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a b s t r a c t

The cut-rank of a set X of vertices in a graph G is defined as the
rank of the X × (V (G) \ X) matrix over the binary field whose
(i, j)-entry is 1 if the vertex i in X is adjacent to the vertex j
in V (G) \ X and 0 otherwise. We introduce the graph parameter
called the average cut-rank of a graph, defined as the expected
value of the cut-rank of a random set of vertices. We show that
this parameter does not increase when taking vertex-minors of
graphs and a class of graphs has bounded average cut-rank if
and only if it has bounded neighborhood diversity. This allows
us to deduce that for each real α, the list of induced-subgraph-
minimal graphs having average cut-rank larger than (or at least)
α is finite. We further refine this by providing an upper bound
on the size of obstruction and a lower bound on the number
of obstructions for average cut-rank at most (or smaller than)
α for each real α ≥ 0. Finally, we describe explicitly all graphs
of average cut-rank at most 3/2 and determine up to 3/2 all
possible values that can be realized as the average cut-rank of
some graph.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The cut-rank function of a graph G is a function ρG : 2V (G)
→ Z that maps every subset X of

V (G) to the rank of an X × (V (G) \ X) matrix over the binary field whose rows are indexed by X
and columns are indexed by V (G) \ X such that the (i, j)-entry is 1 if and only if the vertex i in X is
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djacent to the vertex j in V (G) \ X . Roughly speaking, ρG(X) is small if the set of all edges between
and V (G) \ X form a simple structure to be described, though it could be dense. The rank-width
f a graph, introduced by Oum and Seymour [14], uses the cut-rank function in its definition.
One of the most important properties of the cut-rank function is that it is preserved under the

peration called local complementation. The local complementation at a vertex v of a graph G is
n operation to obtain a new graph G ∗ v from G by complementing in the neighborhood of v. In
ther words, for all pairs x, y of neighbors of v, we delete xy if x, y are adjacent and add an edge
y otherwise to obtain G ∗ v. A graph H is a vertex-minor of a graph G if H is an induced subgraph
f a graph that can be obtained from G by some sequence of local complementations. Since local
omplementation preserves the cut-rank function [12], if H is a vertex-minor of G and X ⊆ V (H),
hen ρH (X) ≤ ρG(X). It follows that the class of graphs of rank-width at most k is closed under
aking vertex-minors [12].

It turns out that some of the theory developed for graph minors by Robertson and Seymour
see a survey of Lovász [11]) can be generalized for vertex-minors. For instance, Oum [13] showed
hat graphs of bounded rank-width are well-quasi-ordered under the vertex-minor relation and
onjectured that graphs are well-quasi-ordered under the vertex-minor relation. If true, every class
f graphs closed under taking vertex-minors would be characterized by a finite list of forbidden
ertex-minors. This is why for each k, the class of graphs of rank-width at most k is characterized
y finitely many forbidden vertex-minors [12]. Now there are many interesting problems regarding
ertex-minors of graphs and yet we have only a few graph parameters that do not increase by taking
ertex-minors. We need more examples to develop the theory of graph structure with respect to
ertex-minors.
We aim to introduce one such graph parameter, called the average cut-rank. The average cut-rank

f a graph G, denoted by Eρ(G), is the expectation of ρG(X) for a uniformly chosen random subset
of V (G). We will show that if H is a vertex-minor of G, then Eρ(H) ≤ Eρ(G).
Initially rank-width was introduced to study clique-width of a graph, introduced by Courcelle

nd Olariu [3]. Oum and Seymour [14] showed that

rw(G) ≤ cw(G) ≤ 2rw(G)+1
− 1,

here rw(G), cw(G) denotes the rank-width, the clique-width of G, respectively. For each k, the class
f graphs of clique-width at most k is closed under taking induced subgraphs but not under vertex-
inors. Thus, rank-width is ‘tied’ to clique-width and yet it behaves better with vertex-minors than
lique-width.
The average cut-rank also has such tied parameters. First let us describe a few graph parameters.

• The neighborhood diversity of a graph G, denoted by nd(G), is the number of equivalence classes
on V (G) where two vertices x, y are equivalent if and only if x = y or x, y are twins in G. This
was introduced by Lampis [10] in 2012 and an equivalent concept appeared earlier in Ding
and Kotlov [5].

• The maximum cut-rank of a graph G is max ρ(G) := maxS⊆V (G) ρG(S).
• For a field F, the minimum rank of an n-vertex graph G, denoted by mr(F,G) is the minimum

rank of an n × n symmetric matrix A = (aij) over F such that for all i ̸= j, aij ̸= 0 if and only
if the ith vertex is adjacent to the jth vertex. Note that any element of F is allowed in the
diagonal entry of A. For more about the minimum rank of a graph, readers are referred to a
survey by Fallat and Hogben [6]. We write Fq to denote the finite field with q elements.

• The clique delta-cover number of a graph G, denoted by cd(G), is the minimum integer t
such that there exist t complete graphs G1, G2, . . ., Gt with the property that E(G) =

E(G1)△E(G2)△ · · · △E(Gt ), where △ denotes the symmetric difference operation.

We prove that all these parameters are tied to each other, when F is a finite field as follows.

Theorem 1.1. Let G be a graph with at least one edge. Then

(i) Eρ(G) < max ρ(G) ≤ mr(F2,G) ≤ nd(G) < 22max ρ(G)+2
≤ 28Eρ(G)+2,

(ii) Eρ(G) < cd(G) ≤
3
2 mr(F2,G) ≤

3
2 nd(G) ≤

3
22

cd(G), and
(iii) nd(G) ≤ |F|

mr(F,G)
≤ |F|

nd(G) for every finite field F.
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Ding and Kotlov [5, Lemma 2.3] showed that graphs of bounded neighborhood diversity are
ell-quasi-ordered under the induced subgraph relation. Independently, Ganian, Hliněný, Nešetřil,
bdržálek, and Ossona de Mendez [7] showed that a class of graphs has bounded neighborhood
iversity if and only if it has shrub-depth 1 and proved that every class of graphs of bounded
hrub-depth is well-quasi-ordered under the induced subgraph relation. Therefore we deduce the
ollowing corollary.

orollary 1.2. Every class of graphs of bounded average cut-rank is well-quasi-ordered under the
nduced subgraph relation.

Note that for a vertex v of G, Eρ(G − v) ≤ Eρ(G) ≤ Eρ(G − v) + 1. Together with this easy
fact, Corollary 1.2 implies that for each real α, there are only finitely many induced-subgraph-
minimal graphs of average cut-rank at least α up to isomorphism, because those graphs have
average cut-rank at most α + 1.

We not only prove that there are finitely many of those graphs, but also provide an explicit
upper bound on the number of vertices in each of them. Let us write log to denote log2, the binary
logarithm. For every real x, let ⌊x⌋ be the greatest integer not exceeding x and {x} := x−⌊x⌋ be the
fractional part of x. For ε ∈ [0, 1), we define a sequence {xn(ε)}n≥0 by

x0(ε) = max(⌊2 − log(1 − ε)⌋, 5),

xn(ε) = 28n+10
⌊xn−1(ε) − log(1 − {2xn−1(ε)ε/2}) + 1⌋.

It is not hard to see that xn(ε) ≥ 2Ω(n2) where the constant factor in the exponential term depends
on ε. Now we are ready to present our second theorem.

Theorem 1.3. Let α ≥ 0 and G be a graph with no isolated vertices. If Eρ(G) ≥ α and Eρ(G− v) ≤ α
for all vertices v of G, then |G| < x⌊α⌋({α}).

Theorem 1.3 implies that induced-subgraph-minimal graphs of average cut-rank at least α have
bounded number of vertices for each α. Our third theorem shows that the number of such graphs
cannot be too small. Indeed we prove a stronger statement in terms of vertex-minors. Our third
theorem says that if we have a set S of graphs characterizing average cut-rank at most α in terms
of forbidding graphs in S as a vertex-minor, then |S| cannot be too small. We remark that S does
not need to contain all vertex-minor-minimal graphs having average cut-rank more than α, because
if two graphs are locally equivalent (which we define in Section 4), then S does not need to have
both of them.

Theorem 1.4. There is some universal constant c > 0 so that the following holds. For every ε ∈ [0, 1)
and n ≥ 0, let S be a set of graphs such that the average cut-rank of a graph G is at most (or less
than) ε + n if and only if no graph in S is isomorphic to a vertex-minor of G. Then S contains at least
2cn log(n+1) graphs.

Our final theorem characterizes graphs of average cut-rank at most 3/2 completely and deter-
mines all possible reals up to 3/2 that can be realized as the average cut-rank of some graph. For
two graphs G and H , let G+H be the disjoint union of G and H , and for an integer m, let mG be the
isjoint union of m copies of G. For every k ≥ 0, let Ek be K1,k+1 with one edge subdivided.

heorem 1.5. Let G be a graph with no isolated vertices. Then G has average cut-rank at most 3/2 if
and only if it is isomorphic to a vertex-minor of one of P5, 3K2, 2P3, K1,k+1, K2+K1,k+1, and Ek for k ≥ 0.
In addition, the set of all possible values for average cut-rank of graphs in the interval [0, 3/2] is{

1 −
1
2k : k ≥ 0

}
∪

{
3
2

−
1

2k+1 : k ≥ 0
}

∪

{
3
2

−
3

2k+2 : k ≥ 0
}

∪

{
3
2

}
.

This paper is organized as follows. In Section 2 we recall basic definitions and results. In
ection 3 we discuss an equivalence relation involving cut-rank functions. We introduce and prove
asic tools on the average cut-rank in Section 4. Sections 5, 6, 7, and 8 present the proofs of
heorems 1.1, 1.3, 1.4, and 1.5 respectively.



