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A B S T R A C T

Recently, increasing evidence have reported that microRNAs (miRNAs) play key roles in a variety of biological
processes. Therefore, the identification of novel miRNA–disease associations can shed new light on disease
etiology and pathogenesis. Till now, various computational methods have been proposed to predict potential
miRNA–disease associations by reducing the experimental costs and time consumption. However, most existing
methods are highly dependent on known miRNA–disease associations. Therefore, the prediction of new miRNAs
(i.e., miRNAs without known associated diseases) and new diseases (i.e., diseases without known associated
miRNAs) has become challenging. In this paper, we present IMIPMF, a novel method for predicting
miRNA–disease associations using probabilistic matrix factorization (PMF), which is a machine learning tech-
nique that is widely used in recommender systems. Predicting the rating scores that a user may assign to each
item in a recommender system is analogous to predicting miRNA–disease associations. By applying PMF, our
model not only identifies novel miRNA-disease associations, but also overcomes the common problem of in-
compatibility with miRNAs without any known associated disease, which was a limitation of most previous
computational methods. We demonstrated that our proposed model achieved a high performance with a reliable
AUC value of 0.891 by performing 5-fold cross-validation. Overall, IMIPMF is a high-performance machine-
learning-based model for predicting miRNA–disease associations, although it only considers known
miRNA–disease associations and miRNA expression data.

1. Introduction

MicroRNAs (miRNAs) are endogenous, single-stranded, non-coding
RNAs that suppress the expression of target messenger RNAs (mRNAs)
at the post-transcriptional level by binding to 3′ untranslated regions
(UTRs) [1,2]. However, various studies have demonstrated that
miRNAs also function as positive regulators at the post-transcriptional
level, directly inducing the pathogenesis of disease mechanisms. Var-
ious studies have proved that miRNAs play significant roles in multiple
biological processes, such as aging [3,4], apoptosis [5], cell develop-
ment [6], differentiation [7], metabolism [3], proliferation [8], trans-
duction [9], and viral infection [10]. In the light of this issue, miRNAs
have received considerable attention because they have significant
impact on disease emergence. Because miRNAs have been found to be
related to multiple diseases either directly or indirectly through various
biological experiments, it is necessary to trace the relationship between
miRNAs and diseases. Various studies have demonstrated the critical

role of miRNAs in disease incidence. For example, miR-101, by tar-
geting Stathmin1, was found to be a significant causal factor in breast
cancer [11]. Furthermore, miR-143 and miR-145 have been found to be
involved in down-regulating colorectal tumors and breast carcinomas
[12]. Wang et al. also determined that miR-185, by targeting Vegfa, is
one of the main factors involved in breast cancer [13]. Further, miR-
355 and miR-31 play significant roles in inhibiting breast cancer
[14–16].

Because miRNAs are known to be a significant disease-related factor
in various biological processes, identifying the interactions between
miRNAs and diseases has become a crucial problem. Several compu-
tational methods have been proposed to infer miRNA–disease associa-
tions under the assumption that functionally similar miRNAs are in-
clined to have associations with phenotypically similar diseases
[17–19]. Computational methods have also been applied to reduce the
experimental cost and time consumption to decrease the overall bio-
logical experimental workload. Most conventional methods used for
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predicting miRNA–disease associations rely on a similarity-based ap-
proach. Jiang et al. developed a hypergeometric-distribution-based
approach to infer miRNA–disease associations using three hetero-
geneous similarity networks: a human phenome-miRNAome network,
disease similarity network, and miRNA functional similarity network.
[20]. The main drawback of this method is that it is highly dependent
on local neighborhood information, which leads to high false positive
and negative rates. This leaves significant room for improvement by
utilizing global networks. Chen et al. developed the “random walk with
restart for miRNA–disease association” (RWRMDA) algorithm to infer
disease-related miRNAs by implementing a random walk algorithm on a
miRNA functionality network [21]. Although RWRMDA has shown
good predictive accuracy, this method is not suitable for the query
diseases without any known related miRNAs. Mørk et al. [22] devel-
oped a miRNA-protein-disease (miRPD) approach that utilizes linkages
among miRNAs, proteins, and diseases to predict unknown miRNA–-
disease associations. In miRPD, they used proteins as the mediators
between miRNAs and diseases by integrating the miRNA–protein and
protein–disease associations described in the literature. That is to say,
the miRNA–disease associations with more shared common proteins
have a larger possibility of being involved in disease incidence. Xuan
et al. presented an HDMP model that infers miRNA–disease associations
by considering the weighted k most similar neighbors of each node
[23]. However, owing to the strong dependency on the neighbors of the
miRNAs, the prediction of disease without known related miRNAs re-
mains limited. Chen et al. further presented a miRNA–disease predic-
tion model named “heterogeneous graph inference for miRNA–disease
association prediction” (HGIMDA) [24]. In HGIMDA, a heterogeneous
graph was constructed by combining a human miRNA–disease asso-
ciation network, disease–disease similarity and miRNA–miRNA simi-
larity. They analyzed all three-length paths on the constructed hetero-
geneous graph and demonstrated an improved performance over those
of previous conventional similarity-based models. Chen et al. also
proposed a semi-supervised learning-based model known as “regular-
ized least squares for miRNA–disease association” (RLSMDA) [25].
RLSMDA prioritized candidate miRNA–disease associations through a
semi-supervised learning framework without negative samples. The
critical drawbacks of RLSMDA are the difficulty in selecting the optimal
parameters of each classifier and combining classifiers from the dif-
ferent spaces. Chen et al. also proposed another model known as “with
and between score for miRNA–disease association prediction”
(WBSMDA) [26]. This model applies information related to disease
semantic similarity, miRNA functional similarity, and Gaussian inter-
action kernel similarity to miRNAs and diseases. Li et al. proposed a
label propagation-based model with linear neighborhood similarity to
identify potential miRNA–disease associations [27]. To summarize,
most previous similarity-based approaches are highly dependent on the
miRNAs that are already linked with the query disease. That is, these
methods cannot be implemented on miRNAs that do not belong to any
other nodes in the network.

