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Abstract
The performances of quantum thermometry in thermal equilibrium together with the output
power of certain class of quantum engines share a common characteristic: both are determined by
the heat capacity of the probe or working medium. After noticing that the heat capacity of spin
ensembles can be significantly modified by collective coupling with a thermal bath, we build on the
above observation to investigate the respective impact of such collective effect on quantum
thermometry and quantum engines. We find that the precision of the temperature estimation is
largely increased at high temperatures, reaching even the Heisenberg scaling—inversely
proportional to the number of spins. For Otto engines operating close to the Carnot efficiency,
collective coupling always enhances the output power. Some tangible experimental platforms are
suggested.

Recent experiments realised proof-of-principle of some thermodynamic tasks based on single quantum
systems, among which spins occupy a prominent place. In particular, heat engines were realised using a
single spin as working fluid [1, 2]. Temperature estimation of ultra cold gases via single quasispins of
ceisum was performed in [3]. In [4, 5], nano-thermometers were experimentally realised using spins of
nitrogen-vacancy centers (where the temperature change in the environment was mapped into magnetic
signal through a magnetic nanoparticle). Here we ask the following question: can collective spin effect
enhance such thermodynamic tasks?

In quantum thermometry, most studies investigating collective effects rely on quantum phase transition
[6–10]. Beyond that, some studies [11, 12] investigate precision enhancement based on the small energy
splittings emerging from interactions between subsystems contained in the probe. Here, we focus on a
different collective effect: the collective coupling between a bath and an ensemble of spins. One study [13]
investigated similar effects but considering dephasing coupling (no energy exchange between probe and
bath). In [14] the authors analyse the thermometric consequences for of collective coupling between an
ensemble of harmonic oscillators and the bath. Finally, in [15], thermometry via collective spins is
investigated. However, the collective spin and the measured system (the collective center-of-mass motion)
are assumed to form a closed system so that the collective spin does not reach any steady state, and in
particular the heat capacity does not play any role there. Still, it is shown in [15] that some collective effects
can be beneficial outside of the low-temperature regime.

For thermal machines, several works pointed at possible performance enhancements based on collective
bath coupling. In [16], the suggested output power enhancement relies on equilibration speed-up stemming
from collective effects in spins 1/2. Collective couplings have also been investigated in continuous thermal
machines [17–19]. Finally, in [20] it is shown that the combination of mitigation effects stemming from
collective bath couplings can increase the output power of Otto engines. The present study confirms and
extends the results of [20].
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In this paper, we exploit a common feature of thermal equilibrium thermometry and certain class of
thermal machines: the central role played by the heat capacity of the probe or working medium. For
thermometry, this was shown for instance in [11, 21–23]. With respect to thermal machines, it was recently
reported that Otto cycle thermal engines operating close to the Carnot efficiency [24] have their output
power determined by the heat capacity of the working medium. Remarkably, this was also proved to hold
for some classes of non-ideal Carnot engines [25], the so-called finite-time Carnot engines (working in the
low-dissipative limit). Taking advantage of this common characteristics, we study the impact of collective
bath coupling on the heat capacity of spin ensembles and use these results to infer the corresponding effects
on quantum thermometry and quantum engines.

We find that the heat capacity associated with an ensemble of spins interacting collectively with a
thermal, called collective heat capacity in the following, can take value dramatically different from the sum of
the individual heat capacities (which corresponds to situations where each spin interacts independently
with the bath), called independent heat capacity. At high temperature, the collective heat capacity can
become much larger than the independent heat capacity—up to (ns + 1)/(s + 1) times larger, where n is
the number of spins and s their dimension. Conversely, at low temperature, the independent heat capacity is
in general larger than the collective one—up to n times.

Applied to thermometry, we show that an ensemble of spins interacting collectively with the sample of
interest can provide a higher precision for temperature estimation outside the very low-temperature regime.
This is of interest for biological or medical applications, like intra-cellular thermometry [26, 27], in vivo
nanoscale thermometry [28], but also for nanoscale chemistry [29] and thermal mapping of micro or nano
scale electronic devices [30]. We provide an approximated expression in terms of n and s of the critical
temperature below which collective effects stop enhancing the precision of the temperature estimation.
Applied to experimental data from [3–5], the critical temperature can indeed be very small, indicating that
in practice, collective couplings can still enhance the temperature estimation precision over a very large
range of sample’s temperatures.

Finally, with respect to cyclic thermal machines—Otto engines operating close to the Carnot bound, we
show that collective effects are always beneficial in terms of output power, which is a stronger result than in
[20]. The largest enhancements come at high hot bath temperatures. Regarding the output work per cycle,
we recover the same asymptotic scaling as in [20].

The paper is organised as follows. In section 1 we come back briefly on experimental realisations of
spins collectively coupled to a thermal bath. In section 2 we derive some properties of the collective heat
capacity for an ensemble of n spins of arbitrary dimension s. In sections 3 and 4 we apply the results on
collective heat capacity to quantum thermometry and cyclic quantum engines, respectively. We conclude in
section 5 with some final remarks and perspectives.

1. About experimental realisations of collective coupling

On the one hand, the philosophy behind this paper is to investigate a particular type of collective effect and
analyse how beneficial it can be for certain thermodynamic tasks. Then, depending on the extent of the
benefit, one can decide to start thinking of how to actually realise such collectively-enhanced devices. In this
perspective, we briefly discuss in the following some possibilities for experimental realisations of collective
coupling between spins and bath. The aim of this paper is to suggest that the benefits are worth the
‘experimental battle’.

Ideally, we would think of adapting the aforementioned designs to include a spin ensemble collectively
coupled to the bath. This is certainly possible in [1] since therein the baths are emulated by an external
magnetic field, offering the possibility of addressing collectively an ensemble of spins. While it might be
possible to upgrade the other designs [2–5] to collective bath coupling, it is less obvious than in [1].

