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ABSTRACT This paper proposes a joint demand response and energy trading for electric vehicles in an
off-grid system. We consider isolated microgrid in a region where, at a given time, some renewable energy
generators have superflous energy for sale or to keep in storage facilities, whereas some electric vehicles
wish to buy additional energy to meet their deficiency. In our system model, broker lead the market by
determining the optimal transaction price by considering a trade-off between commission revenue and power
reliability. Buyers and sellers follow the broker’s decision by independently submitting a transaction price to
the broker. Correspondingly transaction energy is allocated to the buyers in the proportion to their payment,
whereas the revenue is allocated to the sellers in proportion to their sales. We investigated the economic
benefits of such a joint demand response and energy trading by analyzing its hierarchical decision-making
scheme as a single-leader-heterogeneous multi-follower Stackelberg game. With demonstrating an existence
of a unique Stackelberg equilibrium, we show that the transaction price in the proposed market model is up
to 25.8% cheaper than the existing power market. In addition, we compare the power reliability results with

other algorithm to show the suitability of proposed algorithm in the isolated microgrid environment.

INDEX TERMS Smart grid, electricity market, Electric vehicle, Stackelberg game, Off-grid system

. INTRODUCTION

UE to the energy efficiency improvement of renewable

energy sources achieved using modern communication
technologies and battery systems, electric vehicles (EVs)
that are powered via fast charging devices or off-vehicle
sources are envisioned as the next-generation transportation
paradigm [1], [2]. Because of the EVs’ environmental bene-
fits, such a paradigm shift has been rapidly realized due to the
increasing environmental concerns regarding the emissions
generated by the conventional gasoline-powered transport
sector [3]. Nevertheless, the inconspicuous proliferation of
EVs may change the energy consumption pattern in existing
power systems and increase peak demand. Accordingly, the
necessity of additional charging facilities as well as energy
generation for stable energy supplement to EVs should be
emphasized [4].

This new paradigm in the transportation system faces
technical issues with regard to efficient charging demand
management of EVs. It is more challenging in off-grid sys-
tems for isolated regions (e.g., island region, isolated local
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area) , which are physically isolated power system in which
additional energy supply from the maingrid is limited and
satisfy the requirement of energy consumption according to
distributed generators installed in the region [5], [6].

In an off-grid system (also called a microgrid without sup-
port from the maingrid), there are various forms of demand
and supply problems in the literature that aim to optimize the
operation of diesel generators or energy storage as backup
energy supplements [7]. More recently, due to the high costs
associated with the operation of such a backup system, a
deregulated market-based approach that considers the de-
mand of EVs known as energy trading in EVs is considered
as a promising cost-effect maneuver [8]-[10]. In [8]-[10],
the authors proposed an auction method to manage energy
supplement in a region. However, the auction is a method of
inducing power transaction through voluntary price competi-
tion of market participants. As a result, auction based trading
models cause unstable power supplement problem in the case
that power supply is limited environment such as an isolated
microgrid.
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In order to solve this problem, some papers have proposed
the control of EV power purchase decision using demand
response (DR) market [11]-[13]. In general, the proposed DR
markets reduce power consumption of consumers based on
an incentive that determined by the system operator. How-
ever, the DR method has a limiting factor in that it cannot
induce power consumption reduction beyond a consumer’s
purpose. In other words, if the inconvenience caused by
reducing the actual power consumption is greater than the
incentive that the consumer receives, the consumer does not
proceed to participate DR market. Specifically, in the case of
an off-grid system, it is hard to meet the power stability just
applying the DR market. Therefore the control of overall de-
mand from EVs while conducting energy trading is inevitable
to increase the probability of stabilizing the power system.
Accordingly, the joint demand response and energy trading
of EVs should be considered in the design of more reliable
energy trading market behavior among these vehicles in an
off-grid system.