In the past few years, vast amounts of biological data have been
produced rapidly based on the development of high-throughput tech-
niques. These data provide opportunities to discover the underlying
roles of miRNAs in various biological activities [28,29] as well as in the
detection of the regulatory mechanisms of circular RNA [30], TF-
miRNA-gene network based module detection [31], and discovery of
interplay with transcription factors [32]. The application of these data
with machine-learning-based models successively induced performance
enhancements for disease-related miRNA prediction because machine
learning approaches are capable of handling complicated biological
datasets. Accumulated evidence has shown that environmental factors
(EFs) can be essential for regulating miRNAs. Ha et al. developed a
similarity-based miRNA network, in which similarity is estimated under
the assumption that phenotypically similar miRNAs are inclined to
share more common EFs [33]. Environmental factors consist of alcohol,
cigarette, and drug use, as well as diet, stress, and exposure to radiation.

By implementing a propagation algorithm on the similarity-based
miRNA network, Ha et al. extracted candidate miRNA–disease asso-
ciations. This method can be enhanced further by considering the
chemical structures of EFs. Ha et al. also developed miRNA-disease
prediction model called PMAMCA based on matrix factorization, which
is a well-known machine learning-based model with proven excellent
performance in recommender systems. They utilized miRNA expression
data for objective function weights to enhance the prediction accuracy.
Using only known miRNA–disease interactions and miRNA expression
data, their method outperformed previous models from a technical
perspective [34]. Chen et al. proposed another computational model
known as the “restricted Boltzmann machine for multiple types of
miRNA–disease association prediction” (RBMMMDA) [35]. This model
is a two-layered graphical model with hidden units. RBMMMDA was
used to discover novel disease-related miRNAs and their corresponding
association types. Li et al. developed a matrix completion algorithm to
infer miRNA–disease association without using negative sam-
ples—“matrix completion for miRNA–disease association prediction”
(MCMDA) [36]. The primary advantage of MCMDA is that it only re-
quires the miRNA–disease association as input. However, MCMDA
cannot be applied to diseases without any known miRNA associations.
Furthermore, the identification of optimal parameters for the model
remains critical. Chen et al. developed a “hybrid approach for miR-
NA–disease association prediction” (HAMDA) model for predicting
miRNA–disease associations by combining information propagation
and the network structure [37]. However, HAMDA extracted miRNAs
using only neighbor nodes in the same layer of the miRNAs and diseases
rather than fully utilizing the topological characteristics of the sub-
graphs of heterogeneous networks. Chen et al. also proposed the
method of predicting miRNA–disease associations based on inductive
matrix complementation with matrix decomposition and heterogeneous
graphs (IMCMDA) [38]. This approach discovers not only the known
miRNA–disease associations but also the comprehensive similarity for
miRNA and disease. They also developed the “matrix decomposition
and heterogeneous graph inference” (MDHGI) for miRNA–disease as-
sociation prediction, which extracts known miRNA–disease associations
using the matrix decomposition algorithm [39]. By adopting the matrix
decomposition algorithm, they avoided the noises in the original ad-
jacency matrix, which led to performance improvement. They further
developed the more comprehensive method of “Laplacian regularized
sparse subspace learning for miRNA–disease association prediction”
(LRSSLMDA) [40]. In this method, they constructed miRNA/disease
statistical and graph theoretic features as the inputs of the model to
predict potential disease-related miRNAs. The Laplacian regularization
term was used as the cost function. They also proposed the computa-
tional model of “bipartite network projection for MDA prediction”
(BNPMDA) for identifying novel miRNA–disease associations [41]. This
framework built bias ratings based on three networks: the known
miRNA–disease association, disease similarity, and miRNA similarity
networks. With the application of machine learning, various scientific
fields have shown enormous improvement in performance by solving
critical research problems. Since then, machine-learning-based predic-
tion models [42–46], including matrix-factorization-based methods
[47], are increasingly being proposed to handle problems such as dis-
ease miRNA prioritization, drug target prediction, and cancer-type
classification. Chen et al. developed a neoteric Bayesian model
(KMFMDA) by combining kernel-based nonlinear dimension reduction
and matrix factorization for predicting potential miRNA–disease asso-
ciations [48]. Gao et al. proposed a method of predicting miRNA–di-
sease associations based on “dual network sparse graph regularized
matrix factorization” (DNSGRMF) [49]. In this method, the L2,1-norm
was used to make up for the sparsity in unknown associations. They
presented effective “nearest profile-based collaborative matrix factor-
ization” (NPCMF) to predict novel disease-related miRNAs. The nearest-
neighbor information of miRNAs and diseases was used to derive a
reliable similarity function for discovering new miRNAs and diseases
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[50]. Xiao et al. recently developed a framework known as “graph
regularized nonnegative matrix factorization” (GRNMF), which utilizes
heterogenous omics data to infer unknown miRNA–disease associa-
tions. Their framework exploits weighted gene network and semantic
associations between diseases to measure the similarities between
miRNAs and diseases [51]. However, most machine-learning methods
tend to utilize negative samples or struggle to adjust model parameters.
Moreover, some methods only utilize local information instead of
global information, which could be an area of further improvement.