Beyond that, we stress that there are several known platforms realising collective coupling between a
spin ensemble and electromagnetic modes [31–34] or even phonons [15, 35] and mechanical oscillators
[36]. Note that spins commonly used in realisations of collective coupling are from atoms of strontium [33,
34, 37] and rubidium [36]. Using such platforms, one can imagine the implementation of collective
coupling between the spin ensemble and a bath or a sample of interest. Indeed, if the intermediary
system—the electromagnetic or phononic mode—is coupled to the bath (or sample), the effective
dynamics of the spin ensemble can be a collective dissipation. A required condition for that is having a
coupling between the intermediary system and the bath larger than the coupling between the spin ensemble
and the intermediary system. This is shown explicitly in [31, 33] where the intermediary system is a cavity
mode coupled to the external electromagnetic field playing the role of the thermal bath. This can be
extended directly to other platforms since the core mechanism is the same, namely a spin ensemble
interacting collectively with a bosonic mode which is itself interacting with a thermal bath.
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The conclusion of this section is that collective coupling of a spin ensemble with a thermal bath is
tangible in several platforms, and even readily realisable in the experimental design used in [32–34].

2. Collective heat capacities

The heat capacity C of a system in a thermal state at temperature T determines how much energy must be
absorbed (or released) to increase (or decrease) the system’s temperature by an amount δT. It is naturally

given by C = ∂Eth(β)
∂T = −kBβ

2 ∂Eth(β)
∂β

, where Eth(β) = TrHρth(β) is the energy of the system in the thermal

state ρth(β) :=Z−1(β)e−βH at inverse temperature β := 1/kBT, kB is the Boltzmann constant,
Z(β) = Tre−βH is the partition function and H is the free Hamiltonian of the system. As one could expect,
the heat capacity plays a central role in thermometry and thermal machines. We will come back on this
aspect in sections 3 and 4. For now we focus on the heat capacity of an ensemble of spins interacting
collectively with a thermal bath. The main idea is that since the steady state energy of a spin ensemble
interacting collectively with a thermal bath [20, 38] is different from the thermal equilibrium
energy—reached when all spins interact independently with the bath, the collective and independent heat
capacities should also be different.

More precisely, we consider an ensemble of n identical spins of dimension s and free Hamiltonian
H = �ωJz, where Jz :=

∑n
k=1 jz,k is the sum of the z-component of the local angular momentum operators

associated to each spin k (similar notations for the x and y components). The collective coupling with a
thermal bath corresponds to a coupling Hamiltonian of the form V = gJxOB, where OB is an unspecified
bath observable, and g represents the coupling strength. Under the usual Born, Markov, and secular
approximations [39, 40], the dynamics of the collective dissipation is of the form [20]

dρ

dt
= Γ(ω)

(
J−ρJ+ − J+J−ρ

)
+ Γ(−ω)

(
J+ρJ− − J−J+ρ

)
+ h.c., (1)

where J± := Jx ± iJy are the collective jump operators of the spin ensemble,
Γ(ω) = �

2g2
∫ ∞

0 eiωu Tr ρBOB(u)OB du is the ‘half Fourier transform’ of the bath correlation function, ρB is
the density operator of the thermal bath at temperature T, and OB(u) denotes the interaction picture of OB.
The steady state of the above collective dissipation (1) can be expressed in a relative simple way using the
collective basis |J, m〉i [41] made of the common eigenvectors of Jz and J 2 := J2

x + J2
y + J2

z ,

J 2|J, m〉i = �J(J + 1)|J, m〉i

Jz|J, m〉i = �m|J, m〉i, (2)

with −J � m � J and J ∈ [J0; ns], where J0 = 0 if s � 1 and J0 = 1/2 if s = 1/2 and n odd. The index i
belongs to the interval [1; lJ], where lJ denotes the multiplicity of the eigenspaces associated to the
eigenvalue J of the operator J 2. With these notations, the steady state takes the form [20]

ρss(β) =
ns∑

J=J0

lJ∑
i=1

pJ,iρ
th
J,i(β) (3)

where pJ,i :=
∑Ji

m=−J 〈J, m|ρ0|J, m〉i is the weight of the initial state of the spin ensemble ρ0 in the eigenspace
of total spin J and

ρth
J,i(β) :=ZJ(β)−1

J∑
m=−J

e−m�ωβ|J, m〉i〈J, m|, (4)

with ZJ(β) :=
∑J

m=−J e−m�ωβ . Note that if the initial state contains some coherences of the type

i〈J, m|ρ0|J, m〉i′ , with i �= i′, it is not proven that the corresponding steady state has exactly the form (3) (see
[20]). A short note is provided in appendix C regarding the stability of the collective steady state under the
emergence of small spin–spin interactions or small disorder and inhomogeneities altering the local energy
levels of each spin. Additionally, the fact that the steady state retains some dependence on the initial state is
a consequence of a dynamics with multiple steady states. The steady state actually reached is determined by
the initial conditions [20, 38, 42]. This should not be seen as a contradiction with the Markovian dynamics.
In particular, one can verify that in the present dynamics there is not backflow of information as it typically
occurs in non-Markovian dynamics.

3
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The energy of the spin ensemble when it reaches the steady state (3) is

Ess(β) := �ω Tr Jzρ
ss(β) =

ns∑
J=J0

lJ∑
i=1

pJ,i eJ(β), (5)

with eJ(β) := �ω Tr Jzρ
th
J,i(β) = �ω

∑J
m=−J m e−m�ωβ

ZJ (β) . Then, quite naturally, we can define the collective heat

capacity as the derivative with respect to the bath temperature of the steady state energy reached via
collective dissipation, namely

Ccol(β) := − kBβ
2 ∂Ess(β)

∂β
=

ns∑
J=J0

lJ∑
i=1

pJ,iCJ (β), (6)

with
CJ(β) := − kBβ

2 ∂eJ(β)

∂β

= kBb2

[(
1/2

sinh b/2

)2

−
(

J + 1/2

sinh(J + 1/2)b

)2
]

, (7)

where b := �ωβ.
One can verify that CJ(β) > CJ′(β) for J > J′ and for all β, even for negative effective bath

temperature—relevant in some specific situations like in presence of several thermal baths [43, 44] or spin
baths [45, 46]. This implies that the largest collective heat capacity is obtained with initial state such that
pJ=ns = 1. Such states span a subspace sometimes called the Dick or symmetrical subspace. In particular,
some experimentally simple states like thermal states at inverse temperature |β0| � 1/�ω belong to such
subspace. As expected, the applications to thermometry and thermal engines seek the largest heat capacity.
Therefore, now we know that the largest advantage obtained from collective interactions is achieved for
initial state belonging to the symmetrical subspace. In the following we compare the best case scenario,
Ccol
+ (β) :=CJ=ns(β), to the independent heat capacity.