4 H.-T. Nguyen and S. Oum / European Journal of Combinatorics 90 (2020) 103183

2

2

t
a

m
n
z

s
X

v

a

e

v

d
E

a
g
(

s

2

b
e

I
l
t

c
w
v
a

G
w

. Preliminaries

.1. Basic notions on graphs

For all positive integers k, let Pk be the path on k vertices, Ck be the cycle on k vertices, Kk be
he complete graph on k vertices, and Km,k be the complete bipartite graph on m vertices one side
nd k vertices the other side. For the star K1,k, we call the vertex at the singleton side the central

vertex. (If k = 1 then we fix one vertex to be called central.)
For a graph G, denote V (G), E(G), A(G), respectively, for its vertex set, edge set, and adjacency

matrix. For disjoint sets S, T ⊆ V (G), let NG(S, T ) be the set of vertices in T adjacent to at least one
ember in S. For v ∈ V (G), let NG(v, S) := NG({v}, S) and let NG(v) := NG(v, V (G)) be the set of all
eighbors of v in G. Let dG(v) := |NG(v)| be the degree of v in G. A vertex is isolated if it has degree
ero, and a leaf if it has degree one.
Let G[S] be the subgraph of G induced on the vertex set S; in this case we say G[S] is an induced

ubgraph of G, and set G− S := G[V (G) \ S] as well as G− v := G−{v}. For any two disjoint subsets
, Y of G, denote by G[X, Y ] the induced bipartite subgraph of G with bipartition (X, Y ) consisting

of edges having one end in X and the other in Y . For simplicity, set |G| := |V (G)|, and we sometimes
write AG instead of A(G).

Let the complement of G, denoted by G, be the graph with vertex set V (G) and edge set {uv : u ̸=

, uv /∈ E(G)}.
Two distinct vertices x, y of G are called twins if NG(x)\ {x, y} = NG(y)\ {x, y}. If, in addition, they

re adjacent then we call them true twins, otherwise we call them false twins.
In G, a subset S ⊆ V (G) is a clique if every two vertices in S are adjacent, and an independent set

very two vertices in S are nonadjacent.
For two disjoint subsets A, B ⊆ V (G), A is complete to B if every vertex in A is adjacent to all

ertices of B and A is anticomplete to B if every vertex in A is nonadjacent to all vertices of B.
For two sets A and B, let A△B := (A \ B) ∪ (B \ A). For two graphs G1 and G2, let the symmetric

ifference of G1 and G2, denoted by G1△G2, be the graph with vertex set V (G1)∪V (G2) and edge set
(G1)△E(G2). When E1 ∩ E2 = ∅ and G = G1△G2 we say G admits a decomposition into G1 and G2.
For a subset S of V (G), identifying S is the operation of replacing all vertices in S by a new vertex

nd joining it to every vertex in NG(S, V (G) \ S). For an equivalence relation ≡ on V (G), the quotient
raph of G induced by ≡ is the graph obtained from G by identifying each equivalence class C of
V (G), ≡) to a vertex denoted by C .

For two graphs G1 and G2, we say G1 is isomorphic to G2, if there is a bijection ϕ : V (G1) → V (G2)
atisfying for u, v ∈ V (G), ϕ(u)ϕ(v) is an edge of G2 if and only if uv is an edge of G1.

.2. Local complementations and vertex-minors

For a graph G and its vertex v, let G∗v be the graph obtained from G by switching all adjacencies
etween neighbors of v. To be precise, two vertices x and y are adjacent in G ∗ v if and only if in G,
ither

1. they are adjacent and at least one of them is non-adjacent to v, or
2. they are nonadjacent but both are adjacent to v.

ndeed, V (G ∗ v) = V (G) and G ∗ v ∗ v is G itself for every v ∈ V (G). We call such an operation the
ocal complementation at v. We say two graphs are locally equivalent if one can be obtained from
he other by a series of local complementations.

We say that a graph H is a vertex-minor of G if it can be obtained from G by a series of local
omplementations and vertex deletions. A simple observation points out that given such a series,
e may rearrange the operations so that all the local complementations are executed before the
ertex deletions without changing the output graph. Thus, if H is a vertex-minor of G, then H is
ctually an induced subgraph of a graph locally equivalent to G.
For an edge uv of G, the pivot of G on uv is an operation to obtain a graph, denoted by G∧uv, from

by three local complementations, G∗u∗v∗u. This is well defined because G∗u∗v∗u = G∗v∗u∗v
henever u, v are adjacent, see [12, Proposition 2.1].
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2.3. Cut-rank

For a matrix M := (mij : i ∈ R, j ∈ C), let rank(M) be its rank. If X ⊆ R and Y ⊆ C , denote by
[X, Y ] the submatrix of M obtained by taking the rows indexed by X and the columns indexed
y Y so that M[X, Y ] = (mij : i ∈ X, j ∈ Y ).
For a graph G and two disjoint subsets X and Y , let us write ρ∗

G(X, Y ) = rank(AG[X, Y ]) where
AG is considered as a matrix over the binary field. The cut-rank function of a graph G is a function
ρG : 2V (G)

→ Z such that ρG(S) := ρ∗

G(S, V (G) \ S). This implies immediately that ρG is symmetric,
that is, ρG(S) = ρG(V (G) \ S) for all S ⊆ V (G).

In this paper we need the following property of cut-rank functions, which shows that local
omplementations preserve the cut-rank function of a graph G.

roposition 2.1 (Oum [12, Proposition 2.6]). For a graph G and v ∈ V (G), we have ρG(S) = ρG∗v(S) for
ll S ⊆ V (G).

.4. Well-quasi-ordering and forbidden lists

Given a set X and a relation ≤ on X , (X , ≤) is a quasi-order if

(i) for every x ∈ X we have x ≤ x;
(ii) for any x, y, z ∈ X , if x ≤ y and y ≤ z then x ≤ y ≤ z.

We say two elements x, y of X are comparable if x ≤ y or y ≤ x.
We say ≤ is a well-quasi-ordering on X , or X is well-quasi-ordered under ≤, or (X , ≤) is a well-

quasi-order, if for every infinite sequence {xn}n≥0 of elements of X , there are indices i < j satisfying
xi ≤ xj.

An antichain is a subset of X having no two distinct comparable elements. A subclass S of X is
closed by ≤ if y ∈ S and x ≤ y imply x ∈ S. An antichain C is called a forbidden list for S by ≤ if for
all x ∈ X , x belongs to S if and only if there is no y ∈ C satisfying y ≤ x. When X is a class of graphs,
X is hereditary if X is closed under induced subgraphs; that is, if G ∈ X and H is isomorphic to an
induced subgraph of G then H ∈ X .

3. An equivalence relation involving cut-rank functions

An attached star in a graph G is an induced subgraph isomorphic to a star whose noncentral
vertices are leaves in G. In other words, an attached star in G is an induced subgraph, say G[S],
isomorphic to a star such that the set of noncentral vertices is anticomplete to V (G) \ S. The size of
an attached star is the number of its vertices.

In G, let ≡G be a binary relation on V (G) such that for x, y ∈ V (G), x ≡G y if ρG({x}) = ρG({y}) ≥

ρG({x, y}). It is easy to see that x ≡G y if and only if one of the following holds:

(i) x and y are twins in G, or
(ii) one of them is a leaf in G whose unique neighbor is the other.

Furthermore, ≡G is in fact an equivalence relation on V (G), as shown by the following.

Proposition 3.1. The relation ≡G is an equivalence relation on V (G). Moreover, each equivalence class
of (V (G), ≡G) is one of the following types in G: the vertex set of an attached star, a clique of true twins,
and an independent set of false twins.

Proof. By definition, it is obvious that for x, y ∈ V (G), x ≡G x, and if x ≡G y, then y ≡G x. Thus ≡G
is reflexive and symmetric. To prove that ≡G is an equivalence relation on V (G), it remains to show
that x ≡G y and y ≡G z imply x ≡G z. We may assume that x, y, z are distinct. We have three cases
to consider.
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1. dG(y) = 0. We have x, y, z are isolated in G and x ≡G z.
2. dG(y) = 1. If NG(y) ̸⊆ {x, z} then trivially x, y, z are leaves in G with a unique common

neighbor, so x ≡G z. If NG(y) ⊆ {x, z}, we may assume that xy ∈ E(G) and yz /∈ E(G), then
y, z are twins in G which implies that z is a leaf in G whose unique neighbor is x, and thus
x ≡G z.

3. dG(y) ≥ 2. Now, if x is a leaf in G, then y is the unique neighbor of x in G and so x is non-
adjacent to z, which implies z is a leaf whose unique neighbor is y because y ≡G z and
therefore x ≡G z. By symmetry, if z is a leaf in G, then x ≡G z. If neither x nor z is a leaf in
G, then {x, y} and {y, z} are two pairs of twins in G, thus x and z are also twins in G, and so
x ≡G z.

Now let C be an equivalence class in (V (G), ≡G). If there is a vertex x in C which is a leaf in G
hen its unique neighbor, say y, must also be in C; so every vertex in C \ {x, y}, being a twin of x,
s also a leaf in G whose unique neighbor is y, which implies that G[C] is an attached star in G.
n the other hand, if C contains no leaves in G, then necessarily they are pairwise twins. It is well
nown that a set of pairwise twins is either a clique of true twins or an independent set of false
wins in G. So, we conclude that C is the vertex set of an attached star, a clique of true twins, or an
ndependent set of false twins. □

In addition, an immediate consequence of Proposition 2.1 is that local complementations pre-
erve every equivalence class in (V (G), ≡G).

orollary 3.2. For every x, y, v ∈ V (G), x ≡G y if and only if x ≡G∗v y. In other words, the equivalence
lasses of (V (G), ≡G) remain unchanged in (V (G), ≡G∗v).

. Average cut-rank

The average cut-rank of G is defined as

Eρ(G) :=
1
2|G|

∑
S⊆V (G)

ρG(S).

n other words, Eρ(G) is the expected value of ρG(S) where S is chosen uniformly at random
mong all subsets of V (G). Note that due to the symmetry of ρG, Eρ(G) is a rational number whose
enominator in closed form is a positive integer dividing 2|G|−1.
One of the reasons to study the average cut-rank is that it does not increase when taking vertex-

inors. The following theorem not only shows this but also shows that the average cut-rank strictly
ecreases whenever we take a vertex-minor except for some trivial cases.

heorem 4.1. If H is a vertex-minor of a graph G, then

Eρ(H) ≤ Eρ(G).

n addition, if V (G) \ V (H) has at least one non-isolated vertex, then

Eρ(H) ≤ Eρ(G) − 2−|H|.

roof. Since H is a vertex-minor of G, H is an induced subgraph of some graph G′ which is locally
quivalent to G. By Proposition 2.1, Eρ(G) = Eρ(G′). Because an isolated vertex remains isolated
fter each local complementation, we may assume that H is an induced subgraph of G. Let S be a
ubset of V (G) chosen uniformly at random. So S ∩ V (H) is a random subset of V (H). We have

ρG(S) = rank(AG[S, V (G) \ S]) ≥ rank(AH [S ∩ V (H), V (H) \ S]) = ρH (S ∩ V (H)),

o Eρ(G) = ESρG(S) ≥ ETρH (T ) = Eρ(H).
Suppose that V (G) \ V (H) has at least one non-isolated vertex. If there is some vertex in

(G)\V (H), say v, having at least one neighbor in V (H), then any subset S of V (G)\V (H) containing v

r any subset S of V (G) containing V (H) but not v satisfies ρG(S) ≥ 1 while ρH (S ∩ V (H)) = 0.
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If no vertex in V (G) \ V (H) has a neighbor in V (H), then G \ V (H) has at least one edge, say uv
or u, v ∈ V (G) \V (H). Then any subset S of V (G) such that S contains only one of u, v and S ∩V (H)
s ∅ or V (H) satisfies ρG(S) ≥ 1 and ρG(S \ U) = 0.