In past years, recommender system algorithms have shown promise
in various fields to predict users’ preferences for specific objects such as
e-commerce and movies or music recommendation. Most companies
that sell products to users have gained significant profits by adopting
recommender systems. There are two main types of recommender
systems, namely, memory-based and model-based. Memory-based ap-
proaches (collaborative filtering) perform predictions using re-
commendations from sets of users that are similar to a new user u, who
are identified by exploring a user-item matrix. Model-based approaches
only store model parameters and do not need to search through a rating
matrix. Therefore, model-based approaches have the advantage of fast
prediction once the parameters of the model are fine-tuned. Further,
matrix factorization is one of the most popularly used approaches in
recommender systems. The success of matrix factorization in various
domains is based on its solid mathematical foundation [52,53].

In this paper, we propose a novel approach for predicting potential
miRNA–disease associations using the machine learning technique—-
probabilistic matrix factorization (PMF). By considering the fact that
miRNAs may be related to multiple diseases, we can enhance the pre-
diction accuracy and resolve the problem of applicability to miRNAs
with no previously known disease associations. The proposed IMIPMF
method aims to accomplish three main objectives: (i) predicting known
miRNA–disease associations, (ii) inferring new miRNA–disease candi-
dates, and (iii) determining the disease phenotype using latent vectors
learned by miRNA–disease associations.

The remainder paper is organized as follows. We review the biolo-
gical mechanisms of miRNAs and previous computational prediction
methods in Section 1. In Section 2, we describe the operational prin-
ciples of the proposed IMIPMF method and explain the fundamental
concepts of matrix factorization in recommender systems. We also
enumerate the datasets that were used in this study. In Section 3, we
present experimental results for various diseases and the thresholds and
applications of latent vectors for classifying disease phenotypes. In
Section 4, we discuss the proposed approach and present the results in
the context of future research.

2. Materials and methods

In this section, we provide a detailed description of the proposed
IMIPMF model and enumerate the datasets that were used in this study.

Fig. 1 shows the workflow of IMIPMF. First, for preprocessing, we ob-
tained miRNA–disease associations from the dbDEMC [54], HMDD
[55], and miR2Disease [56] databases. To enhance training, we also
utilized miRNA expression data from The Cancer Genome Atlas (TCGA)
to construct the weight matrix of the model. The miRNA expression
value was used only when the corresponding entry of the miRNA–di-
sease matrix is unknown. After formulating a binary association matrix
R with miRNA–disease association datasets, we implemented PMF to
learn the latent vectors for miRNAs and diseases. The inner product of
each miRNA and disease latent vector (i.e., rij =m di

T
j) provides a nu-

merical measure for miRNA–disease association. Finally, after learning
the latent vectors, we extracted candidate miRNAs based on the as-
sumption that the miRNAs with higher scores have a high probability of
being related to a given disease. We prioritized candidate miRNAs
based on the scores assigned by IMIPMF.