Comparison with independent heat capacity. The independent heat capacity is the derivative with respect
to the bath temperature of the thermal equilibrium energy Eth(β)—the energy reached when each spin
interacts independently with the bath,

Cind(β) := − kBβ
2 ∂Eth(β)

∂β
= nCJ=s(β), (8)

where
Eth(β) := �ω Tr Jzρ

th(β) = n eJ=s(β), (9)

ρth(β) = Z(β)−1e−�ωβJz , and Z(β) = Tr e−�ωβJz .Then, we are left to compare Ccol
+ (β) = CJ=ns(β) and

Cind(β) = nCJ=s(β). The expansion of the expression (7) at �ω|β| � 1 gives respectively
Ccol
+ (β) ∼

�ω|β|�1
(�ωβ)2e−�ω|β|, and Cind(β) ∼

�ω|β|�1
n(�ωβ)2e−�ω|β|. In particular,

Ccol
+ (β)/Cind(β) ∼

�ω|β|�1
n−1. (10)

By contrast, for �ω|β| 
 1, we obtain

Ccol
+ (β) =

1

3
ns(ns + 1)(�ωβ)2 +O

[
(ns�ωβ)4

]
, (11)

and
Cind(β) =

n

3
s(s + 1)(�ωβ)2 +O

[
n(s�ωβ)4

]
, (12)

implying Ccol
+ (β)/Cind(β) =

�ω|β|
1

ns+1
s+1 +O

[
n(n�ωβ)2

]
. For the intermediary regime between these

asymptotic limits, the behaviour of Ccol
+ (β), Cind(β), and Ccol

+ (β)/Cind(β) is represented in figures 1 and 2 as
functions of kBT/�ω for several value of n and s.

Importantly, the critical value Tcr of the bath temperature such that Ccol
+ (1/kBTcr) = Cind(1/kBTcr) is

well approximated by the function

kBTcr(n, s)

�ω
�

(
4ns(s + 1) + 1

12

)1/2

. (13)

A comparison with numerical solutions gives very good agreement, see figures 1(b) and 2(b). The above

4
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Figure 1. (a) Heat capacities of the collective spins Ccol
+ (β) (solid lines) and of the independent spins Cind(β) (dashed lines) as

functions of kBT/�ω for ensembles of n = 2 spins of dimension s = 1/2 (orange curves), s = 3/2 (red curves), s = 9/2 (black
curves). (b) Ratios of the heat capacities Ccol

+ (β)/Cind(β) (in log–log) for the same values of n and s. The dotted lines indicate the
asymptotic behaviours which follow the analytical value (ns + 1)/(s + 1). The vertical gray lines indicates the critical
temperature Tcr(n, s) given by the approximate expression (13).

expression (13) was obtained expanding the expressions of Cind(β) and Ccol
+ (β) using the assumptions that

�ω/kBTcr 
 1 and (ns + 1/2)�ω/kBTcr � 1 for growing n. Such assumptions are based on observations of
the numerical solutions.

3. Applications to quantum thermometry

We consider the situation where the sample we want to estimate the temperature is much larger than the
probe—our spin ensemble. Under weak coupling, one can consider that the spin ensemble reach a steady
state without indeed affecting the sample. In other words, the sample plays the role of a thermal bath. This
is the general framework considered by quantum thermometry in thermal equilibrium [11]. Additionally to
this framework, and accordingly to the above study of heat capacity, we consider two different situations. In
what we call the independent-dissipation situation, each spin of the ensemble interacts independently with
the sample so that the spin ensemble eventually reaches a thermal state at the sample’s temperature T. In
the other situation, the collective-dissipation situation, the spin interact collectively with the sample and
reaches the steady state ρss(β) of equation (3).

The maximal information extractable from the spin ensemble about the sample’s temperature is usually
quantified by the quantum Fisher information F(T) [55–57]. Quite intuitively, the maximal precision of
the estimation of the sample’s temperature can be related to this maximal extractable information F(T).
This is indeed established by the Cramer–Rao bound [58]. Therefore, F(T) directly informs about the
maximal achievable precision of the estimation of the sample’s temperature. As mentioned in the
introduction, it was shown in [11, 21–23] that F(T) = C(T)/kBT2 = Δ2〈H〉/T2, where C(T) is the heat
capacity of the probe and Δ2〈H〉 is its energy variance. However, such property is valid when the probe is in
a thermal state, and in principle not valid for non-thermal states. Therefore, before applying the results of
the last section regarding collective heat capacity we have to show that the maximum precision for the
temperature estimation using non-thermal states of the form ρss(β) is indeed given by the collective heat
capacity. This is shown in appendix A where we establish in particular that the quantum Fisher information
for any state of the form ρss(β) is

F col(T) = Ccol(T)/kBT2. (14)

Then, it follows from the analysis of the last section that the largest enhancements from collective coupling
are obtained for spin ensembles initially in a thermal state at very large inverse temperature |β0| 
 1/�ω,
or more generally for initial states belonging to the symmetrical subspace. We denote by F col

+ (T) the
corresponding quantum Fisher information. This is to be compared with the quantum Fisher information
F ind(T) obtained from independent dissipation of each spin, which is equal to F ind(T) = Cind(T)/kBT2

5
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Figure 2. (a) Heat capacities of the collective spins Ccol
+ (β) (solid lines) and of the independent spins Cind(β) (dashed lines) as

functions of kBT/�ω (semi-log scale) for ensembles containing n = 2 (orange curve), n = 5 (red curve), n = 10 (black curve),
n = 100 (purple curve) spins s = 1/2. The blue curve corresponds to an ensemble of n = 100 spins s = 3/2. (b) Ratios of the
heat capacities Ccol

+ (β)/Cind(β) (in log–log) as a function of kBT/�ω. The colour code is the same as in the panel (a). The dotted
lines indicate the asymptotic behaviours which follow the analytical value (ns + 1)/(s + 1). The vertical gray lines indicates the
critical temperature Tcr(n, s) given by the approximate expression (13).

since the steady state in this case is a thermal state. Then, the ratio F col
+ (T)/F ind(T) is equal to

Ccol
+ (β)/Cind(β) which is represented for some values of n and s in figures 1(b) and 2(b).