In this regard, this paper proposes a joint demand response
and energy trading market model for EVs in an off-grid
system. The proposed model simultaneously optimizes peer
to peer energy trading and DR market to balance the en-
ergy demand and supply in the off-grid system. Under the
optimized transaction price, EV charging facilities optimally
determine the amount of energy to buy from the market
while directly controlling the charging demands through the
demand response of EVs.

The remainder of this report is divided into multiple
sections. Section II summarizes the results of previous re-
searches on energy supply in an off-grid system and EV
charging facilities. In Section III, we describe the proposed
EV market model and provide the details of energy manage-
ment in the system. In Section IV, we suggest an approach for
operating a market using heterogeneous Stackelberg game
theory. Numerical results are presented in Section V. Finally,
the main conclusions are summarized in Section VI.

Il. RELATED WORK

Currently, EVs consume a large portion of energy in the sys-
tem. They are advantageous in terms of environmental friend-
liness, low noise production, and the capability to manage
their power reliability in the system. However, there are prob-
lems associated with EV use such as the energy consumption
is unstable and difficult to predict [14]. Given that EVs are
sensitive to the operational decisions of their owners, it is
difficult to accurately predict energy consumption. Therefore,
additional facilities such as storage or the installation of
auxiliary generators are required to manage energy supply
in the system [15]. However, the construction of additional
facilities requires monetary consideration and can be time-
consuming [16]. Therefore, in most practical cases, various
approaches to control energy transaction depending on price
have been studied. The most well-known approach to control
energy supply is the dynamic pricing mechanism [17], which
focuses on the determination of a transaction price to stabilize
energy supply [9], [18]-[20]. Wei Yuan et al, [18] proposed
a charging control method for EVs based on the location of
facilities and the charging rate by combining Hotelling and
Stackelberg game theory. Peer to peer direct energy trading
among EVs has been proposed by Jiawen Kang et al [9] to
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satisfy the energy supply and demand of EVs according to
energy transaction required to maximize the profit of an indi-
vidual participant. The game-theoretic energy consumption
scheduling framework presented by Ziming Zhu et al, [19]
regulates the energy consumption of an individual consumer
according to price adjustment from local system operators.
Based on this approach, the authors proposed a method to
reduce the reliance on existing power systems and satisfy
energy supply from the region. The work of Sung-Guk Yoon
et al [20] suggests a model for at-home EV charging using
Stackelberg game to control the energy consumption of EVs.
Their approach involved the mathematical formulation of the
profit of energy retailers and the total charge of consumers
to simultaneously consider both sides of the utility structure
of users. Nevertheless, none of the previous works considers
the characteristics of an off-grid system when additional
energy supply from the maingrid is limited. In addition,
there is insufficient consideration of the situation whereby
the total energy supply from a generator is less than the total
consumption. These characteristics should be considered to
design more practical market models for off-grid systems to
manage the energy supply of EVs.

In the case of an off-grid system in which it is difficult
to stabilize the system based on the energy supply facili-
ties, a method of controlling the energy consumption via
the DR market can be applied. Several studies have been
conducted to stabilize the power system by controlling the
energy required and the charging time period. Shao et al,
[11] proposed a power stabilization scheme based on the
DR signal that considered the analysis of energy supply in
the region and energy consumption of each element (e.g.,
heating, ventilation, & air conditioning, water heater, EV).
The study accounts for the energy supply in the region and
various energy consumption resources. However, there is
limited analysis of characteristics of EV such as time con-
straint, or battery limitation. Shafie et al derive two different
DR market models [12] including incentive-based DR market
and price-based DR market. In their publication, the authors
considered the battery characteristics and the uncertainty of
EV operation to deduce practical results. In the work by Pal
et al [13], a method is proposed for the trade energy between
aneighborhood based on the load required by considering the
fixed energy transaction charge. They considered the energy
balance in own facility and derive an appropriate strategy for
the individual user according to individual profit. However, in
these conventional studies, there is insufficient consideration
given to the power reliability of the system and the applica-
bility of the charging facility in a real system. In addition,
to apply the DR mechanism, it is necessary to consider the
user’s dissatisfaction factor according to the charging time
and the delay in the facility. In addition, this report addresses
the issue that there are no published works that consider
the consumer’s perspective with respect to simultaneously
maximizing the total profit via energy transmission and a
reduction of the participating DR market.