2.1. Data

2.1.1. Human miRNA–disease association dataset
Multiple databases contain miRNA–disease associations that have

been determined through various biological experiments. We obtained
human miRNA–disease association datasets using the dbDEMC, HMDD,
and miR2Disease databases. dbDEMC v2.0 is an integrated database
that provides differentially expressed miRNAs related to human cancers
and human miRNA–disease associations. The current version of
dbDEMC stores information on 2224 miRNAs and 36 diseases [54].
HMDD v2.0 provides experimentally supported human miRNA–disease
associations in the form of 10,369 entries with information on 572
miRNA genes and 378 diseases from 3511 articles [55]. miR2Disease is
a manually curated database containing detailed information on
miRNA IDs, disease names, miRNA expression patterns, and miRNA–-
disease associations [56]. We acquired information on 349 miRNAs and
163 diseases from 3273 entries in the miR2Disease database. The op-
eration of merging records from different databases to construct a group
with no duplicate entries and unifying the disease name based on MeSH
disease terms were performed.

2.1.2. miRNA expression dataset
Because several types of meaningful biological data have been

generated with the development of high-throughput techniques, we
adopted miRNA expression data for the weight matrix W of the cost
function to reduce the effects of low values in the entries of the miRNA
dataset. We obtained miRNA expression data from TCGA, which is a
collaboration between the National Cancer Institute (NCI) and the
National Human Genome Research Institute (NHGRI) that provides
generic multidimensional maps of major genomic changes in 33 types
of cancer [57]. To utilize the miRNA expression data for the weight
matrix W, we first implemented min–max normalization for pre-
processing. We entered a weight value into W only when the relation-
ship between the miRNA i and disease j was zero. By mapping miRNA

Fig. 1. Overall workflow of IMIPMF for disease-related miRNA prediction.
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expression values onto objective functions, we can effectively learn
latent vectors, although the corresponding known miRNA–disease as-
sociations do not exist.

2.2. Methods

2.2.1. Probabilistic matrix factorization
We adopted probabilistic matrix factorization (PMF) to handle

limited miRNA data and improve the prediction accuracy. PMF is an
algorithm based on matrix factorization that has already shown out-
standing performance in recommender systems [58]. Recommender
systems are widely used for selecting online information that is relevant
to a specific user. Generally, in recommender systems, each user u rates
a set of items based on their preferences. Considering the existing rating
scores, a recommender system predicts a rating score for a user u for a
non-rated item i to recommend new items that the user may like.

PMF is a probabilistic factor-based model for collaborative filtering
that performs well on sparse and imbalanced datasets. In recommender
systems, most datasets are composed of “infrequent” users who have
rated fewer than five items and “frequent” users who have rated over
10,000 items. Collaborative filtering performs well when users have
provided enough rating scores on several items, but it does not perform
well for “cold start” users. Cold start users are new users with few
ratings. The goal of predicting a rating score is analogous to predicting
whether a particular miRNA is related to a specific disease or not. The
cold start problem also exists in predicting disease-related miRNAs
owing to the limited amount of data. Inspired by previous re-
commender system approaches that have handled the cold start pro-
blem, we apply PMF to overcome these obstacles.

The goal is to infer the most potential miRNA–disease associations
for a particular disease. First, we define a conditional distribution over
a set of given miRNA–disease associations as
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For the better prediction of miRNA–disease associations, we used
the miRNA expression value for the weight of our cost function.W is the
miRNA expression matrix whose entries are equal to the expression
values for the existing miRNA–disease associations. For unknown as-
sociations, the matrix entries are zero. Here, Z is a constant term that
does not depend on the parameters. Maximizing the log-posterior can
be thought of as equivalent to minimizing the following objective
function:
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The first term is the squared error and the following two terms are
regularization terms, where M = 2/ M

2 and D = 2/ D
2 . Instead of

using a simple linear-Gaussian model, we utilize the dot product of the

miRNA and disease feature vectors that pass through the logistic
function g(x) = 1/[1 + exp(−x)].

2.2.2. Constrained PMF
miRNAs with a few known disease associations will have feature

vectors that are close to the prior mean. Therefore, we propose a novel
method for handling miRNA-specific feature vectors for “infrequent”
miRNAs. An infrequent miRNA is an miRNA that has few known as-
sociations with diseases. In general, such miRNAs lead to low prediction
accuracy based on the limited number of entries in the dataset. These
undesirable anomalies can be handled by adding a constrained model.
Our constrained model reflects the conventional biological assumption
that similar miRNAs are inclined to associate with phenotypically si-
milar diseases.