In terms of the relative precision ΔT/T, where ΔT represents the standard deviation4 of the estimated
value of T, we have

ΔT

T
� ν−1/2

(
ΔT

T

)
min

:=
1√

νCcol
+ (T)/kB

(15)

where ν is the number of measurements used to realise one estimation of T. The above inequality can be
saturated for instance when choosing the maximum likelihood estimator. Importantly, for large sample’s
temperature kBT � �ω one obtains from (11) an Heisenberg scaling [11]: ΔT ∼ 1/n. Figure 3(a) presents
the plots of the minimal relative standard deviation

(
ΔT

T

)
min

for collective and independent coupling with
the sample, denoted respectively by Dcol

+ and Dind, in function of the sample’s temperature. Figure 3(b)
provides the ratio Dcol

+ /Dind of the minimal relative variances. We have the following asymptotic scaling for

large sample’s temperature Dcol
+ /Dind ∼

kBT��ω

√
(s + 1)/(ns + 1).

In particular, the temperature of the sample can be estimated with a higher precision thanks to collective
interaction as long as T > Tcr(n, s). To have an estimate of what would be the critical temperature we can
use experimental data from [3]. The energy splitting of the cesium quasispin is about �ω ∼ 2.4 × 10−30J. It
means that for an ensemble of n = 2 cesium atoms, collective interaction become advantageous for sample’s
temperature of the order or superior to Tcr(n = 2, s = 7/2) � 5.5 nK (the cesium quasispin is of dimension
s = 7/2), and increasing the precision by a factor up to 1.8. For larger ensembles of for instance n = 10, the
critical temperature is Tcr(n = 10, s = 7/2) � 12 nK and collective interactions can increasing the precision
by a factor 8. For the NV-centre spins used in [4, 5], the energy splitting is of the order of
�ω � 1.9 × 10−24J, implying that collective interactions become advantageous from
Tcr(n = 10, s = 1/2) � 0.22 K for an ensemble of n = 10 NV center spins, with precision increased by a
factor up to 4.

4 More precisely, each estimation, obtained after ν measurements, is a random variable whose distribution has a standard deviation
denoted by ΔT. The smaller is ΔT, the more precise is the estimation process.
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Figure 3. (a) Minimal relative standard deviations
(

ΔT
T

)
min

, denoted by Dcol
+ and Dind, in function of the sample’s temperature

�ωT and for ensembles containing n = 2 (orange curve), n = 5 (red curve), n = 10 (black curve), n = 100 (purple curve) spins
s = 1/2. The blue curve represents an ensemble of n = 100 spins s = 3/2. The solid curves correspond to collective interactions
with the sample when the spin ensemble is initialised in the symmetrical subspace. The dashed curves represent the precision
obtained through independent coupling with the sample. (b) Ratios of the minimal relative standard deviations Dcol

+ /Dind. The
color code is the same as in the panel (a). The vertical gray lines indicate the critical temperatures Tcr(n, s) as estimated by
equation (13). The horizontal dotted gray line indicates 1 as guide for the eyes. The dashed lines indicate the asymptotic
behaviours which follow the analytical value

√
(s + 1)/(ns + 1).

Finally, there are two interesting remarks to be made around the proof of equation (14). First, while the
maximum precision is given by the collective heat capacity Ccol(T), it is not equal to the variance of the
energy unlike thermal states. In fact, the collective heat capacity is in general strictly smaller than the energy
variance Δ2〈H〉. Secondly, the best measurement is not the energy measurement but a non-local
measurements corresponding to projections onto the collective states {|J, m〉i}J0�J�ns,−J�m�J,1�i�lJ . Since
such measurements sounds experimentally unrealistic, we should consider only the precision yielded by
local energy measurements. Fortunately, in the particular situation where the initial state of the spin
ensemble belongs to the symmetrical subspace, local energy measurements turn out to be optimal. The
conclusion of appendix A is that when considering the best case scenario—the spin ensemble initially in the
symmetrical subspace—the maximal precision of the temperature estimation can be reached by usual local
energy measurements and is given by the collective heat capacity.

4. Applications to quantum engines

4.1. Work per cycle near Carnot efficiency
In this section we consider a quantum engine operating according to the quantum Otto cycle [59, 60]. The
working medium is an ensemble of n spins of dimension s of Hamiltonian H(λt) = λt�ωJz, where λt is the
compression factor which varies continuously between λc and λh during the isentropic strokes. The two
isochoric strokes realised alternatively in contact with hot and cold baths bring the spin ensemble to the
usual thermal equilibrium state ρth(Tx,λx) = Z−1(Tx,λx)e−H(λx)/kBTx , with x = c, h and
Z(Tx,λx) = Tr e−H(λx)/kBTx if each spin interacts independently with the bath. However, if the spins interact
collectively with the successive bath, the isochoric strokes result in the steady state

ρss(Tx,λx) =
∑ns

J=J0

∑lJ
i=1 pJ,iρ

th
J,i(Tx,λx), where

ρth
J,i(Tx,λx) :=

J∑
m=−J

e−mλx�ω/kBTx

ZJ(Tx,λx)
|J, m〉i〈J, m|, (16)

7
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Figure 4. Plots of wcol
+ :=W col

+ /(Δηλ2
hΔβ) (solid curves) and wind :=W ind/(Δηλ2

hΔβ) (dashed curves) as a function of
kBTh/�ωλh for fixed Δη, λh, Δβ, and for ensembles containing n = 2 (orange curve), n = 5 (red curve), n = 10 (black curve),
n = 100 (purple curve) spins s = 1/2. The blue curves represent an ensemble of n = 100 spins s = 3/2.

with ZJ(Tx,λx) :=
∑J

m=−J e−mλx�ω/kBTx . Importantly, the weight pJ,i =
∑Ji

m=−J 〈J, m|ρ0|J, m〉i in each
eigenspace of total spin J is constant throughout the cycles [20] and is determined by ρ0, the state of the
spin ensemble before the engine is switched on.