In summary, main contributions of this investigation are
summarized as follows:

o Unlike the existing EV energy trading researches [8]—
[13] that deal only with either energy trading or demand
reduction, we propose a way to deal with both consider-
ations simultaneously by determining proper transaction
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price.

o Based on the proposed approach, a broker manages
energy trading in the off-grid system by determining the
transaction price required to maintain a balance between
energy demand and supply with the consideration of
each participant’s profit simultaneously.

« Specifically, the broker also receives a part of transac-
tion price during the market management process as a
market commission. Therefore, the profit structure of
broker, which was not covered in previous researches,
was also reflected as an important factor in determining
the transaction price in the paper.

« For a given transaction price, the EV charging facility
determines the amount of energy to buy from the market
while directly controlling charging demands via the de-
mand response of the EVs. In this case, the penalty costs
associated with a reduction of the charging demands
via the demand response are considered in the buyers’
utility function [21]

« In the case of sellers that used to conduct power trans-
actions, we considered the case that various strategies
were conducted due to the energy storage system and
renewable generator. Sellers can maximize their profit
by selling or storing power generated from renewable
generator, considering the amount of power stored in the
energy storage device and the expected market price in
the future time period. In the paper, we mathematically
modeled whole of the factors to maximize individual
seller’s profit.

o The proposed EV energy trading system is formulated
as a Stackelberg game model in which the broker is
considered as a leader, and both sellers and buyers are
considered as heterogeneous followers. This report re-
veals the existence of a unique Stackelberg equilibrium
(SE) which derive the maximizing the profit of each
market participant and stability of the power supply in
the system.

lll. SYSTEM MODEL
In this report, we consider multiple EV charging facilities
that are deployed in an off-grid system as illustrated in Fig.
1. Each facility participates in the market as a buyer and
determines the energy that is necessary to meet charging
demands of EVs. In this case, the charging demands due to an
EV cluster at each EV charging facility are determined based
on the coverage of the EV charging facilities. In addition,
buyers will determine the purchase amount and voluntary
reductions depending on the DR incentive and transaction
price that announced by broker in the market. Sellers are
players who own renewable generators and energy storage
that determine the transaction energy quantity to sell by
considering a market prce, which is decided by the broker.
In the proposed system, the broker is an independent system
operator (e.g., California ISO) that determines the market
price based on the power reliability and it’s profit from
commission. Since sellers and buyers conduct transactions
based on broker’s decision, which is useful for deriving
optimal strategies based on hierarchical analysis. Therefore,
we analyzed the framework through the Stackelberg game
[22]-[24].

As shown in Fig 1, we would like to analyze each market
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TABLE 1: Summary of major symbols

[ Symbol [ Definition
N Number of charging facilities participate in market
as buyers
z Set of buyers in the market
1 Number of buyers, i.e., 2 =1,2,....N
M Number of renewable generators participate in market
as sellers
T Set of time that the market is held
t Time index that market held, i.e., t = 1,2,....T
J Set of sellers in the market
i Number of sellers, i.e., j = 1,2,....M
Number of electric vehicles attempting to charge .
R; o 7
at facility
L; Set of EVs in charging facility ¢
r Number of electric vehicles, i.e., r = 1,2,...,R;
SOC;.. () Sta.te of charge of electric vehicle 7 in charging facility ¢
' at time t
al Weight factors to determine dissatisfaction cost
w Transaction fee for the profits of market participants
tr gain by proceeding in the market
Vsell,j () Seller j5’s weight for amount of energy sold at time t
Vouy,i(t Buyer ¢’s weight for amount of energy bought at time t
Discomfort cost for buyer ¢ who want to reduce
Pa,it) their buying quantity voluntarily at time ¢
Pgrid(t) Power purchase price from maingrid at time ¢
p(¢) Transaction price in the market at time ¢
Pdr Demand response incentive according to event signal
E;(t) Seller j’s selling amount of energy
E;(t) Buyer #’s buying amount of energy
A(t) Av;rage arrival rate EVs per unit length of boundary
at time ¢
FEey Average energy necessity of EVs
d Average moving distance of EVs
n Energy efficiency of EVs
A; Coverage of EV charging facility ¢