We define the miRNA feature vector Mi as
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where C ×RN Nl d is a latent similarity constraint matrix with a zero-
mean spherical-Gaussian prior defined as
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where I is an indicator matrix, in which Iij = 1 if miRNA i has been
found to be related to disease j. Otherwise, the entries are equal to zero.
C is a latent variable that every miRNA shares. By adopting the con-
strained model, miRNAs with a few disease associations can obtain
information from other miRNAs with abundant disease associations
through the latent variable C. That is, the variable C works for sharing
information among the miRNAs. Yi can be regarded as an offset that is
added to the mean of the prior distribution to derive a new Mi that has a
strong effect on handling infrequent miRNAs. Without using this con-
straint, Yi and Mi would be equal if the mean was fixed at zero. That is,
Yi would be the same as Mi without considering the constraint. The new

Mi can be replaced with + =

=
g Y( )i
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I
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1
by adopting the constrained

model. We tuned our miRNA vector Mi more precisely with the new
latent variable C to better capture the properties of miRNAs in a tech-
nical way. g(x) = 1/[1 + exp(−x)] is the logistic function, as men-
tioned above. The notations that were used in the equations are de-
scribed in Table 1. A graphical representation of the constrained model
is presented in Fig. 2. Now, the new constrained conditional distribu-
tion can be defined as follows:
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3. Results

To evaluate the prediction accuracy of IMIPMF, we implemented 5-
fold cross-validation. First, we divided the combined miRNA–disease
association datasets into train and test sets with the ratio of 80/20.

Table 1
Notations.

Symbol Description

Nm Number of miRNAs
Nd Number of diseases
Nl Number of latent dimensions
M ×RNm Nl miRNA latent space

D ×RNd Nl Disease latent space

C ×RNd Nl Latent similarity constraint matrix
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Owing to the randomness in the choice of samples, cross-validation was
implemented repeatedly to derive the mean “area under the receiver
operating characteristic (ROC) curve” (AUC) scores. To analyze the
performance intuitively, we drew the ROC curves by plotting the true
positive rate (sensitivity) and false positive rate (1 − specificity), where
sensitivity refers to the percentage of disease-related miRNAs and
specificity refers to the percentage of miRNAs that were not found to be
related to a particular disease. The TPR refers to the percentage of
correctly identified true disease-related miRNAs and the FPR refers to
the percentage of the disease-related miRNAs that are not identified so.
The AUC values were calculated to compare the performance of each
model. Generally, an AUC value of 1 refers to perfect prediction and 0.5
refers to the results of random choice. IMIPMF accomplished an AUC
value of 0.891, which proves the superiority of IMIPMF compared to
eight state-of-the-art methods.

3.1. Performance comparisons with other methods

To validate the predictive power of IMIPMF for verifying
miRNA–disease associations, we compared its performance to those of
eight state-of-the-art methods. We first calculated the AUC score for
each model. As illustrated in Fig. 3(a), our IMIPMF model achieved
superior performance compared to the IMCMDA [38], AMVML [44],
PMAMCA [34], GRNMF [51], WBSMDA [26], RWRMDA [21], RLSMDA
[25], and HDMP [23] models, with a reliable value of 0.891.

For further evaluation, we carried out leave-one-out cross-valida-
tion (LOOCV). The ROC curve based on LOOCV is illustrated in
Fig. 3(b). After drawing the ROC curve, the area under the curve (AUC)
was calculated for the comparison of IMIPMF with the eight state-of-
the-art methods. LOOCV regards a single sample, in turn, as the test
data, whereas all the other remaining miRNA–disease pairs as the
training set. This process was repeated such that every sample was used
as a validation sample at least once. In comparison with other previous
prediction models on LOOCV, IMIPMF achieved the best AUC value of
0.911. Extensive experiments on the additional evaluation metric
showed significant improvements in our IMIPMF framework over the
state-of-the-art methods in terms of prediction accuracy and perfor-
mance stability.

In contrast to the rapidly increasing number of newly discovered
miRNAs, only a few miRNA–disease associations are known. Despite the

various prominent properties of miRNAs in disease incidence, most
computational models are highly dependent on known miRNA–disease
associations. However, miRNAs with no previously known disease as-
sociations or a few disease associations might lead to low prediction
accuracy. Such miRNAs are defined as infrequent miRNAs. To handle
this issue, we developed our constrained model to control infrequent
miRNAs. The performance of IMIPMF was improved by adding a new
latent variable C (latent similarity constraint matrix) to the constrained
model. As illustrated in Fig. 4, application of the PMF model alone
resulted in an AUC value of 0.873. However, by adopting the con-
strained model, the AUC value was improved to 0.891. This is a re-
markable result, considering that the best result was obtained using
only two datasets (human miRNA–disease associations and miRNA
expression data) with the constrained model.