Then, for an Otto cycle operating close to the Carnot efficiency, the extracted work per cycle is [24] (see
also a brief derivation in appendix D)

W = Δηλ2
h(βc − βh)

C(θh)

kBθ2
h

+O(Δη2) (17)

where, Δη = ηc − η = λc
λh

− βh
βc

is the difference between the Carnot efficiency ηc := 1 − βh
βc

and the actual
efficiency, θx :=λxβx and C(θh) denotes generically the collective or independent heat capacity depending
whether the spins interact collectively or independently with the baths.

The central question is what are the parameters yielding the largest output work and which of the
independent or collective spin machine gives the largest work per cycle? Considering the best case scenario
for the collective spin machine, meaning that ρ0 belongs to the symmetrical subspace, we have to compare
Wcol

+ :=Δηλ2
h(βc − βh) CJ=ns(θh)

kBθ
2
h

+O(Δη2) with W ind :=Δηλ2
h(βc − βh)n CJ=s(θh)

kBθ
2
h

+O(Δη2). We are

looking for the parameters maximising the output work at constant efficiency. Then, as expected, we find
that the larger Δβ := βc − βh, the larger the output work. Considering now Δβ fixed, we are left with two
parameters, λh and θh. Fixing firstly λh (one can verify that θh can be changed while keeping Δη, Δβ and
λh fixed), the best choice is taking βh to zero. This is because CJ(θ)/θ2 is monotonic decreasing (even
though CJ(θ) is not monotonic, see for instance figure 1). Since the maximum of CJ (θ)

θ2 is
�

2ω2

12 [(2J + 1)2 − 1], we obtain for all λh, Δη (to the first order), and Δβ,

W ind � W ind
max :=Δηλ2

hβc
�

2ω2

12
n[(2s + 1)2 − 1], (18)

and

Wcol
+ � Wcol

max :=Δηλ2
hβc

�
2ω2

12
[(2ns + 1)2 − 1]. (19)

Note that both maximal values are reached for �ωβh going to 0 and that Wcol
max =

sn+1
s+1 W ind

max. We recover the
asymptotic result of [20]. For intermediary value of �ωβh, the plots of
wcol

+ :=Wcol
+ /(Δηλ2

hΔβ) = Ccol
+ (θh)/kBθ

2
h and wind :=W ind/(Δηλ2

hΔβ) = Cind(θh)/kBθ
2
h are given in

figure 4 for ensembles of n = 2 to n = 100 spins.
Observation about reaching asymptotically the Carnot bound at finite power. In [24, 25] the authors show

that one could in principle reach asymptotically the Carnot bound while having a non-zero output power.
One possibility is for instance to use phase transitions where the heat capacity scales up super-linearly in the
number of atoms/subsystems in the working medium. Then, naturally, one could think that the collective
effects on heat capacity shown here could be also useful for such purposes. This is in fact not the case as we
explain in the following.

For finite value of �ωβh and for arbitrary n, the amplification is upper bounded by

Wcol � (�ω)2Δηλ2
h(βc − βh)

(
1/2

sinh �ωθh/2

)2
. In other words, if we consider βh �= 0 (as in realistic

conditions) and fixed, increasing the size of the working medium will increase the output power only until
it reaches the above saturation limit. Therefore, it cannot be helpful to reach asymptotically the Carnot
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Figure 5. (a) Plots of pcol
+ :=Pcol

+ τind/(Δηλ2
hΔβ) (solid curves) and pind :=P indτind/(Δηλ2

hΔβ) (dashed curves) as a function of
kBTh/�ωλh for fixed Δη, λh, Δβ = βc − βh, and for ensembles containing n = 2 (orange curve), n = 5 (red curve), n = 10
(black curve), n = 100 (purple curve) spins s = 1/2. The blue curves represent an ensemble of n = 100 spins s = 3/2. (b) Plots
in log–log scale of the ratio Pcol

+ /P ind with the same color code as in the panel (a). The horizontal dotted lines indicate the
asymptotic behaviours which follow the analytical value n(ns + 1)/(s + 1).

bound at finite power (where the idea is to take advantage of a super-linear scaling in the power per cycle to
increase slowly the efficiency).

The above observation emphasises a drawback. At finite Th, there is always a critical number ncr of spins
such that for spin ensembles larger than ncr the independent-spin engine performs better than the
collective-spin one. One can estimate the critical spin number from (13) and obtains

ncr(Th,λh, s) � 3(Th/�ωλh)2−1/4
s(s+1) . In the same spirit, for fixed bath temperatures, there is always a critical value

λh,cr of the compression factor above which the collective-spin engine become less performant than the
independent-spin engine. From (13) we have λh,cr(Th, n, s) � Th

√
12/

[
�ω

√
4ns(s + 1) + 1

]
. On the other

hand, the range of compression factors is always experimentally limited so that for finite n—since n is also
experimentally limited—the collective spin engine performs always better that the independent one as soon
as Th/λh � Tcr(n, s).