participant’s strategy and result according to the give market
price in a specific time period. Therefore, we denote 7 as set
of time that the market is held. Therefore, we set ¢t € T in
the equations. In the market, the broker determines a trans-
action price p(t) to maximize profit considering the market
commission wy, (widely used in the practical market. see,
e.g., [25]-[27]) and the DR incentive pg,- while maintaining
a balance between the energy demand and the supply in the
off-grid system. As a set of market participants, we define Z
and J as the set of buyers and sellers, respectively. For each
i € T, we denote L; as the set of EVs in the charging facility
1. Since in the actual power system, it is impossible to reflect
whole of the characteristics of individual EVs with different
purpose, we set the charging facility as an aggregator trading
the energy in the market with considering the average char-
acteristics of the EVs. In addition, the number of EVs in the
charging facility ¢ is denoted as |£;| = R;. Foreachi € 7
and each r» € £;, we denote a ratio of residual energy from
EV r’s in the charging facility i as SOC; () throughout
this report. In addition, for each i € Z, we define E;(t) as
the average charging demand required at the EV charging
facility ¢. Let 5y, ;(t) be the portion of E;(t) that the buyer
i decides to buy from the market where the range of 4, ; ()
is [0, 1]. In this case, by considering the cost associated with
the control of the EV’s charging demand via DR, the buyer
determines the amount of energy to buy from the market, i.e.,
Vouy,i (£)Ei(t). In the case of a seller, we define E;(¢) as the
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FIGURE 1: Suggested energy trading among off-grid system.

amount of energy generated by seller j € J. Let vy ;(¢)
be the proportion of E;(t) that the seller j decides to sell in
the market where the range of the value is [0, 1]. Therefore,
E;(t)¥seu,j(t) has the implicit meaning of the amount of
energy to sell to the market.

A. ENERGY REQUIREMENT OF CHARGING FACILITIES

To focus on the main contribution of this paper, we consider
homogeneous EV cases, i.e., each EV travels the same con-
stant average driving distance d with efficiency 7 (distance
per kWh). The average amount of electricity required for
each EV can then be given as:

Eev = g (1)
n

As in [18], it is assumed that the number of EVs, which
are parked in the facilities, is determined by the coverage of
the EV charging facilities. Correspondingly, the coverage of
the EV charging facility (buyer) ¢ € Z is denoted as A; and
the average number of EV inflows to the charging facility
per unit area at time ¢ is given by A. The average charging
demand required at the EV charging facility (buyer) F;(t) is
then given as:

Ei (t) = Ai)\(t)Eev- (2)

B. UTILITY FUNCTION OF THE BUYERS

As previously indicated, each EV charging facility plays the
role of a buyer in the market. In the limited power envi-
ronment where additional power supply from the maingrid
restricted, the buyer’s strategy is to trade power directly from
other utilities or reduce their own power supply. Therefore,
the buyer determines the transaction quantity Ypuy ; (t)E;(t)
by determining the optimal value of 74, (t) under the
given p(t), wy, and pg, to maximize its own utility. Our
design of the utility function for buyer ¢, ¢« € Z, considers
three terms. The first term represents the quantification of
the satisfaction of buyer ¢ that is achieved from buying
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energy E;(t)Ypuy.i(t)in the market instead of the maingrid.
The second term represents the incentives received from the
broker by achieving demand reduction (1 — puy,i(t))E; (%)
via DR. The last term represents the cost of the dissatisfaction
associated with the EV clusters via demand reduction using
DR.

