRNA derepression

calculated by using two-sided Kolmogorov-

Smirnov test. Target genes with 7-mer and

8-mer sites were predicted from TargetScan

human release 6.1.

(C) Q-PCR showed that mRNA levels of HMGA2

and NRAS, targets of let-7, accumulated signifi-

cantly upon knockdown of TUT7/4/2 (**p < 0.01,

paired one-tailed t test). SDs are from four inde-

pendent experiments.

(D) Phylogenetic distribution of the let-7 miRNAs

in metazoans. Group II let-7 is conserved in

chordates (gray box), whereas group I let-7 is

present in all bilaterians, suggesting that group II

let-7 may have duplicated and diverged from

ancient group I let-7. Precursor structures of

all let-7 miRNAs expressed in metazoans were

analyzed. See also Figure S6.
According to the deep sequencing data from 104 different

human cell lines that had originated from nine different organs

(Table S2), group II let-7 accounts for more than 90% of total

let-7 population in most human cell types (Figure 6A, left). We

also found that in other vertebrate species, group II let-7 is ex-

pressed dominantly over group I (Figure 6A, right). Therefore,

mono-uridylation-dependent control of group II let-7 is expected

to have a substantial impact on the overall activity of the let-7

family. Consistently, in the mRNA sequencing from TUT7/4/2-

depleted HeLa cells, the let-7 target genes (with either one or

multiple target sites) were upregulated, whereas nontarget

genes remained unaffected (Figure 6B, left). In addition, only

the let-7 target genes were derepressed, whereas targets of

other miRNAs did not change significantly (Figure 6B, right).

We also validated the increase of known let-7 targets (HMGA2

and NRAS) by quantitative RT-PCR upon TUT knockdown (Fig-
528 Cell 151, 521–532, October 26, 2012 ª2012 Elsevier Inc.
ure 6C). Thus, TUT7/4/2 are necessary to maintain the function-

ality of let-7.

The structure and sequences of group II let-7 precursors are

conserved in chordates (including vertebrates, tunicates, and

cephalochordates), suggesting that group II may have evolved

in the common ancestor of chordates (Figures 6D and S6A).

Group I let-7 loci are found in all bilaterian animals and seem

more ancient than group II. However, there are more group II

let-7 loci than group I loci in vertebrates, implying that group II

may have expanded more rapidly than group I in vertebrates

(Bompfünewerer et al., 2005; Roush and Slack, 2008). Thus,

group II is dominant over group I in vertebrates, not only in

terms of expression levels but also in gene numbers, suggesting

that group II let-7 may have played an important role during

vertebrate evolution. Of note, TUT7/4/2 homologs are found in

all examined vertebrate species (Figure S6B).
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Figure 7. Mono-Uridylation is an Integral

Step for Group II miRNA Biogenesis

(A) Pri-miRNA structure of human miR-105 and

miR-449b, which are group II miRNA candidates.

Mature miRNA sequences are in uppercase with

red (miRNA-5p) or black (miRNA-3p). Arrows

indicate Drosha processing sites. xIndicates
reannotation of Drosha cleavage site according

to our analysis. See also Figure S7A.

(B) miR-105 decreased in deep sequencing

libraries from TUT-depleted HeLa, implying that

miR-105 may also require the TUTs for its efficient

maturation. Reads per million (RPM) of miR-105

in siTUT mix-treated cells were compared to that

in control cells. Error bars indicate SDs from bio-

logical duplicates.

(C) Unlike typical pre-miRNAs that have a 2 nt

overhang at the 30 end (group I), group II pre-

miRNAs acquire a 1 nt 30 overhang end structure

because of a bulged nucleotide next to Drosha

cleavage site. TUT7, TUT4, and TUT2 redundantly

carry outmono-uridylation of group II pre-miRNAs,

transforming them to optimal substrates for

Dicer cleavage.
DISCUSSION

In conclusion, we identified TUT7, TUT4, and TUT2 as novel

components of the miRNA biogenesis pathway (see Figure 7C

for a model). TUT7/4/2 mono-uridylate group II pre-miRNAs

and thereby play an integral part in group II miRNA maturation.

It is interesting that TUT7/4/2 specifically recognize a 1 nt 30

overhang structure and transfer only one U residue to the 30

end. This property enables TUTs to reshape the dsRNA end

structure to provide optimal substrates for Dicer processing.