3.2. Case studies

3.2.1. Breast cancer
Cancer develops when mutations that regulate cell growth occur in

genes. According to the Center for Disease Control and Prevention,
breast cancer is the most common female malignant neoplasm that
compromises 30% of female cancer [59]. Based on its frequent occur-
rence, we prioritized the top-50 breast-cancer-related miRNAs to ana-
lyze the causes of breast cancer. Consequently, as shown in Table 2,
IMIPMF extracted 49 true miRNA–disease associations according to our
integrated answer set data. Moreover literature-based analysis was
implemented to determine whether the remaining candidate had any
potential involvement in the incidence of breast cancer. Surprisingly,
miR-142 (miR-142-3p) has exhibited a dysregulated presentation in
various subtypes of breast cancer. Various studies have also reported
that an overexpression of miR-142 might result in the down-regulation
of the genes WASL and RAC1, which are known to be related to cell
mortality [60]. Furthermore, miR-142 was also confirmed to play a
crucial role in inhibiting the invasiveness of breast cancer cells. Based
on these findings, we were able to confirm that our top 50 candidates
are all related to breast cancer.

A significant criterion for estimating the capability of the model is
whether or not IMIPMF can be applied to handle miRNAs with no
disease associations. For the precise evaluation of miRNAs without any
known diseases, we picked several miRNAs that were proved to be true

Fig. 2. Graphical model for (A) PMF and (B) PMF using constrained model.
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disease-related miRNAs by IMIPMF and manually removed their labels
to produce a miRNA with no disease associations. Thereafter, we per-
formed IMIPMF to check whether or not our method predicts the re-
lationship between the new miRNAs and specific diseases well. For
example, we removed the labels on hsa-miR-155 and hsa-let-7d, which
were high-ranked breast-cancer-related miRNAs in Table 2. Surpris-
ingly, although we removed the labels on hsa-miR-155 and hsa-let-7d,
these miRNAs still proved to be breast-cancer-related miRNAs by
IMIPMF. The success of IMIPMF in predicting new miRNAs can be ex-
plained by its mathematical foundations in MF and the utilization of
miRNA expression data.

3.2.2. Lung cancer
Lung cancer is the leading cause of death worldwide despite nu-

merous advances in surgical treatment [61]. There is an increasing
requirement for detecting biomarkers that can help researchers un-
derstand the biological mechanisms of lung cancer. Therefore, IMIPMF
was used to prioritize the top 50 candidate miRNAs that have a high
chance of being involved in lung cancer incidence. Surprisingly, among
our top 50 candidates, 49 miRNAs were found to be true lung-cancer-
related miRNAs based on our combined answer set data. A list of the
confirmed miRNAs is provided in Table 3. We also performed literature-
based analysis to determine if the remaining miRNAs had any potential
involvement in lung cancer incidence. According to published experi-
mental studies, miR-127 may play an essential role in lung adeno-
carcinoma and poor prognoses [62]. Furthermore, high levels of miR-
127 might lead to stem-like transitions, indicating that miR-127 is re-
lated to the formation of the aggressive phenotypes of lung cancer.

We performed functional enrichment analysis on miR-127 using an
online enrichment tool (TAM). TAM is a web-based miRNA functional
enrichment tool that returns the biological meaning and common
functions of a specific query miRNA [63]. Based on this enrichment test,

we found that miR-127 plays a significant role in the occurrence of
breast cancer. Generally, lung cancer is known to be a disease pheno-
typically similar to breast cancer. These results also demonstrate the
biological assumption that functionally related miRNAs are inclined to
associate with phenotypically similar diseases. Furthermore, we also
demonstrated our performance by prioritizing the top 50 colon-cancer-
related candidates. Among the 50 candidates, 46 candidates were va-
lidated to be true disease-related miRNAs based on dbDEMC. The table
providing the result is included in the Supplementary Material. By
considering these results, we validated the excellent performance of
IMIPMF for detecting disease-related miRNAs and inferring potential
miRNA–disease associations.

Further, the performance of the new miRNAs was tested. We
manually removed the labels on hsa-miR-146a and hsa-miR-133b,
which were high-ranked lung-cancer-related miRNAs. After removing
the labels, we implemented IMIPMF to check its performance on new
miRNAs. Surprisingly, these two miRNAs were also proved to be lung-
cancer-related miRNAs by IMIPMF. These experiments address the
aforementioned research problems by taking the inner product of the
latent vectors, which indirectly reflect the potential miRNA–disease
associations.

3.2.3. Kaplan–Meier survival analysis
Identification of the association between miRNAs and the prognosis

of breast cancer patients is a vital process in understanding disease
pathogenesis [64,65,66]. To perform the Kaplan–Meier survival ana-
lysis, we utilized the miRpower-Kaplan–Meier plotter web-tool [67].
For precise analysis, we selected the TCGA dataset and only those
miRNAs with a p-value < 0.005 were considered as highly associated
with the overall survival of breast cancer patients. The Kaplan–Meier
survival analysis of the miRNA candidates predicted by IMIPMF proved
that the high-ranked miRNAs, hsa-miR-148a, hsa-miR-133b, hsa-miR-

Fig. 3. Performance comparison between IMIPMF and eight state-of-the-art miRNA–disease association prediction models in terms of ROC curves and AUC values in
(a)5-fold cross-validation and (b)LOOCV.
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Fig. 4. Performance comparison between original PMF and PMF with constrained model. Application of constrained model increased AUC score.