In both cases, we have

Eρ(G) ≥ Eρ(H) +
2 · 2|G|−|H|−1

2|G|
= Eρ(H) + 2−|H|. □

As an example, we compute the average cut-rank of complete graphs and complete bipartite
graphs. We omit its easy proof.

Lemma 4.2. For integers m, k ≥ 1,

Eρ(Kk) = 1 − 21−k, Eρ(Km,k) =
(2m

− 1)(2k
− 1)

2m+k−1 .

In particular Eρ(K1,k) = 1 − 2−k
= Eρ(Kk+1).

The following result shows that 1 − 21−|G| is in fact the smallest possible average cut-rank of
any graph G with no isolated vertices. The equality holds if G is a complete graph or a star, by
Lemma 4.2.

Proposition 4.3. A graph G without isolated vertices has average cut-rank at least 1 − 21−|G|. The
equality holds if and only if G is a star or a complete graph.

Proof. If G is connected, then for every nonempty proper subset S of V (G), G[S, V (G) \ S] has at
least one edge, hence ρG(S) ≥ 1. Because there are 2|G|

− 2 subsets S of this type, we obtain

Eρ(G) =
1
2|G|

∑
S⊆V (G)

ρG(S) ≥
2|G|

− 2
2|G|

= 1 − 21−|G|.

If G is disconnected, then since G has no isolated vertices, G contains an induced subgraph
somorphic to 2K2. It follows that, by Theorem 4.1,

Eρ(G) ≥ Eρ(2K2) = 1 > 1 − 21−|G|.

Now we consider the equality case. The preceding argument shows that if Eρ(G) = 1 − 21−|G|,
then G is necessarily connected and ρG(S) = 1 for all nonempty proper subsets S of V (G). In
particular, it follows that for all x, y ∈ V (G), we have ρG({x}) = ρG({y}) = ρG({x, y}) = 1, or
equivalently x ≡G y. Therefore, (V (G), ≡G) has only one equivalence class, so Proposition 3.1 implies
that G is a star, a complete graph, or an edgeless graph. Because G is connected, G is thus a star or
a complete graph. Lemma 4.2 then completes the proof. □

Theorem 4.1 provides a lower bound on Eρ(G)−Eρ(H) when H is a vertex-minor of G. The next
proposition gives an upper bound on this difference.

Proposition 4.4. Let G1 and G2 be graphs and G = G1△G2. Then

Eρ(G) ≤ Eρ(G1) + Eρ(G2),

and the equality holds if (but not necessarily only if) V (G1) ∩ V (G2) = ∅, i.e. G is the disjoint union of
G1 and G2. In particular, for every vertex v ∈ V (G),

Eρ(G − v) ≥ Eρ(G) − 1 + 2−dG(v) ≥ Eρ(G) − 1 + 21−|G|.

Proof. For i = 1, 2, let Hi be the graph with vertex set V (G) and edge set E(Gi). Then G = H1△H2
and by Theorem 4.1, Eρ(Hi) = Eρ(Gi) for i = 1, 2. Choose a subset S of V (G) uniformly at random
and set T := V (G) \ S. Then since G = H1△H2, we have

ρG(S) = rank(AG[S, T ]) = rank(AH1 [S, T ] + AH2 [S, T ])

≤ rank(AH1 [S, T ]) + rank(AH2 [S, T ]) = ρH1 (S) + ρH2 (S).
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his implies immediately that

Eρ(G) ≤ Eρ(H1) + Eρ(H2) = Eρ(G1) + Eρ(G2).

f V (G1) ∩ V (G2) = ∅, for i = 1, 2 let Si be a random subset of V (Gi) and let Ti := V (Gi) \ Si. Then
1 ∪ S2 is a random subset of V (G) and T1 ∪ T2 = V (G) \ (S1 ∪ S2). It is easy to see that

ρG1 (S1) + ρG2 (S2) = rank(AG1 [S1, T1]) + rank(AG2 [S2, T2]) = rank(AG[S1 ∪ S2, T1 ∪ T2]).

s a result, we deduce Eρ(G) = Eρ(G1) + Eρ(G2).
Now for any vertex v ∈ V (G), let G1 := G − v and G2 := G[{v},NG(v)], which is isomorphic to

1,dG(v). By Lemma 4.2 we obtain

Eρ(G) ≤ Eρ(G − v) + Eρ(K1,dG(v)) = Eρ(G − v) + 1 − 2−dG(v) ≤ Eρ(G − v) + 1 − 21−|G|. □

It can be seen that the lower bound from Theorem 4.1 and the upper bound from Proposition 4.4
re pretty far apart, because they apply for all graphs in general. In many cases, we need the upper
nd lower bounds on Eρ(G) − Eρ(H) to be close enough, when H is a vertex-minor of G. The next
ropositions provide a tighter upper bound compared to Proposition 4.4 and a tighter lower bound
ompared to Theorem 4.1, when we have distinctive structures involving false twins, in particular
he attached stars.

roposition 4.5. Let G be a graph in which u1, . . . , uk are pairwise false twins, where k ≥ 1. Let
:= dG(u1). Then

Eρ(G − u1) ≥ Eρ(G) −
2d

− 1
2k+d−1 .

n particular if dG(u1) = 1 then

Eρ(G − u1) ≥ Eρ(G) − 2−k.

roof. Let n := |G|, H := G − u1, V := V (G), and

F := {S ⊆ V : {u1} ⊊ S ∩ {u1, . . . , uk} or {u1} ∪ NG(u1) ⊆ S}.

bserve that for S ∈ F , we have ρG(S) = ρH (S \{u1}), because if {u1} ⊊ S∩{u1, . . . , uk} then there is
ome j ∈ {2, . . . , k} such that uj ∈ S and so the row vectors corresponding to u1 and uj in AG[S, V \S]
re the same, and if u1 ∪NG(u1) ⊆ S then the row vector corresponding to u1 in AG[S, V \ S] is zero.
bviously, ρG(S) ≤ ρH (S \ {u1})+ 1 for all S ⊆ V . Therefore, because ρG is symmetric and there are
xactly 2n−d−k(2d

− 1) subsets S of V such that u1 ∈ S ̸∈ F , we have

Eρ(G) = E(ρG(S) | u1 ∈ S ⊆ V )
= E(ρG(S) | u1 ∈ S ∈ F) · P(S ∈ F | u1 ∈ S)

+ E(ρG(S) | u1 ∈ S ̸∈ F) · P(S ̸∈ F | u1 ∈ S)
≤ E(ρH (S \ {u1}) | u1 ∈ S ∈ F) · P(S ∈ F | u1 ∈ S)

+ E(ρH (S \ {u1}) + 1 | u1 ∈ S ̸∈ F) · P(S ̸∈ F | u1 ∈ S)
≤ E(ρH (S \ {u1}) | u1 ∈ S ∈ F) · P(S ∈ F | u1 ∈ S)

+ E(ρH (S \ {u1}) | u1 ∈ S ̸∈ F) · P(S ̸∈ F | u1 ∈ S) + P(S ̸∈ F | u1 ∈ S)
= E(ρH (S \ {u1}) | u1 ∈ S ⊆ V ) + P(S ̸∈ F | u1 ∈ S)

= E(ρH (T ) | T ⊆ V (H)) +
2n−d−k(2d

− 1)
2n−1

= Eρ(H) +
2d

− 1
2k+d−1 ,

hich completes the proof of the proposition. □



H.-T. Nguyen and S. Oum / European Journal of Combinatorics 90 (2020) 103183 9

H

l

w

ρ

T
o
t
v
t

T

5

a
w

P
I
i

o

Proposition 4.6. Let G be a graph on n ≥ 1 vertices, T be the vertex set of an attached star in G, and
:= G − T . Then

Eρ(G) − 1 < Eρ(H) ≤ Eρ(G) − 1 + 21−|T |.

Proof. Let V := V (G) and let T = {u1, . . . , uk, v} where v is the central vertex and u1, . . . , uk are
eaves of G[T ]. The left hand side inequality is trivial by Proposition 4.4 and Lemma 4.2, because

Eρ(G) ≤ Eρ(H) + Eρ(F ) = Eρ(H) + 1 − 2−dG(v) < Eρ(H) + 1,

here F is the connected subgraph of G consisting of all edges incident with v.
We move on to the right hand side inequality. Observe that for every S ⊆ V , we have ρG(S) ≥

H (S \ T ). If furthermore v ∈ S and T ̸⊆ S, then in AG[S, V \ S], the row vectors corresponding to
∩S\{v} are all zero vectors, and for every uj ∈ T \S, the column vector corresponding to uj has only
ne 1 as its common entry with the row vector corresponding to v. It follows that in AG[S, V \ S],
his row vector is linearly independent to the other row vectors, and in AG[S \{v}, V \S], the column
ectors corresponding to T \ S are all zero vectors. Hence ρG(S) = ρH (S \ T ) + 1. Therefore, due to
he symmetry of ρG,

Eρ(G) = E(ρG(S) | v ∈ S ⊆ V )
= E(ρG(S) | v ∈ T ⊆ S) · P(T ⊆ S | v ∈ S)

+ E(ρG(S) | v ∈ S, T ̸⊆ S) · P(T ̸⊆ S | v ∈ S)
≥ E(ρH (S \ T ) | v ∈ T ⊆ S) · P(T ⊆ S | v ∈ S)

+ E(ρH (S \ T ) + 1 | v ∈ S, T ̸⊆ S) · P(T ̸⊆ S | v ∈ S)
≥ E(ρH (S \ T ) | v ∈ T ⊆ S) · P(T ⊆ S | v ∈ S)

+ E(ρH (S \ {v}) | v ∈ S, T ̸⊆ S) · P(T ̸⊆ S | v ∈ S) + P(T ̸⊆ S | v ∈ S)
= E(ρH (S \ T ) | v ∈ S ⊆ V ) + P(T ̸⊆ S | v ∈ S)

= E(ρH (U) | U ⊆ V (H)) +
2n−k−1(2k

− 1)
2n−1

= Eρ(H) + 1 − 21−|T |.

his completes the proof. □

. Characterization of classes of graphs of bounded average cut-rank

In this section, we will prove Theorem 1.1, which characterizes classes of graphs of bounded
verage cut-rank and relates them to existing concepts. We will also discuss some corollaries on
ell-quasi-ordering.
We start with some definitions solely used in this section. In a graph G, two vertices x, y are

called twin-equivalent if either x = y or they are twins. It is easy to verify that the relation “twin-
equivalent” is an equivalence relation on V (G). Thus the vertex set of G can be partitioned into twin
classes. The neighborhood diversity of G, first defined by Lampis [10], is the number of twin classes
in G.