Because TUT4 interacts only transiently with pre-let-7a-1

(Yeom et al., 2011), the duration of the interaction may be

just long enough to transfer one nucleotide. After the first

uridylation event, TUTs may dissociate quickly and cannot

rebind to the RNA because of the low affinity toward the 2 nt

overhang. It will be of interest to investigate the molecular basis

of the specific recognition of the end structure by TUT7/4/2.
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Our study highlights the importance of

the 2 nt 30 overhang structure in miRNA

biogenesis. Drosha talks to the down-

stream factors (particularly Dicer) by

creating the 2 nt 30 overhang structure

that marks the RNAs involved in the

miRNA pathway. This is an intriguing

example of two physically separated

enzymes communicating through an

RNA motif. The dependence on 2 nt 30

overhang streamlines the miRNA matu-

ration pathway and also offers a ground

for regulation through pre-miRNA uridy-

lation. It will be interesting to understand

how Dicer distinguishes exquisitely the

subtle difference in the overhang struc-

ture. Structural analysis of vertebrate
Dicer protein will be necessary as the only published structure

of Dicer is from Giardia intestinalis, which does not have canon-

ical miRNA pathway (Macrae et al., 2006). Giardia Dicer does

not possess a preference for the 2 nt 30 overhang structure

(MacRae et al., 2007; Park et al., 2011).

miRNAs can be classified into group I and group II, based

upon the end structure of pre-miRNA and the dependence on

mono-uridylation. It is currently unclear which miRNAs outside

the let-7 family belong to group II. But based on secondary

structure prediction, the pri-miRNAs of miR-105 and miR-449b

have a bulged nucleotide next to the Drosha cleavage site,

suggesting that the precursors may acquire a 1 nt 30 overhang
structure from Drosha cleavage (Figures 7A and S7A). Deep

sequencing data from 104 different human cells (Table S2)

indicated that miR-105-3p and miR-449b-3p are frequently

mono-uridylated (Figure S7A). Furthermore, the miR-105 level,

albeit very low, decreased considerably in HeLa cells after TUT
October 26, 2012 ª2012 Elsevier Inc. 529



knockdown, suggesting that miR-105 is a bona fide member of

group II (Figure 7B). The level of miR-449b was below detection

limit in HeLa cells. Further investigation will be needed to identify

additional group II members.

Our data suggest that the group I pre-let-7 is rarely uridylated

both in HeLa cells and in vitro assays. In addition, although

mono-uridylation has been observed on other group I pre-

miRNAs (Newman et al., 2011), the frequency of such uridylation

was low and the functional significance of the modification is

unclear. Group I miRNAs remained largely unaffected upon

TUT7/4/2 depletion in our experiments (Figures 4C and S4C).

Thus, although it is possible that other TUTases may control

group I miRNAs in certain conditions or cell types, mono-uridyla-

tion of group I pre-miRNAs may not be frequent enough to exert

a meaningful effect in HeLa cells.

TUT7/4/2 mediate mono-uridylation of pre-let-7 in cells lack-

ing Lin28 and thereby facilitate Dicer processing and compete

with exonucleases. This mechanism would effectively shift the

balance in favor of biogenesis in the absence of Lin28. Because

uridylation is generally associated with RNA degradation (Ji and

Chen, 2012; Kim et al., 2010; Ren et al., 2012; Wickens and

Kwak, 2008; Wilusz and Wilusz, 2008; Zhao et al., 2012), it was

unexpected that TUT knockdown resulted in an increase of

trimmed pre-let-7 (Figure 2D), providing an intriguing case where

uridylation may have a protective effect.

We have recently reported that Lin28 increases the dwelling

time of TUT4 on pre-let-7 (Yeom et al., 2011). Thus, Lin28

enhances the processivity of TUT4 to induce oligo-uridylation,

which in turn blocks Dicer processing and facilitates pre-let-7

decay (Hagan et al., 2009; Heo et al., 2008, 2009). Therefore,

Lin28 serves as a molecular switch that converts TUT4 (and

TUT7) from key biogenesis factors into negative regulators

(Figure S7B). Our study unveils two opposing functions of

TUTs in miRNA biogenesis. The functional duality of uridylation

may contribute to the tight control of let-7 expression during

developmental transition and tumorigenesis.