Table 2
Top 50 breast-cancer-related miRNAs confirmed by IMIPMF. 5-fold cross-validation was implemented using public databases (dbDEMC, HMDD, and miR2Disease)
and literature-based analysis. All 50 miRNAs were proven to be associated with breast cancer.

Rank Name Evidence Rank Name Evidence

1 hsa-miR-146a miR2Disease, dbDEMC 26 hsa-miR-139 dbDEMC
2 hsa-miR-155 miR2Disease, dbDEMC 27 hsa-miR-130a dbDEMC
3 hsa-miR-16 dbDEMC 28 hsa-let-7f miR2Disease, dbDEMC
4 hsa-miR-148b dbDEMC 29 hsa-let-7i miR2Disease, dbDEMC
5 hsa-miR-181a miR2Disease, dbDEMC 30 hsa-miR-142 Literature [60]
6 hsa-miR-145 miR2Disease, dbDEMC 31 hsa-miR-153 dbDEMC
7 hsa-let-7g dbDEMC 32 hsa-miR-106a dbDEMC
8 hsa-miR-151 dbDEMC 33 hsa-miR-191 miR2Disease, dbDEMC
9 hsa-miR-126 miR2Disease, dbDEMC 34 hsa-miR-1274a dbDEMC
10 hsa-miR-125a miR2Disease, dbDEMC 35 hsa-miR-1181 dbDEMC
11 hsa-miR-18a miR2Disease, dbDEMC 36 hsa-miR-134 dbDEMC
12 hsa-let-7e dbDEMC 37 hsa-miR-17 dbDEMC
13 hsa-let-7a miR2Disease, dbDEMC 38 hsa-miR-10a dbDEMC
14 hsa-miR-181b miR2Disease, dbDEMC 39 hsa-miR-135a dbDEMC
15 hsa-miR-10b miR2Disease, dbDEMC 40 hsa-miR-1226* dbDEMC
16 hsa-let-7d miR2Disease, dbDEMC 41 hsa-miR-107 dbDEMC
17 hsa-miR-183 dbDEMC 42 hsa-miR-187* dbDEMC
18 hsa-miR-18b dbDEMC 43 hsa-miR-1182 dbDEMC
19 hsa-miR-1247 dbDEMC 44 hsa-miR-184 dbDEMC
20 hsa-miR-125b miR2Disease, dbDEMC 45 hsa-miR-149 miR2Disease, dbDEMC
21 hsa-miR-15a dbDEMC 46 hsa-miR-135b dbDEMC
22 hsa-miR-1303 dbDEMC 47 hsa-miR-185 dbDEMC
23 hsa-miR-1282 dbDEMC 48 hsa-miR-150 dbDEMC
24 hsa-miR-155* dbDEMC 49 hsa-miR-100 dbDEMC
25 hsa-miR-127 miR2Disease, dbDEMC 50 hsa-miR-1206 dbDEMC
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125b, and hsa-miR-125a, were considerably related to the overall sur-
vival of breast cancer patients (see Fig. 5).

3.2.4. t-distributed stochastic neighbor embedding visualization
To investigate whether the latent vectors play a significant role in

classifying disease categories, we visualized the latent vectors learned
by IMIPMF using t-distributed stochastic neighbor embedding (t-SNE)
[68]. Visualization of the latent vectors revealed the characteristics of
miRNAs for different disease categories and expressed the underlying
within-disease similarities. In Fig. 6, each point represents a latent
vector and each color represents a disease category. It can be seen that
points in the same disease category tend to group together based on the
correlation of the disease categories.

More significantly, we were able to confirm that phenotypically
similar diseases are inclined to be located near each other. Lung cancer
and breast cancer are known as phenotypically similar diseases, as
confirmed by MimMiner [69]. This supports the famous biological as-
sumption that functionally related miRNAs are inclined to associate
with phenotypically similar diseases. Overall, this experiment verified
that the proposed model not only predicts the relationships between
diseases and miRNAs but also has the potential to calculate disease si-
milarities.