Here is a fundamental property on the rank and the number of distinct rows of a 0-1 matrix.

Lemma 5.1. Any 0-1 matrix M has at most 2rank(M) distinct rows.

roof. Let r = rank(M). Then M has a non-singular r× r submatrix, whose columns are indexed by
. Note that |I| = r and each row vector is completely determined by the 0-1 values on the entries
n I and therefore M has at most 2|I| distinct rows. □

The authors would like to thank Alex Scott (personal communication) for suggesting the proof
f the following lemma.
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emma 5.2. For every graph G, max ρ(G) ≤ 4Eρ(G).

Proof. Let k be the maximum cut-rank of G. Then there are two disjoint subsets A, B of V (G)
satisfying |A| = |B| = k and ρ∗

G(A, B) = k. Let H := G[A ∪ B]. Since Eρ(G) ≥ Eρ(H), it suffices
to show that Eρ(H) ≥ k/4.

Let S be a subset of V (H) = A ∪ B chosen uniformly at random. Then S ∩ A is a random subset
of A, and B \ S is a random subset of B. Since

ρH (S) = ρ∗

H (S, (A ∪ B) \ S) ≥ ρ∗

H (S ∩ A, B \ S),

we have

Eρ(H) = ESρG(S) ≥ ESρ
∗

H (S ∩ A, B \ S) = EX,Yρ
∗

H (X, Y ),

where the last expression indicates the expected value of ρ∗

H (X, Y ) with X, Y selected from 2A, 2B,
respectively.

Fix X ⊆ A and let Y ⊆ B be random. Because ρ∗

H (A, B) = ρ∗

G(A, B) = k and |A| = |B| = k,
ρ∗

H (X, B) = |X |, so there is a subset Z of B satisfying |Z | = |X | and AH [X, Z] has full rank. Because
Y ⊆ B is random, Y ∩ Z is a random subset of Z , which implies that

EYρ
∗

H (X, Y ) ≥ EYρ
∗

H (X, Y ∩ Z) = EY |Y ∩ Z | =
|X |

2
.

Therefore

EX,Yρ
∗

G(X, Y ) = EXEYρ
∗

G(X, Y ) ≥ EX
|X |

2
=

k
4
.

hus Eρ(H) ≥ k/4 and the conclusion follows. □

The following lemma shows that a hereditary class of graphs is of bounded maximum cut-rank
or average cut-rank) if and only if it is of bounded neighborhood diversity. This result is also
ssential to the proof of Theorem 1.3.

emma 5.3. For every graph G, nd(G) < 22max ρ(G)+2.

roof (Adapted from the Proof of Lemma 4.5 in [4]). Let A be a maximal subset of V (G) without any
air of twins in G. We construct a complete graph H on the vertex set A and label every edge uv
f H as follows: uv is labeled by w for some w ∈ V (G) \ {u, v} adjacent to only one among u and v

n G. This labeling exists because of the definition of A. Let m := |A|, and let S be a random subset
f A = V (H) where each vertex is included independently at random with probability p := 1/

√
m.

For every edge e ∈ E(H), let Xe be the indicator random variable for the event that the ends and the
label of e in H are in S, and put X :=

∑
e∈E(H) Xe. Then for all e ∈ E(H), E[Xe] = p3 if the label of e

is in A and E[Xe] = 0 otherwise. By linearity of expectation

E[|S| − X] = E[|S|] − E[X] ≥ pm − p3
(
m
2

)
> pm −

p3m2

2
=

√
m
2

.

Thus, there is a subset S of A such that |S| − X >
√
m/2; that is, there are fewer than |S| −

√
m/2

dges in H having ends and labels in S. Then, by deleting one end for each such edge, we get a
ubset T of S satisfying |T | >

√
m/2 and for every distinct u, v ∈ T , in H the label of uv does not

elong to T . This means that for every distinct u, v ∈ T , in G there is a vertex w outside T which is
djacent to only one of u and v, which implies that AG[T , V (G) \ T ] has more than

√
m/2 distinct

ows. Hence, by Lemma 5.1,

2max ρ(G)
≥ 2ρG(T ) >

√
m
2

,

hich implies |A| = m < 22max ρ(G)+2. As every vertex in V (G) \ A is a twin of some vertex in A (A
s maximal), we conclude that V (G) can be partitioned into less than 22max ρ(G)+2 twin classes. □
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heorem 1.1. Let G be a graph with at least one edge. Then

(i) Eρ(G) < max ρ(G) ≤ mr(F2,G) ≤ nd(G) < 22max ρ(G)+2
≤ 28Eρ(G)+2,

(ii) Eρ(G) < cd(G) ≤
3
2 mr(F2,G) ≤

3
2 nd(G) ≤

3
22

cd(G), and
(iii) nd(G) ≤ |F|

mr(F,G)
≤ |F|

nd(G) for every finite field F.

roof. As G has at least one edge, Eρ(G) < max ρ(G) trivially. Since ρG(X) ≤ mr(F2,G) for all
X ⊆ V (G) trivially, max ρ(G) ≤ mr(F2,G).

To prove mr(F,G) ≤ nd(G) for any field F, let us assume that k = nd(G) and so G has exactly k
twin classes. Starting from the adjacency matrix of G, we change the diagonal entry of a vertex v
to 1 if v belongs to a twin class that is a clique of G. The resulting matrix has k distinct rows and
so its rank is at most k. This proves that mr(F,G) ≤ k.

Since every matrix of rank k over F has at most |F|
k distinct rows, we have nd(G) ≤ |F|

mr(F,G).
This was shown by Ding and Kotlov [5, Corollary 2.2].

Lemmas 5.2 and 5.3 show that nd(G) < 22max ρ(G)+2
≤ 28Eρ(G)+2.

Let t = cd(G). Then there are complete graphs G1, . . . ,Gt such that G = G1△ · · · △Gt . As
E(G) ̸= ∅, t ≥ 1. By Proposition 4.4 and Lemma 4.2, we see that Eρ(G) ≤

∑t
i=1 Eρ(Gi) < cd(G).

Also, V (G) can be partitioned into 2t subsets, each of them is a set of pairwise twins, based on the
inclusion of V (G1), V (G2), . . ., V (Gt ). This leads to an inequality that nd(G) ≤ 2cd(G).

Now, it remains to prove that cd(G) ≤
3
2 mr(F2,G). Let A be a symmetric matrix over F2 of rank

m realizing mr(F2,G). It is known that every symmetric matrix of rank m can be written as a sum of
m−2s rank-1 symmetric matrices and s rank-2 symmetric matrices, see Godsil and Royle [9, Lemma
8.9.3]. As the field is binary, we can also deduce easily that in the outcome, the rank-2 symmetric
matrices have zero diagonals, by using the proof of [9, Lemma 8.10.1]. Rank-1 symmetric matrices
over F2 are of the form(

1 0
0 0

)
where 1 represents an all-1 matrix, 0 represents an all-0 matrix, and the diagonal entries represent
square matrices. Thus, every rank-1 symmetric matrix over F2 is the adjacency matrix of one
complete graph with some isolated vertices, while changing a few diagonal entries to 1. Rank-2
symmetric matrices over F2 with zero diagonals are of the form(0 1 1

1 0 1
1 1 0

)
or
(
0 1
1 0

)
.

and so every rank-2 symmetric matrix over F2 with zero diagonals can be written as the sum of
three rank-1 symmetric matrices as follows.(0 1 1

1 0 1
1 1 0

)
=

(1 1 0
1 1 0
0 0 0

)
+

(0 0 0
0 1 1
0 1 1

)
+

(1 0 1
0 0 0
1 0 1

)
.

Thus, A can be written as a sum of at most 3m/2 rank-1 symmetric matrices over F2. This proves
that cd(G) ≤

3
2 mr(F2,G). □

Corollary 1.2 yields the following corollary.

Corollary 5.4. Let C be a hereditary class of graphs. If graphs in C have bounded average cut-rank,
then there exists a finite list of graphs H1, H2, . . ., Hk such that a graph G is in C if and only if G has no
induced subgraph isomorphic to Hi for every i = 1, . . . , k.

Proof. Let α be a real such that every graph in C has average cut-rank at most α. If H is an induced-
subgraph-minimal graph not in C, then H has average cut-rank at most α + 1 by Proposition 4.4.
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they form an antichain. □

Let SEρ be the set of all reals α such that there exists a graph with average cut-rank α. By the
definition of average cut-rank, this set is trivially a subset of {p/2q

: p ∈ N ∪ {0}, q ∈ N}. By the
previous corollary, we deduce the following topological property of SEρ .

Proposition 5.5. For any α ≥ 0 there is some δα > 0 such that every graph has average cut-rank
outside (α, α + δα). This implies that SEρ is not dense in any interval, hence is nowhere dense in [0, ∞).

Proof. By Corollary 5.4, there exists a finite list {G1, . . . ,Gm} of forbidden induced subgraphs for
the class of graphs of average cut-rank at most α. Because α < Eρ(Gj) =: rj for all j = 1, . . . ,m,
we have α < min{r1, . . . , rm} =: qα . Hence there is no graph having average cut-rank lying inside
(α, qα). The conclusion thus follows for δα = qα − α. □

6. Upper bound on the size of induced subgraph obstructions

Ding and Kotlov [5] proved that each forbidden induced subgraph for the class of graphs of
minimum rank over a finite field F at most k has at most (|F|

k/2 + 1)2 vertices.
We can find an upper bound on the size of each forbidden induced subgraph for the class of

graphs of maximum cut-rank at most k as follows.