EXPERIMENTAL PROCEDURES

Pre-let-7 Sequencing

Twenty to fifty micrograms of HeLa total RNA were resolved on 15% urea-

polyacrylamide gel and RNAs of 50–100 nt were gel purified. Size-fractionated

RNAs were ligated to 30 adaptor by using T4 RNA ligase 2, truncated K227Q

(NEB). The ligated RNAs were reverse transcribed with a RT primer that is

complementary to the 30 adaptor by using superscript II (Life Technologies),

followed by PCR amplification with the RT primer and a let-7a-specific (or

let-7c-specific) forward primer that contains BanI restriction enzyme sites.

Because of sequence similarities, the forward primers can hybridize to other

let-7 members. The PCR products were cleaved by using BanI (NEB) and

then concatamerized by using T4 DNA ligase (NEB). The concatamerized

DNAs were cloned for Sanger-sequencing. The sequences of 30 adaptor and
primers are listed in Table S5.

Immunoprecipitation and In Vitro Uridylation

For immunoprecipitation of Flag-TUTases, HEK293T cells were collected

48 hr after transfection with Flag-TUTase expression plasmids. The cells

were incubated in Buffer D (200 mM KCl, 10 mM Tris-HCl [pH8.0], 0.2 mM

EDTA) for 20 min followed by sonication on ice and centrifugation twice

for 15 min at 4�C. The supernatant was incubated with 5 ml of anti-Flag

antibody-conjugated agarose beads (anti-Flag M2 affinity gel, Sigma) with

constant rotation for 1 hr at 4�C. The beads were washed six times with
530 Cell 151, 521–532, October 26, 2012 ª2012 Elsevier Inc.
Buffer D. In vitro uridylation reaction was performed in a total volume of

30 ml in 3.2 mM MgCl2, 1 mM DTT, 0.25 mM UTP, 50 end labeled pre-miRNA

or dsRNA of 1 3 104 to 1 3 105 cpm, and 15 ml of immunopurified proteins

on beads (Figures 1 and S1) or 33 Flag-peptide (Sigma) eluted proteins

(Figures 5 and S5) in Buffer D. The reaction mixture was incubated at 37�C
for 10 (Figures 5 and S5) or 20 min (Figures 1 and S1). The RNA was purified

from the reaction mixture by phenol extraction and run on 6% urea polyacryl-

amide sequencing gel (20 3 40 cm, 0.4 mm thick) at constant 1500 V for

2 hr. Unmodified and mono-uridylated form of pre-let-7 (let-7a-1, b, and c)

and dsRNAs were synthesized by ST Pharm. The pre-miRNAs or dsRNAs

were radio-labeled at the 50 end with T4 polynucleotide kinase (Takara)

and (g-32P) ATP. The sequences of pre-miRNAs and dsRNAs are listed in

Table S5.
mRNA Library Preparation

mRNAs were purified from total RNA by using Dynabeads mRNA Purification

Kit (Life Technologies, 61011). Purified mRNAs were fragmented by RNA

Fragmentation Reagents (Life Technologies, AM8740). After fragmentation,

phosphate group at 30 end was removed by Antarctic phosphatase (NEB,

M0289L), and RNAs were 50 phosphorylated by T4 PNK (NEB). Directional

and multiplexed mRNA libraries were generated by using TruSeq Small RNA

Sample Preparation Kit (Illumina, RS-200–0012) and sequenced by using

Illumina HiSeq 2000.
Phylogenetic Analysis of the Structures of let-7 Precursor

All sequences and structures of the let-7 stem-loop in bilaterians were down-

loaded from miRBase release 18 and UCSC genome browser. The end struc-

tures of each pre-let-7 were manually classified into group I and group II.

The phylogenetic tree illustrated in Figure 6D was modified from the earlier

studies (Niwa and Slack, 2007; Pasquinelli et al., 2003, 2000) and miRBase

18. The full genus and species names are as follows: Homo sapiens, Mus

musculus, Gallus gallus, Xenopus tropicalis, Danio rerio, Ciona intestinalis,

Branchiostoma floridae, Saccoglossus kowalevskii, Strongylocentrotus

purpuratus, Drosophila melanogaster, Caenorhabditis elegans, Capitella

teleta, Lottia gigantean, Echinococcus granulosus, Nematostella vectensis,

and Ophlitaspongia tenuis.
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