4. Discussion

There is significant evidence has to show that miRNAs play pivotal
roles in regulating key biological functions as well as disease incidence.
Several computational methods have been proposed to search for novel
miRNA–disease associations and enhance prediction accuracy. This
paper presents a novel computational model termed IMIPMF that uses
the machine learning technique PMF to assign scores to miRNA–disease
pairs. Through the application of PMF and miRNA expression data, we
effectively inferred miRNA–disease associations, even without base
knowledge about miRNA–disease associations. Furthermore, by

assuming that similar miRNAs are inclined to associate with phenoty-
pically similar diseases, we adopted a constrained model to reduce the
effects of imbalanced datasets. The performance of the IMIPMF method
was demonstrated by implementing 5-fold cross-validation. To compare
the performance of our model with that of previous state-of-the-art
methods intuitively, we calculated the AUC scores by drawing ROC
curves. In addition, experiments were performed on various critical
human diseases, namely breast cancer, lung cancer, brain cancer, colon
cancer, and kidney cancer. The top 50 and top 10 candidate miRNAs
were identified based on the HMDD, dbDEMC, and miR2Disease data-
bases and literature-based analysis. Therefore, IMIPMF can be used as a
biological tool for extracting novel disease-related miRNAs, thereby
providing biological insights into the disease mechanisms of miRNAs
and facilitating the early diagnosis and treatment of human diseases in
the future.

5. Conclusions

The effective performance of IMIPMF depends on several factors.
First, as meaningful biological data continue to be generated, our model
can apply new miRNA expression data as objective function weights to
efficiently learn latent vectors, even if we do not have any information
on previously known miRNA–disease associations. That is, our model is
not entirely dependent on known disease-related miRNA samples.
Second, using a constrained model, we mitigate the impact of in-
frequent miRNAs to improve the prediction accuracy of IMIPMF. Most
significantly, our model utilizes a machine learning technique termed
PMF that has achieved excellent performance in recommender systems.
Most companies have gained vast profits by adopting recommender
systems. The adoption of PMF not only improves prediction accuracy
but also facilitates the identification of novel disease-related miRNA
candidates. There is still room for enhancing the prediction power of
the proposed model by adding implicit feedback such as information
regarding target-gene and RNA-sequence data. Further, extracting

Table 3
Top 50 candidate lung-cancer-related miRNAs confirmed by IMIPMF. Validation was performed using various public databases and literature-based analysis. All 50
candidates were found to be lung-cancer-related miRNAs.

Rank Name Evidence Rank Name Evidence

1 hsa-miR-155 miR2Disease, dbDEMC 26 hsa-miR-126 miR2Disease, dbDEMC
2 hsa-miR-148a dbDEMC 27 hsa-miR-18b dbDEMC
3 hsa-miR-100 dbDEMC 28 hsa-let-7i dbDEMC
4 hsa-miR-149 dbDEMC 29 hsa-miR-188 dbDEMC
5 hsa-miR-146a miR2Disease, dbDEMC 30 hsa-miR-181b dbDEMC
6 hsa-miR-146b miR2Disease, dbDEMC 31 hsa-let-7c miR2Disease, dbDEMC
7 hsa-miR-17 dbDEMC 32 hsa-miR-127 Literature [62]
8 hsa-miR-187 dbDEMC 33 hsa-miR-181a dbDEMC
9 hsa-miR-133b miR2Disease, dbDEMC 34 hsa-let-7g miR2Disease, dbDEMC
10 hsa-miR-125b dbDEMC 35 hsa-miR-101 miR2Disease, dbDEMC
11 hsa-miR-125a miR2Disease, dbDEMC 36 hsa-miR-181c miR2Disease, dbDEMC
12 hsa-miR-107 dbDEMC 37 hsa-miR-186 dbDEMC
13 hsa-miR-152 dbDEMC 38 hsa-miR-129 dbDEMC
14 hsa-miR-16 miR2Disease, dbDEMC 39 hsa-miR-144 dbDEMC
15 hsa-miR-132 dbDEMC 40 hsa-miR-1234 dbDEMC
16 hsa-miR-1 miR2Disease, dbDEMC 41 hsa-miR-184 dbDEMC
17 hsa-miR-130a miR2Disease, dbDEMC 42 hsa-miR-128 dbDEMC
18 hsa-miR-130b dbDEMC 43 hsa-miR-145 miR2Disease, dbDEMC
19 hsa-let-7b miR2Disease, dbDEMC 44 hsa-miR-1247 dbDEMC
20 hsa-let-7e miR2Disease, dbDEMC 45 hsa-miR-1301 dbDEMC
21 hsa-miR-15a dbDEMC 46 hsa-miR-106b dbDEMC
22 hsa-miR-150 miR2Disease, dbDEMC 47 hsa-miR-182* miR2Disease, dbDEMC
23 hsa-let-7a miR2Disease, dbDEMC 48 hsa-miR-124 dbDEMC
24 hsa-miR-15b dbDEMC 49 hsa-miR-10a dbDEMC
25 hsa-miR-185 dbDEMC 50 hsa-miR-1292 dbDEMC
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meaningful features from various biological data could lead to better
performance in the future.
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Fig. 6. Visualization of latent vectors learnt by IMIPMF.
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