Theorem 6.1. If max ρ(G) > k and max ρ(G − v) ≤ k for all vertices v of G, then |G| = 2k + 2.

Proof. If max ρ(G) > k, then there exists a pair (X, Y ) of disjoint sets of vertices such that
|X | = |Y | = k + 1 and the rank of A(G)[X, Y ] = k + 1. If |G| > 2k + 2, then there is a vertex
v /∈ X ∪ Y and therefore max ρ(G − v) ≥ rank A(G)[X, Y ] = k + 1, contradicting the assumption.
Trivially, if |G| < 2k + 2, then max ρ(G) ≤ k. □

Now we will find such an upper bound for the class of graphs of average cut-rank at most α,
thus proving Theorem 1.3. For convenience, we recall the sequence {xn(ε)}n≥0 defined in Section 1.

x0(ε) = max(⌊2 − log(1 − ε)⌋, 5),

xn(ε) = 28n+10
⌊xn−1(ε) − log(1 − {2xn−1(ε)ε/2}) + 1⌋ for all integers n ≥ 1.

Theorem 1.3. Let α ≥ 0 and G be a graph with no isolated vertices. If Eρ(G) ≥ α and Eρ(G− v) ≤ α
for all vertices v of G, then |G| < x⌊α⌋({α}).

Proof. Let α = ε + n where ε = {α} ∈ [0, 1) and n = ⌊α⌋ ∈ N ∪ {0}. We fix ε and proceed by
induction on n ≥ 0. For convenience, set xn := xn(ε) for all n ≥ 0.

First let us assume that n = 0. If there is a vertex v ∈ V (G) such that G−v has no isolated vertices,
then by Proposition 4.3, ε ≥ Eρ(G−v) ≥ 1−21−(|G|−1), which implies that |G| ≤ ⌊2−log(1−ε)⌋ ≤ x0.
Thus we may assume that the deletion of every vertex of G yields a graph with some isolated vertex.
It follows that E(G) is a perfect matching and therefore ε ≥ Eρ(G − v) = Eρ( |G|−1

2 K2) =
|G|−1

4 . This
implies that |G| ≤ 4ε + 1 < 5 ≤ x0.

Now we may assume that n > 0. Suppose for the sake of contradiction that |G| ≥ xn. Observe
that by Theorem 1.1, for any vertex v, nd(G) ≤ 2 nd(G − v) + 1 < 2 · 28(n+ε)+2

+ 1 ≤ xn ≤ |G|

and therefore there is a vertex v having a twin. Then nd(G) = nd(G − v) < 28(n+ε)+2 < 28n+10 and
herefore G has a twin class C with |C | > |G|/28n+10.

Note that |C | > xn−1 ≥ x0 ≥ 5. Let x, z be distinct vertices in C .

• If C is a clique of true twins in G, then (G ∗ x)[C] is an attached star in G ∗ x. Let G′
:= G ∗ x.

• If C is an independent set of false twins in G, then since the vertices in C are nonisolated in G,
there is some y ∈ NG(C, V (G) \ C).
Then C is a clique of true twins in G ∗ y and (G ∗ y ∗ x)[C] is an attached star in G ∗ y ∗ x. Let
G′

:= G ∗ y ∗ x.
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et S := C \ {z}, H := G− z, and H ′
:= G′

− z. Then in both cases, H ′ is locally equivalent to H , H ′
[S]

s an attached star in H ′, and G′
− C = H ′

− S. By Proposition 4.6 and Theorem 4.1 we deduce that

Eρ(H) = Eρ(H ′) ≥ Eρ(H ′
− S) = Eρ(G′

− C) > Eρ(G′) − 1 = Eρ(G) − 1 ≥ ε + n − 1,

thus H ′
−S contains some induced-subgraph-minimal graph of average cut-rank larger than ε+n−1,

say F , as an induced subgraph. Note that F has no isolated vertices because deleting isolated vertices
oes not change the average cut-rank. By the induction hypothesis, F has less than xn−1 vertices.

Then, Eρ(F ) is a rational number larger than ε + n − 1 whose denominator divides 2xn−1−1, so by
Theorem 4.1 we see that

Eρ(H ′
− S) ≥ Eρ(F ) ≥ ε + n − 1 +

1 − {2xn−1ε/2}
2xn−1/2

.

y Theorem 4.1 and Proposition 4.6, we thus obtain

ε + n ≥ Eρ(H) = Eρ(H ′) ≥ Eρ(H ′
− S) + 1 − 21−|S|

≥ ε + n − 1 +
1 − {2xn−1ε/2}

2xn−1/2
+ 1 − 21−|S|.

Thus, we deduce that

1 − |S| ≥ −xn−1 + 1 + log(1 − {2xn−1ε/2})

and so |S| ≤ ⌊xn−1 − log(1 − {2xn−1ε/2})⌋ and |C | ≤ ⌊xn−1 − log(1 − {2xn−1ε/2}) + 1⌋. This is a
ontradiction because |C | > |G|/28n+10

≥ xn/28n+10. □

. Average cut-rank and forbidden vertex-minors

.1. Forbidden vertex-minors

By Corollary 5.4, we can observe the following.

Let C be a class of graphs closed under taking vertex-minors. If C has bounded average cut-
rank, then there exists a finite list of graphs G1, G2, . . ., Gm such that a graph G is in C if and
only if G has no vertex-minor isomorphic to Gj for every j = 1, . . . ,m.

A minimal such list is called a list of forbidden vertex-minors for C. A list of forbidden vertex-minors
is not unique, as one can replace a graph in the list with any locally equivalent graph.

But essentially the list is determined up to some equivalence relation. For two classes S1 and S2
of graphs, we say that S1 is locally equivalent to S2, denoted by S1 ≃ S2, if for every G ∈ S1 there
is some H ∈ S2 isomorphic to a graph locally equivalent to G and for every H ∈ S2 there is some
G ∈ S1 isomorphic to a graph locally equivalent to H . Then we can easily verify that the relation ≃

is an equivalence relation and for every class of graphs closed under taking vertex-minors, the list
of forbidden vertex-minors for C is determined up to local equivalence. As the list is an antichain
with respect to the vertex-minor relation, every list of forbidden vertex-minors for C has the same
size.

Let L≤α be the class of all graphs H satisfying Eρ(H) > α and any proper vertex-minor of H
has average cut-rank at most α, and let L<α be the class of all graphs H satisfying Eρ(H) ≥ α and
any proper vertex-minor of H has average cut-rank smaller than α. Then by Proposition 4.4, every
graph in L≤α or L<α has average cut-rank smaller than α + 1. By Corollary 1.2, both L≤α and L<α

are finite. We can also easily deduce that

a graph has average cut-rank larger than (or at least) α if and only if it contains a vertex-minor
in L≤α (or L<α , respectively).

herefore for every α ≥ 0, L≤α is locally equivalent to every list of forbidden vertex-minors for the
class of graphs of average cut-rank at most α. Similarly, L<α is locally equivalent to every list of
forbidden vertex-minors for the class of graphs of average cut-rank smaller than α.
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.2. Lower bound on the number of vertex-minor obstructions

Recall that for every α ≥ 0, every list of forbidden vertex-minors for the class of graphs of
verage cut-rank at most α is finite and has the same size; the same happens for the lists of
orbidden vertex-minors for the class of graphs of average cut-rank smaller than α. We shall show
hat, there is some universal constant c > 0 such that for any ε ∈ [0, 1) and nonnegative integer n,
very list of forbidden vertex-minors for the class of graphs of average cut-rank at most (or smaller
han) ε + n contains at least 2cn log(n+1) graphs. To do so, we construct a set of at least 2cn log(n+1)

ertex-minor-minimal graphs of average cut-rank larger than ε + n, such that no two of them are
ocally equivalent to each other. Then, we can obtain from this set another set of at least 2cn log(n+1)

vertex-minor-minimal graphs of average cut-rank at least ε+n such that no two of them are locally
quivalent to each other. Let us start with several notions to make our arguments clearer.
For a graph G, let π (G) denote the quotient graph of G induced by ≡G. It is not difficult to see that

graph F without isolated vertices is a forest if and only if π (F ) is a forest and every equivalence
lass of (V (F ), ≡F ) induces an attached star in F . In this case, let R(F ) be the set of central vertices
n the equivalence classes of (V (F ), ≡F ). Then it is not difficult to check that F [R(F )] is isomorphic
o π (F ). We regard π (F ) as a weighted graph by assigning each vertex C of π (F ) the weight |C |.

For two forests F1 and F2 without isolated vertices, we shall write π (F1) ∼= π (F2) if there is an
somorphism keeping weights from π (F1) to π (F2). From the definitions we can deduce the following
asily.

emma 7.1. Two forests F1 and F2 without isolated vertices are isomorphic if and only if π (F1) ∼= π (F2).

The following is another useful characterization of isomorphic forests.

emma 7.2 (Bouchet [2, Corollary 5.4]). For two forests F1 and F2, F1 is isomorphic to F2 if and only if
1 is isomorphic to a graph locally equivalent to F2.

For two graphs G and H , H is called an elementary vertex-minor of G if H is a vertex-minor of G
nd |H| = |G|−1. The following theorem of Bouchet [1] characterizes elementary vertex-minors of
graph up to local equivalence. Geelen and Oum [8] provided a direct proof.

roposition 7.3 (Bouchet [1, Corollary 9.2]). Let v be a vertex of a graph G. If H is a vertex-minor of G
ith V (H) = V (G) \ {v}, then H is locally equivalent to one of G − v, (G ∗ v) − v, and (G ∧ uv) − v for
ny u adjacent to v in G.