4.2. What about the output power?
The length time of each cycle is mainly determined by the thermalisation time—the isentropic strokes can
be made in principle on a timescale much smaller than the thermalisation time as long as one considers a
driving such that [H(t), H(t′)] = 0 for all t, t′, which we assumed here. The thermalisation time can be
estimated from the dynamics and can be very different between collective and independent bath coupling.
This phenomenon was indeed exploited in [16]. In appendix B we show that for spin ensembles initially in
a thermal state at inverse temperature β0 such that �ω|β0| � 1 the timescale to reach the steady state
through collective interactions is at least n times shorter than the equilibration timescale for independent
dissipation. Although stemming from collectively-enhanced dissipation rates as superradiance does, this
accelerated equilibration is a different phenomenon. In particular, it happens for any state in the
symmetrical subspace (J = ns) whereas superradiant states are limited to values of m close to zero. Thanks
to this accelerated equilibration, the timescale τ col of the cycles of the collective spin engine can set to be n
times shorter than τ ind, the timescale of the cycles of the independent spin engine. Then, with τ col = τ ind/n
the output power of the Otto machines are given by

P ind =
1

τind
Δηλ2

h(βc − βh)
nCs(θh)

kBθ2
h

+O(Δη2) (20)

9
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and

P col
+ =

n

τind
Δηλ2

h(βc − βh)
Cns(θh)

kBθ2
h

+O(Δη2). (21)

In particular we have
P col
+

P ind
∼

Th�λhTcr(n,s)
n

ns + 1

s + 1
. (22)

Note that due to the same issue of saturation commented above, collective effects still cannot be used to
reach asymptotically the Carnot efficiency at finite output power. However, we have now that at fixed Th,
when the size of the working medium is much larger than the critical size ncr(Th,λh, s), the output powers
of the two machines become equivalent (instead of W th/Wcol

+ ∼ n for the extracted work per cycle).
Therefore, in terms of output power, the collective Otto engine performs always better than or equal to the
independent Otto engine. To illustrate this important point, the plots of pcol

+ :=P col
+ τind/(Δηλ2

hΔβ),
pind :=P indτind/(Δηλ2

hΔβ) and P col
+ /P ind are shown in figure 5 for several size of the spin ensemble.

Finally, it is worth mentioning that the (n + 2)/3-fold power enhancement reported in continuous
machines using collective coupling with spins 1/2 [18] do not coincide with the above
n(ns + 1)/(s + 1)-fold enhancement. However, it coincides with the first enhancement mentioned above for
the extracted work per cycle. This emphasises that there are two different sources of enhancement in our
model. One coming from alterations of the steady state properties of the spin ensemble due to collective
coupling and bath-induced coherences [20, 38, 47], which appears in continuous engines [18, 19] in the
form of a kind of ‘steady-state’ superradiance [48]. The other source of enhancement comes from the fast
equilibration mentioned above, and is not present in continuous machines since they operate and remain in
steady state. Note that this manifest non-equivalence between cyclic and continuous engines is not in
contradiction with [49] since the setup considered here and in [18, 19] do not belong to the small action
regime used in [49] to derive the equivalence between cyclic and continuous engines.

5. Conclusion and final remarks

We show that collective coupling between spins and a thermal bath leads to a collective heat capacity which
takes very different values when compared to the independent heat capacity—when all spin interact
independently with the thermal bath. Beyond being a curiosity by itself, we show two applications. The first
one is related to quantum thermometry. We show that using a probe made of spins collectively coupled to
the sample can bring large precision enhancements at high temperature, which can be of interest in some
technological or bio-medicinal applications. In terms of spin number n contained in the ensemble, the
precision scales as ΔT ∼ 1/n, corresponding to the famous Heisenberg scaling. Interestingly, such
Heisenberg scaling is achieved with a probe initially prepared in a pure classical state (namely thermal states
at inverse temperature satisfying �ω|β0| � 1) whereas it usually requires initial states with genuine
quantum characteristics like squeezing [50, 51] or entanglement [52–54]. However, the price to pay is a
potentially complex experimental setup in order to realise collective interactions between the spins and the
sample, as commented in section 1. We also determine the critical temperature Tcr below which collective
couplings stop being beneficial.

In a second part of the paper, we apply the results on collective heat capacity to Otto engines using an
ensemble of n spins of dimension s as working medium and operating close to the Carnot efficiency. Our
results show that the output power of a collective spin engine (when the spins interact collectively with the
baths) is always larger than or equal to the output power of an independent spin engine (when the spins
interact independently with the baths). The enhancement is two-fold: a steady-state effect relying on
bath-induced coherences bringing a (ns + 1)/(s + 1)-fold enhancement and a fast equilibration bringing an
additional n-fold enhancement. Combining both, the largest enhancements happen at high hot bath
temperatures, reaching asymptotically levels of n(ns + 1)/(s + 1)-fold enhancements.

One can wonder if similar enhancements can happen in low-dissipative Carnot engines since the crucial
role of heat capacity in such engines was recently pointed out [25]. While one can show that the role of the
heat capacity remains prominent for an ensemble of spins interacting independently with the thermal baths,
it is not obvious that it can be extended to spins interacting collective with the baths. Indeed, the dynamics
of TrρJz does not follow a simple exponential decay so that a more complex treatment is needed [25],
involving numerical methods. Such complexity emphasises that although it is quite intuitive to see the heat
capacity playing a central role in thermal machines, for certain designs it is a highly non-trivial conclusion.
Still, it would be interesting to try to overcome these obstacles to investigate collective couplings in
low-dissipative Carnot engines as new phenomena might emerge.
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Finally, one could say that the performances of the best case scenario, when the initial state belongs to
the symmetrical subspace, can be reproduced by a larger single spin of dimension ns. Furthermore, one
could add that since the dissipative dynamics of a single spin does not involve generation of coherences or
quantum correlations, there is nothing genuinely quantum in the performances of the spin ensemble
collectively coupled to the sample or thermal bath. While it is true that the best-case scenario performances
of the spin ensemble reproduce the ones of a single spin of dimension ns, the comparison is a bit unfair
because the systems are not the same. Classical and quantum performances should be compared with the
same systems and the same resources. Beyond that, in any experimental implementations the size of the
number of spins are limited. If one wants to increase the performances beyond this classical limitation, one
can use collective bath couplings. Overall, our results advocate for increasing efforts towards experimental
realisations of collective couplings.
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Appendix A. Maximal precision from collective steady states

In this section we show that the maximal precision related to the temperature estimation when using
collective interaction with the sample are determined by the collective heat capacity Ccol(β). In order to
show that we have to compute the quantum Fisher information associated with the collective steady state,
ρss(β). The first issue is that there is no general explicit expression of the quantum Fisher information for
mixed states.