In this context, as in [21], we model this cost as a quadratic
function of the amount of reduced energy per EV, which can
be simpliﬁed as (M)
pai(t) = R ZT 1 alm by considering an average
ratio of the residual energy of the EVs where « is the weight
factor to consider the state of the EV user of the charge value
into the dissatisfaction cost. In addition to this EV case, such
a quadratic model has been widely used in other fields [28]—
[30]. Correspondingly, for each ¢ € Z, the utility function of
the buyer ¢ is defined as follows:

Specifically, we define

Uy (Youy.i (1), p(t)) = i(1)Vbuy.i (1)

(1 + Wtr) z(t)lybuy 7,( )

— Youy,i(D) Ei?) 3)
_pd,i(t)(( Vbuzgl(t)) l( ))

where py ;(t) > 0 is the weighting factor of the penalty costs
at the charging facility.

pgmd(t)
—p(t) x

+ pdr(l

C. UTILITY FUNCTION OF THE SELLERS
For each j € J, we consider the following utility function:

Usell(’Ysell,j (t),p(t)) = p(t)(]. - wtr)Ej (t)’}/sell,j (t) “)
+In(1 + (1 = ysen 5 (1) E;(1))

to quantify the total revenue from the energy sales
E;(t)Vseu ;(t) to the market and the logarithm based sat-
isfaction derived by the seller j from the stored energy
(1 — vseur,;(t))E;(t) as in [23]. Correspondingly, the pro-
posed utility function designed in this way aims to achieve
a balance between energy sales and the satisfaction derived
from storing the energy given that the two terms conflict with
each other. In the equation (4), according to a given transac-
tion price p(t), sellers determine the vsey; ;(t) to maximize
their own utility by considering the market commission wy,..

D. UTILITY FUNCTION OF THE BROKER

In the proposed market model, the broker has an important
role in maintaining the balance between energy demand
and supply in the off-grid system by determining a suitable
transaction price p(t). In this context, the broker is motivated
to maximize the revenue from the market commission wy,
by promoting energy trading between sellers and buyers.
To model this perspective, the proposed utility considers
two terms. The first term and the second term represent the
market commission from sellers and buyers, respectively.
Accordingly, the utility function of the broker is defined as
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follows:
M
Ubro(p(t), Yien,wjem) = wirp(t) Z’Yseu,j (t)E;(t) (5)
j=1
+ wiep() Y Vouy.i (8 Ei(t).
i=1

where pmin(t) < p(t) < pg'rid(t), pmin(t) and pg'r'id(t)
are boundary conditions according to the practical energy
cost in the EV charging facility. According to the boundary
condition, the transaction price in the off-grid system should
be lower than buying from the maingrid, otherwise, there is
no motivation to buy energy from the sellers.

In order to consider the power reliability in the power
system from the viewpoint of active power, we provide the
following constraint that the power supply in the isolated
microgrid is larger than the total power demand which are
determined by the optimal price p(t).

rel Z Vsellg Z 'ybuy, >0

(6)

IV. GAME-THEORETIC ANALYSIS

The management of energy trading among the distributed
generation companies and EV facilities via a broker over a
particular time interval can be considered as a hierarchical
non-cooperative decision problem that can be analyzed as a
single leader multi-follower Stackelberg game.

A. PRELIMINARIES

Stackelberg game is a representative non-cooperative game
model in which the participants have different utilities and are
classified into leaders and followers according to their inter-
est. In the original work of H. von Stackelberg, he suggested
a market with a duopoly situation in which only two firms
are present. In the case of his proposed approach, a small
firm (follower) observes the decision of a large firm (leader)
and chooses a quantity. Such a leader and follower game
model can be found in existing power systems. In particular,
the expansion of the distributed generation of resources and
various competitive energy markets have led researchers to
use the leader-followers game model [23], [24], [31]. In gen-
eral, Stackelberg game assumes that each market participant
has the intention of achieving maximum profit with selfish
behavior. In addition, for EV energy trading market models,
there are few studies on the modeling of non-cooperative
markets using Stackelberg game theory [18], [24]