For a graph G, a vertex v ∈ V (G), and an integer k ≥ 0, we denote by G+vK1,k the graph obtained
rom the disjoint union of G and K1,k by adding an edge between v and the central vertex of K1,k.
he following lemma is crucial for our construction.

emma 7.4. Let G ∈ L≤ε+n and d ≥ 1 be the size of the largest attached star in G. Then there
xists a unique positive integer q1 = q1(G) such that G + K1,q1 ∈ L≤ε+n+1 and q1 ≥ d. Furthermore,
or each v ∈ V (G), there exists a unique positive integer q2 = q2(G, v) ∈ {q1 − 1, q1} such that
+v K1,q2 ∈ L≤ε+n+1.

roof. First, we prove that

Eρ(G) ≤ ε + n + 21−d
≤ ε + n + 1. (1)

ndeed, if d = 1 then for any u ∈ V (G) we have, by Proposition 4.6,

Eρ(G) < Eρ(G − u) + 1 ≤ ε + n + 1 = ε + n + 21−d.

f d > 1, then let u be a leaf in an attached star of size d in G. By Proposition 4.5 and the fact that
∈ L≤ε+n, we have

Eρ(G) ≤ Eρ(G − u) + 21−d
≤ ε + n + 21−d

≤ ε + n + 1,
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nd (1) is proved. Hence, because Eρ(G) > ε + n, by Lemma 4.2 and Proposition 4.4, there is some
1 ≥ 1 such that for all k ≥ q1

Eρ(G + K1,k) = Eρ(G) + 1 − 2−k > ε + n + 1, (2)

nd for all 1 ≤ k < q1

Eρ(G + K1,k) = Eρ(G) + 1 − 2−k
≤ Eρ(G) + 1 − 21−q1 ≤ ε + n + 1. (3)

hus, since (by (1) and (3))

ε + n + 21−d
≥ Eρ(G) > ε + n + 1 − (1 − 2−q1 ) = ε + n + 2−q1 ,

e obtain q1 ≥ d. We show that G + K1,q1 ∈ L≤ε+n+1. Indeed, if H is a proper vertex-minor of
+ K1,q1 , then H is the disjoint union of H1 and H2 where H1 is a vertex-minor of G and H2 is a
ertex-minor of K1,q1 such that at least one of these two containments is proper. If H1 is a proper
ertex-minor of G, then since G ∈ L≤ε+n,

Eρ(H) = Eρ(H1) + Eρ(H2) ≤ ε + n + 1 − 2−q1 < ε + n + 1,

nd if H2 is a proper vertex-minor of K1,q1 , then

Eρ(H) = Eρ(H1) + Eρ(H2) ≤ Eρ(G) + 1 − 21−q1 ≤ ε + n + 1.

hus G + K1,q1 ∈ L≤ε+n+1. This proves the first claim.
Now let v be a vertex of G. By Proposition 4.6 and the construction of q1, for all k ≥ q1,

Eρ(G +v K1,k) ≥ Eρ(G) + 1 − 2−k > ε + n + 1,

nd for all 1 ≤ k < q1 − 1, by Proposition 4.4,

Eρ(G +v K1,k) ≤ Eρ(G) + 1 − 2−1−k
≤ Eρ(G) + 1 − 21−q1 ≤ ε + n + 1.

ecause G +v K1,q1−1 is a proper induced subgraph of G +v K1,q1 and the average cut-rank is
trictly monotone with respect to the induced subgraph relation by Theorem 4.1, there is a unique
2 = q2(G, v) ∈ {q1 − 1, q1} such that

Eρ(G +v K1,k) > ε + n + 1 for all k ≥ q2,
Eρ(G +v K1,k) ≤ ε + n + 1 for all 1 ≤ k < q2.

In the formation of G′
:= G +v K1,q2 , let x be the central vertex of K1,q2 that is adjacent to v and

S := V (K1,q2 ). We show that G′
∈ L≤ε+n+1. Indeed, suppose for the contrary that H is an elementary

vertex-minor of G′ with V (G′) = V (H) ∪ {u} such that Eρ(H) > ε + n + 1. By Proposition 7.3, H is
locally equivalent to one of G′

− u, (G′
∗ u) − u, and (G′

∧ uw) − u for any w adjacent to u in G′.
We may assume without loss of generality that H is one of these graphs. There are three cases to
consider.

1. If H = G′
− u, then u belongs to one of V (G) \ {v}, {v}, {x}, and S \ {x}.

(a) If u ∈ V (G) \ {v} then H = (G − u) +v K1,q2 . Because Eρ(G − u) ≤ ε + n, we have, by
Proposition 4.4,

ε + n + 1 < Eρ(H) ≤ Eρ(G − u) + Eρ(K1,q2+1) < ε + n + 1,

a contradiction.
(b) If u = v then H = (G − v) + K1,q2 . Similarly we obtain a contradiction.
(c) If u = x then H is the disjoint union of G with q2 isolated vertices, so H and G have the

same average cut-rank which is smaller than ε + n + 1, a contradiction.
(d) If u ∈ S \ {x} then H = G+v K1,q2−1 which has average cut-rank smaller than ε + n+ 1

by the definition of q2, a contradiction.

2. If H = (G′
∗ u) − u, then from the first case we may assume that u is not a leaf in G′, hence

u ̸∈ S \ {x}. There are three subcases to consider.
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(a) If u ∈ V (G) \ {v} then H = ((G ∗ u) − u) +v K1,q2 , which leads to a contradiction.
(b) If u = v then H−S is an elementary vertex-minor of G, NH (x) = (S\{x})∪NG(v), and H[S]

is an attached star of H of size q2 + 1 with the central vertex x, so by Proposition 4.4,

ε + n + 1 < Eρ(H) ≤ Eρ(H − S) + Eρ(K1,q2+dG(v)) < ε + n + 1,

a contradiction.
(c) If u = x then H ∗ z is isomorphic to G+v K1,q2−1 where z is a vertex in S \ {x}, thus has

average cut-rank smaller than ε + n + 1, a contradiction.

3. If H = (G′
∧ uw) − u, then we may assume that u is neither a leaf nor a neighbor of a leaf in

G′, because otherwise w either is the unique neighbor of u in G′ or can be chosen to be a leaf
adjacent to u, and so H = (G′

∧ uw) − u is isomorphic to G′
− w, returning to the first case.

There are two subcases to consider.

(a) If u ∈ V (G) \ {v} then we may assume that w ̸= v (if there is no other choice then u is
a leaf in G′). Now H − S is an elementary vertex-minor of G and H = (H − S) +v K1,q2 .
We obtain a contradiction.

(b) If u = v then because G has no isolated vertices, we may choose w = x. Then
H[(V (G) \ {v}) ∪ {x}] is isomorphic to G via some isomorphism bringing x to v and
fixing every vertex in V (G) \ {v}. Furthermore, in H , S \ {x} is an independent set and
complete to NG(v) ∪ {x} as well as anticomplete to V (G) \ (NG(v) ∪ {x}). Thus, for some
z ∈ S \ {x} we have H ∗ x∗ z is isomorphic to G+v K1,q2−1, which brings a contradiction.

Therefore G +v K1,q2 ∈ L≤ε+n+1, completing the proof of the lemma. □

Now we come to the construction. Let Fε := {K1,⌊1−log(1−ε)⌋} for all ε ∈ [0, 1), and for all integers
k ≥ 0,

Fε+2k+1 := {F + K1,q1(F ) : F ∈ Fε+2k},

Fε+2k+2 := {(F + K1,q1(F )) +v K1,q2(F+K1,q1(F ),v)
: F ∈ Fε+2k, v ∈ R(F )},

where q1(F ) and q2(F , v) are defined as in Lemma 7.4. Note that no graphs in Fε+n have isolated
vertices.

Corollary 7.5. Fε+n ⊆ L≤ε+n for all n ≥ 0.

Proof. By Lemma 4.2, K1,⌊1−log(1−ε)⌋ ∈ L≤ε for all ε ∈ [0, 1). The conclusion thus follows inductively
by Lemma 7.4. □

Here is another consequence of Lemma 7.4.

Corollary 7.6. For all F ∈ Fε+2n and v ∈ R(F ), q2(F + K1,q1(F ), v) is at least q1(F ), hence at least the
maximum weight in π (F ).

Proof. Let H := F + K1,q1(F ). By Lemma 7.4, q1(F ) is at least the maximum weight in π (F ), so
q1(F ) + 1 is the largest weight in π (H), which implies that q1(H) ≥ q1(F ) + 1. Also by Lemma 7.4,
q2(H, v) ≥ q1(H) − 1, and thus q2(H, v) is at least q1(F ), hence at least the maximum weight in
π (F ). □

Now we account for the restriction v ∈ R(F ) in the definition of Fε+2n+2: Because q2(H, v) can
possibly be equal to q1(F ), to deduce Lemmas 7.7 and 7.8 we require that the copy of K1,q2(H,v)
attached to v lies in a component different from a copy of K1,q1(F ).

Lemma 7.7. For every F ∈ Fε+n, π (F ) has exactly n + 1 vertices, and in π (F ), no positive integer
appears more than twice as a weight; if some weight appears twice then the corresponding vertices are
in different components and one of them is the smallest weight in its component.
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roof. We proceed by induction on n. When n = 0 the lemma is trivial. Assuming that the lemma
s true for n = 2k, we shall show that it is also true for n = 2k + 1 and 2k + 2. Let F ∈ Fε+2k
nd consider H := F + K1,q1(F ) ∈ Fε+2k+1. Set S := V (K1,q1(F )). By Lemma 7.4, q1(F ) is at least the
aximum weight in π (F ), so the conclusion holds for π (H) because it also holds for π (F ), which is
one by the induction hypothesis.
Now consider G := H +v K1,q2(H,v) ∈ Fε+2k+2 for v ∈ R(F ). By Corollary 7.6, q2(H, v) is at least

1(F ) as well as the maximum weight in π (F ). So, since v ∈ R(F ), the weights in π (F ) are preserved
n π (G), hence by the induction hypothesis the conclusion for π (G−S) indeed holds. Thus, to verify
he conclusion for π (G), it is enough to check two (unique) copies of K1,q2(H,v) and K1,q1(F ) in G. But
his is easy, since if q2(H, v) > q1(F ) then we are done, and if q2(H, v) = q1(F ) then those two
opies must be in different components because v ∈ R(F ). □

emma 7.8. For every ε ∈ [0, 1) and n ≥ 0, no two distinct forests in Fε+n are isomorphic.