Before continuing we must introduce some concepts of quantum metrology. The quantum Fisher
information is defined as the maximum over all possible measurements—described by a POVM—of the
Fisher information [61]. The Fisher information represents the amount of information about the parameter
of interest contained in the output statistics of a given measurement. For instance, let us consider a
measurement described by the operators {E(m)}m forming a positive-operator-valued measure (POVM).
The probability distribution of the result m is given by

p(m|T) :=Tr ρss(T)E(m). (A.1)

The information about the temperature T that one can extract from the measurement outputs statistics is
the Fisher information

FE(m)(T) =
∑

m

1

p(m|T)

(
∂p(m|T)

∂T

)2

. (A.2)

The quantum Fisher information can be formally defined as F col(T) :=Max{E(m)} FE(m)(T). However, the
direct maximisation over all possible measurements is usually not tractable. One alternative involves
purifications in larger Hilbert spaces [50, 62]. An other alternative is to use the ‘symmetric logarithmic
derivative’ operator of ρss(β), implicitly defined by [55–57]

∂

∂T
ρss(β) =

1

2
LTρ

ss(β) +
1

2
ρss(β)LT , (A.3)

which has the interesting property of providing the quantum Fisher information through the relation

F col(T) = Tr ρss(β)L2
T . (A.4)

For thermal states one can easily verify that LT = (�ω)2

(kBT)2 (Jz − 〈Jz〉), which leads immediately that the
maximal precision is determined by the variance of the energy or equivalently by the heat capacity—for
thermal states. Beyond thermal states, it is in general very hard to find one symmetric logarithmic derivative
operator, and unfortunately this includes the case of collective steady states. Still, one can show that

∂

∂T
ρss(β) =

ns∑
J=J0

lJ∑
i=1

pJ,i

2

(
LT,Jρ

th
J,i(β) + ρth

J,i(β)LT,J

)
, (A.5)

with LT,J = k−1
B T−2[�ωJz − eJ(β)], which is not of the form (A.3) but instead a sum of symmetric
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logarithmic derivative operators acting on each eigenspace J. Thus, the relation (A.4) does not hold
automatically. Even though, using twice the Cauchy–Schwarz inequality one can show

F col(T) �
ns∑

J=J0

lJ∑
i=1

pJ,i Tr ρth
J,i(β)L2

β,J

= T−2
[

(�ωβ)2〈J2
z 〉ρss(β) − β2 e2

J (β)
]

� T−2(�ωβ)2Δ2Jz (A.6)

where e2
J (β) :=

∑ns
J=J0

∑lJ
i=1 pJ,i e2

J (β) and Δ2Jz :=
[
〈J2

z 〉ρss(β) − 〈Jz〉2
ρss(β)

]
.

Now that we have an upper bound, the next step is to show that there exists one measurement {E(x)}x

such that the associated Fisher information F{E(x)}(T) saturates the upper bound. Naturally, one can think
of energy measurements since it is the best measurement for thermal states [11]. The energy measurements

is described by the following POVM Πm :=
∑ns

J=|m|
∑lJ

i=1 |J, m〉i〈J, m|, with m ∈ [−ns; ns] denoting the
eigenvalues of the Hamiltonian HS = �ωJz of the spin ensemble. One can show that FΠm (t) does not reach
the upper bound (A.6).

There is indeed one measurement which can extract more information about T than the energy
measurement. This is the measurement described by ΠJ,m,i := |J, m〉i〈J, m|, which corresponds to the
projection onto the collective states |J, m〉i. One can show easily that

FΠJ ,m,i = T−2
[

(�ωβ)2〈J2
z 〉ρss(β) − β2e2

J (β)
]
. (A.7)

This allows us to conclude that the upper bound (A.6) is indeed an equality,

F col(T) = T−2
[

(�ωβ)2〈J2
z 〉ρss(β) − β2e2

J (β)
]
. (A.8)

Finally, one can also show that the collective heat capacity Ccol(β), defined in (6), can alternatively be

expressed as Ccol(β) = kB

[
(�ωβ)2〈J2

z 〉ρss(β) − β2e2
J (β)

]
, so that

F col(T) = kBβ
2Ccol(β), (A.9)

as announced in the main text.
One remark is in order. The optimal measurement yielding an information equal to the quantum Fisher

information is {ΠJ,m,i}J,m,i, which is a non-local measurements. Therefore, it is not really realistic to
consider that it is actually possible to experimentally saturates the quantum Fisher information and the
estimate the temperature’s sample at the corresponding precision. However, in the best case scenario where
the spin ensemble initially belongs to the symmetrical subspace, like in particular for thermal states at
extreme inverse temperature |β0| � 1/�ω, the energy measurement {Πn}m indeed yields an information
equal to the quantum Fisher information. Then, the precision announced in the main text equation (15) is
achievable experimentally, at least from the point of view of the measurements.

Appendix B. Collective dissipation timescale

In this section we show that, for initial state belonging to the symmetrical subspace, collective interaction
with the bath yields a dissipation timescale n times shorter than independent dissipation. We start from the
dynamics of the collective dissipation provided in equation (1). Assuming that the ensemble is initially in a
thermal state, it is initially diagonal and will remain diagonal in the collective basis {|J, m〉i}, J ∈ [J0; ns],
m ∈ [−J; J], i ∈ [1; lJ]. Therefore, the dynamics is given by the populations pJ,m,i := i〈J, m|ρ|J, m〉i only.
Using the relation [41]

J±|J, m〉i = �

√
( J ∓ m)( J ± m + 1)|J, m ± 1〉i, (B.1)

one obtains

ṗJ,m,i = G(ω)[( J − m)( J + m + 1)pJ,m+1,i − ( J + m)( J − m + 1)pJ,m,i]