roof. When n = 0 the lemma holds trivially. Assume that the lemma holds for n = 2k, we show
hat it also holds for n = 2k + 1 and n = 2k + 2. Consider Hj := Fj + K1,q1(Fj) ∈ Fε+2k+1 where
j ∈ Fε+2k for j = 1, 2 and suppose that H1 and H2 are isomorphic. Since q1(Fj) is at least the
aximum weight in π (Hj) and |π (Hj)| = 2k + 2 for j = 1, 2, necessarily q1(F1) = q1(F2) and so F1
ust be isomorphic to F2, implying H1 and H2 are isomorphic.
Now consider Gj := Hj +vj K1,q2(Hj,vj) ∈ Fε+2k+2 for vj ∈ R(Fj) for j = 1, 2. Assume that G1

nd G2 are isomorphic, then by Lemma 7.1 π (G1) ∼= π (G2). For j = 1, 2, let Tj be the component
n Gj containing the attached star K1,q2(Hj,vj) so that Tj is not the component isomorphic to K1,q1(Fj)
n Gj, by construction. By Corollary 7.6, q2(Hj, vj) is at least the maximum weight in π (Fj), so by
emma 7.7 q2(Hj, vj) is at least the maximum weight in π (Tj), for j = 1, 2. Thus, necessarily
2(H1, v1) = q2(H2, v2) and π (T1) ∼= π (T2), which leads to π (G1 −V (T1)) ∼= π (G2 −V (T2)). Hence, by
eleting the vertex with label q2(H1, v1) = q2(H2, v2) in each π (Gj), we obtain π (H1) ∼= π (H2), so
y Lemma 7.1 there is an isomorphism ϕ from H1 to H2. Thus, because the labels in Tj are distinct
or j = 1, 2 by Lemma 7.7, we have ϕ(v1) = v2. Therefore G1 and G2 are isomorphic and the proof
s completed. □

Combining Lemmas 7.7 and 7.8, we deduce the number of pairwise nonisomorphic graphs in
ε+n for all ε ∈ [0, 1) and n ≥ 0. We employ the standard notation k!! =

∏
1≤j≤k,j≡k (mod 2) j for

= 1, 2, . . . and the convention (−1)!! = 0!! = 1.

orollary 7.9. For every ε ∈ [0, 1) and k ≥ 0, the number of pairwise nonisomorphic graphs in Fε+2k
nd Fε+2k+1 is

|Fε+2k| = |Fε+2k+1| = (2k − 1)!!.

The next lemma describes properties of L≤α and L<α to be used later.

emma 7.10. Let α > 0. Then the following statements hold.

• L<α \ L≤α is the class of all graphs without isolated vertices of average cut-rank exactly α.
• If G ∈ L≤α \ L<α , then G has a proper vertex-minor H of average cut-rank exactly α in L<α

such that |G| − |H| ≤ 2. If the equality holds then H can be chosen so that G is isomorphic to
H + K2.

roof. Let G ∈ L<α \ L≤α . Then G has no isolated vertices and Eρ(G) ≥ α, so if Eρ(G) > α, G
ust have a proper vertex-minor, say H , in L≤α , but then Eρ(H) > α so G ̸∈ L<α by definition, a
ontradiction. On the other hand, by Theorem 4.1, if a graph G with no isolated vertices has average
ut-rank α then G ∈ L \ L .
<α ≤α
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Now let G ∈ L≤α \ L<α . Then G has a proper vertex-minor of average cut-rank at least α, say
H , which also must have average cut-rank at most α. Thus Eρ(H) = α, and we may assume that
H ∈ L<α by deleting isolated vertices. Since H is a proper vertex-minor of G, there is some G′

∈ L≤α

locally equivalent to G so that H is a proper induced subgraph of G′. Let V (G) \ V (H) = {v0, . . . , vk}

where k ≥ 0 and H ′
:= G′

− v0. We may assume that k ≥ 1, because otherwise the lemma holds.
ecause H ′ is a proper vertex-minor of G and contains H ∈ L<α as an induced subgraph, we have

Eρ(H ′) = Eρ(H) = α. Then by Theorem 4.1, {v1, . . . , vk} = V (H ′)\V (H) consists of isolated vertices
n H ′. Hence, since G′

∈ L≤α has no isolated vertices, G′
[{v0, . . . , vk}] is an attached star in G′ of size

+ 1 where v0 is the central vertex.
If v0 is isolated in G′

− v1, then k = 1 and G′
[{v0, v1}] is a component of size 2 in G′ and G′ is

somorphic to H + K2. Then G is isomorphic to H ′′
+ K2 where H ′′ is locally equivalent to H .

If v0 is not isolated in G′
− v1, then G′

− v1 has no isolated vertices and contains H as a proper
nduced subgraph. This implies, again by Theorem 4.1, that α = Eρ(H) < Eρ(G′

−v1), contradicting
he minimality of G. □

We remark that if α is a positive integer, both L≤α \ L<α and L<α \ L≤α are nonempty. For
nstance, (2α − 1)K2 + K1,2 belongs to L≤α \ L<α and 2αK2 belongs to L<α \ L≤α .

To finish the proof of Theorem 1.4 we need one more lemma.

emma 7.11. If ε > 0 or n ≥ 1, then every forest F in Fε+n \ L<ε+n has a leaf, say v, whose deletion
ields a forest, say H, in L<ε+n of average cut-rank exactly ε+n. Moreover, if v belongs to an equivalence
lass of size 2 of (V (F ), ≡F ) and its unique neighbor has degree 2 in F then |π (H)| = n; otherwise
π (H)| = n + 1.

roof. Let F ∈ Fε+n \L<ε+n. By Corollary 7.5 and Lemma 7.10, F has a proper vertex-minor, say H ′,
f average cut-rank ε + n such that H ′

∈ L<ε+n and |F | − |H ′
| ≤ 2. Moreover, if |F | − |H ′

| = 2 then
′ can be chosen so that F is isomorphic to H ′

+ K2, so F has a component of size 2. In this case,
y the construction of Fε+n, Lemma 7.4, and Corollary 7.6 we deduce that n ≤ 1. If n = 0 then F is

isomorphic to K2, so H ′ is empty, but this is absurd since ε > 0 by hypothesis; if n = 1 then H ′ is
isomorphic to K1,q for some q ≥ 1, a contradiction since 1 ≤ 1 + ε = Eρ(H ′) = 1 − 2−q < 1. Thus,
H ′ is an elementary vertex-minor of F .

Let {x} = V (F ) \ V (H ′), then by Proposition 7.3 we may assume without loss of generality that
H ′ is one of F − x, (F ∗ x) − x, and (F ∧ xy) − x for any y adjacent to x in F .

1. If H ′
= F − x then since every equivalence class of (V (F ), ≡F ) has at least two vertices

(the construction of Fε , Lemma 7.4, and Corollary 7.6) and H ′ has no isolated vertices, x is
necessarily a leaf in F , so we let v = x.

2. If H ′
= (F ∗ x)− x then we may assume that dF (x) ≥ 2, so if y is a leaf adjacent to x then F −y

is isomorphic to H ′
∗ y ∈ L<ε+n, and we let v = y.

3. If H ′
= (F ∧ xy) − x then if furthermore x is a leaf in F then y is the unique neighbor of x

in F , hence isolated in H ′, a contradiction. So, dF (x) ≥ 2, and since y can be chosen to be any
neighbor of x in F , we may assume that y is a leaf adjacent to x. Then F − y is isomorphic to
H ′

∈ L<ε+n and we let v = y.

So, we have chosen v. Let H := F − v and u be the unique neighbor of v in F . In all cases, H is
locally equivalent to H ′ and therefore H ∈ L<ε+n. The first part of the lemma is proved.

We come to the second part of the lemma. If v belongs to an equivalence class of size 2 of
(V (F ), ≡F ) and dF (u) = 2 then the neighbor of u other than v in F , say w, has degree at least two
in F . Let C be the equivalence class of (V (F ), ≡F ) containing w, then C ∪ {u} is an equivalence class
of (V (H), ≡H ). It follows that |π (H)| = |π (F )| − 1 = n by Lemma 7.7.

In the other cases, it is easy to check that |π (H)| = |π (F )| = n + 1. This completes the proof of
the lemma. □
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We are now ready to prove Theorem 1.4.

heorem 1.4. There is some universal constant c > 0 so that the following holds. For every ε ∈ [0, 1)
nd n ≥ 0, let S be a set of graphs such that the average cut-rank of a graph G is at most (or less
han) ε + n if and only if no graph in S is isomorphic to a vertex-minor of G. Then S contains at least
cn log(n+1) graphs.

roof. Choose c > 0 to be some constant (independent of ε and n) such that

(2⌊n/2⌋ − 1)!!
n + 1

≥ 2cn log(n+1) for all n ∈ N.

First consider the case that S is a list of forbidden vertex-minors for the class of graphs of average
ut-rank at most ε + n. Then S is locally equivalent to L≤ε+n. By Corollary 7.5, Fε+n ⊆ L≤ε+n,
and by Lemmas 7.2 and 7.8, no two distinct forests F1 and F2 in Fε+n are locally equivalent up to
isomorphisms. Therefore, for every forest F in Fε+n, there is some member in S which is isomorphic
to a graph locally equivalent to F and these members are pairwise not locally equivalent to each
other. By Corollary 7.9,

|S| ≥ |Fε+n| =

(
2
⌊n
2

⌋
− 1

)
!! ≥ 2cn log(n+1). (4)

Now consider the case that S is a list of forbidden vertex-minors for the class of graphs of average
ut-rank smaller than ε + n. Then S is locally equivalent to L<ε+n. We may assume that ε + n > 0.
Let {F1, . . . , Fm} = Fε+n \ L<ε+n.

For every j = 1, . . . ,m, by Lemma 7.11, Fj has a leaf, whose deletion yields a forest in L<ε+n,
say Hj, of average cut-rank exactly ε + n. Moreover, |π (Hj)| is either n or n + 1 depending on the
condition written in the statement of Lemma 7.11.

Claim. For every j ∈ {1, . . . ,m}, there are, up to isomorphism, at most n + 1 forests F such that there
is some leaf in F whose deletion yields Hj.

Proof. There are two cases to consider.

1. |π (Hj)| = n. The only way to obtain F from Hj is to add a new vertex to Hj and join it to some
leaf in Hj (to create a new equivalence class of size 2). Because (V (Hj), ≡Hj ) has n equivalence
classes, each of which induces an attached star in Hj, there are at most n forests F satisfying
the claim.