+ G(−ω)[( J + m)( J − m + 1)pJ,m−1,i − ( J − m)( J + m + 1)pJ,m,i], (B.2)
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where G(ω) :=Γ(ω) + Γ∗(ω), and Γ(ω) is the ‘half Fourier transform’ of the bath correlation function
introduced in (1). By contrast, the dynamics of the independent dissipation follows

dρ

dt
= Γ(ω)

n∑
i

(
j−i ρj+i − j+i j−i ρ

)
+ Γ(−ω)

n∑
i

(
j+i ρj−i − j−i j+i ρ

)
+ h.c.. (B.3)

Again, since the ensemble is assumed to be initially in a thermal state, all coherences are and remain null
(this would not be true for collective dissipation, reason why the collective basis was used there). Then, the
independent dissipation is described by the populations only,

ṗm1,...,mn := 〈m1, . . . , mn|ρ̇|m1, . . . , mn〉

= G(ω)
n∑

i=1

[(s − mi)(s + mi + 1)pm1,...,mi+1,...,mn − (s + mi)(s − mi + 1)pm1,...,mi,...,mn ]

+ G(−ω)
n∑

i=1

[(s + mi)(s − mi + 1)pm1,...,mi−1,...,mn − (s − mi)(s + mi + 1)pm1,...,mi,...,mn ]. (B.4)

One can see that the non-zero coefficients appearing in (B.2), which determines the rate of each transition
and consequently the timescale of the dissipation, range from 2G(±ω)J to G(±ω)J(J + 1) for m ∈ [−J, J].
By contrast, the rates of transition in (B.4) range from 2G(±ω)s to G(±ω)s(s + 1). One recovers in
particular that the equilibration timescale (for independent dissipation) is of the order G(ω)−1 ∼ (g2τc)−1,
where τ c is the bath correlation time. Since J can take value from 0 or 1/2 to ns, the timescale to reach the
steady state is in general of the same order or even larger for collective dissipation than for independent
dissipation. However, for a thermal state at initial inverse temperature �ω|β0| � 1 (or more generally
belonging to the symmetrical subspace), all components of J < ns are null implying that all transition rates
involved in the collective dissipation are at least n times larger than the transition rates of the independent
dissipation. Then, for initial states such that �ω|β0| � 1 the collective dissipation happens on a timescale at
least n times faster than the independent dissipation. Note that this interesting result shares some
similarities with superradiance [48]. Indeed, both phenomena rely on the collective damping rates
appearing in (B.2), larger than the independent damping rates of (B.4) for states confined to the
symmetrical subspace (J = ns). However, superradiance is an increase of the rate of energy change whereas
this ‘super-equilibration’ is purely about the dynamics of the spin ensemble’s state itself. Note also that
superradiance appears for states |J = ns, m〉i with m close the zero while the accelerated equilibration occurs
for any states in the symmetrical subspace. As a consequence of this accelerated equilibration, the timescale
τ col of one cycle of the collective Otto machine can be reduced by a factor n compared to the timescale τ ind

of the independent Otto machine.

Appendix C. Note on the stability of the collective steady state

For very small imperfections like tiny spin-spin interactions or inhomogeneities and disorder altering the
local energy levels of each spin, both tending to break down the spin exchange symmetry (or equivalently,
the spin indistinguishability), it was shown in [20] that the steady state (3) was still reached as long as
δ 
 g2τ c, where δ stands for the order of magnitude of the energy involved in the imperfections, g is the
coupling strength with the bath, and τ c is the bath correlation time. Furthermore, in the applications to
thermometry and engines we are mostly interested in initial states such that pJ=ns � 1 for which the
equilibration time is of the order of (ng2τc)−1 (see appendix B). Therefore, for such initial states, the
condition on the magnitude of the imperfections is relaxed to δ 
 ng2τ c.

Appendix D. Work per cycle for Otto engine operating near the Carnot bound

In this section we detail briefly the derivation of the expression of the output work per cycle. During the
isochoric stroke in contact with the hot bath, the spin ensemble is brought to the state ρ1 := ρss(Th,λh).
The next stroke is isentropic, preserving the state of the spin ensemble while realising the relaxation
λh → λc. Then, follows the second isochoric stroke, taking the spin ensemble to ρ2 := ρss(Tc,λc). The last
isentropic stroke is a compression λc → λh, closing the cycle. Note that, as mentioned in the main text, the
initial weights pJ,i are preserved throughout the cycles and have a crucial impact on the properties and
performances of the engine. The work Wcol extracted per cycle by the engine is the sum of the work realised
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during the two isentropic strokes,

Wcol = Tr ρ1[H(λc) − H(λh)] + Tr ρ2[H(λh) − H(λc)]

= �ω(λc − λh)Tr Jz[ρss(Th,λh) − ρss(Tc,λc)]

= (λc − λh)[Ess(θh) − Ess(θc)], (D.1)

where θx :=λxβx, for x = h, c. Note that the only way of having work extraction (Wcol < 0) is with
compression factors satisfying the condition 1 < λh

λc
< βc

βh
. The work extraction efficiency is defined as

η := − Wcol

Qh
, where Qh = TrH(λh)[ρss(Th,λh) − ρss(Tc,λc)] is the heat transferred from the hot bath to the

spin ensemble. One recovers the usual expression for the efficiency, η = 1 − λc
λh

, and the difference with the

Carnot efficiency ηc = 1 − βh
βc

is Δη = λc
λh

− βh
βc

. One can rewrite the output work in terms of Δη to obtain

Wcol = λh(Δη +
βh

βc
− 1)[Ess(θh) − Ess(θh + λhβcΔη)]. (D.2)

Taking the limit of near Carnot efficiency, Δη → 0, the output work takes the form

Wcol = −Δηλ2
h(βc − βh)

Ccol(θh)

kBθ2
h

+O(Δη2). (D.3)

One can repeat the same reasoning with the alternative situation where each spin interacts
independently with the baths. One obtains the expression found in [24]

W ind = −Δηλ2
h(βc − βh)

Cind(θh)

kBθ2
h

+O(Δη2). (D.4)

These are the expressions used in the main text. Note that in the main text we consider implicitly the
absolute value of the extracted work so that the front minus sign is dropped in the above expressions.
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