2. |π (Hj)| = n + 1. The only way to obtain F from Hj is to add a new vertex to Hj and join it
to the central vertex of some equivalence class of (V (Hj), ≡Hj ). Because there are n + 1 such
equivalence classes, there are thus at most n + 1 forests F satisfying the claim.

ence there are at most n + 1 desired forests F , completing the proof of the claim. ■

Let G be a graph on the vertex set {1, . . . ,m} such that for distinct j, k ∈ {1, . . . ,m}, jk ∈ E(G)
f Hj is isomorphic to a graph locally equivalent to Hk. For j ∈ {1, . . . ,m}, by Lemma 7.2, k ∈ NG(j)
f and only if Hj is isomorphic to Hk, implying that there is some forest F ′

k isomorphic to Fk such
hat Hj can be obtained by deleting some leaf of F ′

k. Because the set {F1, . . . , Fm} consists of pairwise
onisomorphic forests, by Lemma 7.8, so does the set {F ′

k : k ∈ NG(j)} ∪ {Fj}. It follows by the claim
hat dG(j) ≤ n for all j = 1, . . . ,m.

Let S be a maximal independent set in G. Then every vertex outside of S is adjacent in G to some
ertex in S whose degree is at most n. Hence m = |G| ≤ |S| + n|S|, or equivalently |S| ≥

m
n+1 .

Let T be the disjoint union of Fε+n∩L<ε+n and {Hj : j ∈ S}. Since S is an independent set in G, for
every distinct j, k ∈ S we have Hj is not isomorphic to a graph locally equivalent to Hk. This implies,
from our construction, that T ⊆ L<ε+n and no two distinct graphs in T are locally equivalent to

each other up to isomorphisms. Furthermore, no two distinct forests in Fε+n ∩ L<ε+n are locally
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e
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L
i

L

quivalent to each other up to isomorphisms. Therefore, by (4),

|S| ≥ |T | = |Fε+n ∩ L<ε+n| + |S| ≥ |Fε+n| − m +
m

n + 1

≥
|Fε+n|

n + 1
=

(2⌊n/2⌋ − 1)!!
n + 1

≥ 2cn log(n+1),

and the theorem is completely proved. □

8. Graphs of average cut-rank at most 3/2

We now aim to prove Theorem 1.5. Our plan is to bound the number of connected components
and investigate the maximum induced path of every graph locally equivalent to a fixed graph.
This approach not only characterizes graphs of average cut-rank at most 3/2 but also reveals
L<1,L≤1,L<3/2,L≤3/2 up to local equivalence. For every graph G, we denote by p(G) the maximum
length of a path graph which is a vertex-minor of G.

Recall that for every k ≥ 0, Ek is the graph K1,k+1 with one edge subdivided. The following lemma
computes Eρ(Ek), which explains why 3/2−3/2k+2 appears in Theorem 1.5. We omit its easy proof.

Lemma 8.1. For all k ≥ 0, we have Eρ(Ek) =
3
2 −

3
2k+2 .

.1. Graphs of average cut-rank at most 1

We need the following lemma. We leave its easy proof to the readers.

emma 8.2. If G is a connected graph having no path of length three as a vertex-minor then G is
somorphic to a star or a complete graph.

emma 8.3. If a graph with no isolated vertices has average cut-rank at most 1, then it is isomorphic
to a graph locally equivalent to one of 2K2 and K1,k for k ≥ 1. Moreover L<1 is locally equivalent to
{2K2, K4} and L≤1 is locally equivalent to {3K2, K2 + P3, P4}.

Proof. It follows easily from Lemma 8.2 and the following observations: Eρ(2K2) = 1, Eρ(3K2) =

3/2, Eρ(K2 + P3) = 7/4, and Eρ(P4) = 9/8. □

8.2. Graphs of average cut-rank at most 3/2

Let us start with several technical results whose proofs are left to the interested readers.

Lemma 8.4. Let P be an induced path of length 3 in a graph G and v be a vertex of G outside P such
that v has at least 2 neighbors in P. Then

• If v is adjacent to both ends of P, G contains a cycle of length 5 as a vertex-minor.
• Otherwise, G contains a path of length 4 as a vertex-minor.

Lemma 8.5. Every graph without isolated vertices on 5 vertices is isomorphic to a graph locally
equivalent to one of K2 + P3, K1,4, P5, E2, and C5.

Lemma 8.6. Let G be a graph on at most 5 vertices. If Eρ(G) ≥ 3/2, then G is isomorphic to a graph
locally equivalent to C5.

Graphs C5, P6, P4,1, P5,1, P5,2, C3,1, and C4,1 with their average cut-rank are listed in Fig. 1. We
deduce the following easily.

Corollary 8.7. The graphs C , P , P , P , P , C , and C belong to L ∪ L .
5 6 4,1 5,1 5,2 3,1 4,1 <3/2 ≤3/2
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Fig. 1. Small graphs and their average cut-rank.

The following lemma is a major step toward the proof of Theorem 1.5.

emma 8.8. If a graph without isolated vertices has average cut-rank at most 3/2, then it is isomorphic
to a graph locally equivalent to one of P5, 3K2, 2P3, K1,k+1, K2 + K1,k+1, and Ek for k ≥ 0. Moreover

L<3/2 ≃ {3K2, K2 + P3, 2P3, C5, P6, P4,1, P5,1, P5,2, C3,1, C4,1},

L≤3/2 ≃ {4K2, 2K2 + P3, K2 + P4, P3 + K1,3, P3 + P4, C5, P6, P4,1, P5,1, P5,2, C3,1, C4,1}.

Proof. Let G be a graph such that either Eρ(G) ≤ 3/2 or G ∈ L<3/2 ∪ L≤3/2. By Lemmas 8.5 and
.6, we may assume that |G| > 5. It is easy to check that C5, P6, 4K2, 2K2 + P3 ∈ L≤3/2 and so we
ay assume that G has no vertex-minor isomorphic to C5, P6, 4K2, 2K2 + P3. Thus G has at most 3
omponents.
If G has exactly 3 components, then G has an induced subgraph isomorphic to 3K2 which has

verage cut-rank 3/2, and if furthermore G has at least 7 vertices then it has a vertex-minor
somorphic to 2K2 + P3 whose average cut-rank is 7/4. Hence if Eρ(G) ≤ 3/2 then G is isomorphic
o 3K2, if G ∈ L<3/2 then G is isomorphic to 3K2, and if G ∈ L≤3/2 then G is isomorphic to a graph
ocally equivalent to 2K2 + P3.

When G has exactly 2 components, if every component of G has at least 3 vertices then G has
vertex-minor isomorphic to 2P3 whose average cut-rank is 3/2, and if furthermore G has at least
vertices then G has a vertex-minor isomorphic to P3 + K1,3 or P3 + P4 whose average cut-rank is
3/8 or 15/8, respectively; if one component of G has only 2 vertices then G = K2 + H for some
raph H with Eρ(H) = Eρ(G) − 1/2. By applying Lemma 8.3 to H , we deduce that if Eρ(G) ≤ 3/2
hen G is isomorphic to a graph locally equivalent to K2 + K1,k for some k ≥ 1 or 2P3, if G ∈ L<3/2
then 2P3, and if G ∈ L≤3/2 then G is isomorphic to a graph locally equivalent to P3 +K1,3 or P3 + P4.

Now we assume that G is connected. By Lemma 8.3, we may assume that G has average cut-rank
arger than 1, so by Lemma 8.2, p(G) ≥ 3. By applying local complementations if necessary, we may
ssume that G has an induced path of length p(G).
If p(G) ≥ 4, then let P = abcde be an induced path of length 4. Then there is a vertex v outside P

djacent to some vertex of P . If v is adjacent to a, then it is easy to check that G has a vertex-minor
somorphic to C5 or P6, contradicting our assumption. Thus v is nonadjacent to a and by symmetry,
onadjacent to e. By considering all possible N(v) ∩ {b, c, d}, we deduce that G has a vertex-minor
somorphic to P5,1, P5,2, C4,1, or C3,1. Hence, if p(G) = 4, then Eρ(G) > 3/2 and in addition if
∈ L<3/2 ∪ L≤3/2 then G is isomorphic to a graph locally equivalent to one of P5,1, P5,2, C4,1, and

3,1, by Corollary 8.7.
If p(G) = 3 then let P = abcd be an induced path of length 3. Then by Lemma 8.5, S :=

G(P) \ V (P) ̸= ∅. Pick v ∈ S. If {a, d} ⊆ NG(v) then G is isomorphic to a graph locally equivalent to
5, contradicting our assumption. Thus we may assume that v is nonadjacent to d. If v is adjacent to
, then we may apply local complementations to find a vertex-minor isomorphic to P5, contradicting
he assumption that p(G) = 3. Thus, v is nonadjacent to a. By the same argument, we deduce that
is adjacent to exactly one of b and c. Hence, each vertex in S should be adjacent to only one of b,
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in P . If all the vertices in S are pairwise nonadjacent and adjacent to the same among b, c , then
G is isomorphic to Ek for some k ≥ 1 and thus Eρ(G) < 3/2. Otherwise, there are two vertices
in S, say u, v, being adjacent to each other or adjacent to different vertices in {b, c}. In the case
u, v are adjacent, if they are adjacent to the same among b, c then P5,1 is isomorphic to an induced
subgraph of G ∗ u which contradicts p(G) = 3, otherwise G ∧ uv has an induced path of length 5,
contradicting the assumption; in the case u, v are adjacent to different vertices in {b, c}, we only
have to check when uv /∈ E(G), then G is isomorphic to a graph locally equivalent to P4,1. Thus, if
p(G) = 3 and Eρ(G) ≤ 3/2 then G is isomorphic to a graph locally equivalent to Ek for some k ≥ 0,
and if p(G) = 4 and G ∈ L<3/2 ∪ L≤3/2 then G is isomorphic to a graph locally equivalent to P4,1 by
Corollary 8.7. □

Theorem 1.5. Let G be a graph with no isolated vertices. Then G has average cut-rank at most 3/2 if
and only if it is isomorphic to a vertex-minor of one of P5, 3K2, 2P3, K1,k+1, K2+K1,k+1, and Ek for k ≥ 0.
In addition, the set of all possible values for average cut-rank of graphs in the interval [0, 3/2] is{

1 −
1
2k : k ≥ 0

}
∪

{
3
2

−
1

2k+1 : k ≥ 0
}

∪

{
3
2

−
3

2k+2 : k ≥ 0
}

∪

{
3
2

}
.

roof. It suffices to combine Proposition 4.4, and Lemmas 8.1, 4.2, 8.8, and the fact that Eρ(P5) =

3/16 = 3/2 − 1/24. □
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