In our problem, we consider that the broker assumes the
role of leader, and sellers and buyers in the market assume the
role of followers. Given that sellers and buyers have different
purposes in terms of participating in the market, they choose
their transaction quantity independently depending on their
own strategy. In particular, buyers and sellers submit their
Vouy,i(t) and Ypuy (), respectively, which aims to maximize
each utility function Uy, and U, defined in (4), and (3).
In the broker’s game, the broker develops a strategy p(t) de-
pending on the decisions of buyers and sellers. Consequently,
to solve for the Stackelberg equilibrium in our problem, we
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use a backward induction technique. To apply the method,
we first find the best response of sellers and buyers from the
follower-level game, then we apply the value to the utility
function of the broker and optimize it correspondingly.

B. NON-COOPERATIVE GAME OF FOLLOWER - CASE
OF SELLERS

Definition 1: The best response function B ;(p) of seller j
as a follower is the best strategy for seller j given the leader’s
strategy p. By definition, we have:

Bgen,j(p) = argmax Useri (Vseu, (1), P) @)

Ysett,j(t)
Definition 2: The optimal best response of the sellers is de-

rived according to the optimal strategies w™* with the property
given by the leader’s strategy p. Therefore, we have:

w; = Biseul,j (P") VjeM ®
Lemma 1I: The utility of seller j is strictly concave, which

could be used to derive the global optimal value. Proof: :
Given equation (4), we have

Useul (Vsell,j (t)’ p) = p(t)(l - th)Ej (t)’Ysell,j (t) ©
+1n(1 + (1 — vsenr,; (1)) E;(t)). (10)

Taking the first and second derivatives of F'(yseu,;(t), p)
with respect to vsey,;(t), we have

aljs»zll (’)/sell,j (t)a p)

a'ysell,j (t) = (1 - wtr)p(t)E] (t) (11)
E;(t)
_ 12
0,050
62Usell(7361l,j (t), p) _ Ej2
8’Vsell,j (t)2 (1 + (]‘ - ’YSell,j (t))EJ (t))(213)

Given that 7. ;(t) has a value between 0 and 1, the right
side of equation (13) always has a value less than 0. There-
fore, the utility function of the seller j is strictly concave on
Vsell,; (t). After proving that Useyi (vsen,;(t), P) is concave,
we solve the problem as follows:

1) Derive the maximum value using the first derivative.
2) Check the maximum value is within constraints

Based on equation (11), the best response function of seller j
could be derived by setting the right hand-side of the equation
as equal to zero.

(= OB = T =© 09
1 1

. * —
senj(t) =1+ Ei(t) (1 —wu)p(t)E;(t)
In equation (14), we could derive the optimal value of
Yieu ;(t). Given that the value of 77, ;(¢) should be located
between 0 and 1, we must ensure that tl?le optimal transaction
quantity sat1sﬁes the constraint.

Value comparison: In the case of equation (4), we have
confirmed that the function is concave and that it assumes a
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certain optimal value based on the derivative process. In ad-
dition, we need to show that 7, . (t) satisfies the constraint
that 0 < 75, ;(t) < 1, given that there is the restriction that
sellers cannot sell more energy than they have, or purchase
energy from the market. Therefore, we could check that w7
satisfies the constraints in the equation. ‘
0<Afy () =14 — ! <1
=7 ] = - =
settd Ej(t) (1 —wy)p(t)E;(t) s,

In equation (15), given that 0 < wy,. < 1 and p(t) are
normalized values between 0 and 1, it can be determined that
Viel,;(t) has a lower value compared with 1. In addition,
the minimum transaction price required to satisfy a given
condition can be derived as follows

’Vsell,j (t) =1 + E] (t) (1 — (Uty-)p(t)E] (t) (16)
1 1
“Eu YT T
1
B R (e L
1

Sop(t) =
V2 T )
From the equation (16), p(t) should be greater than or equal
to m, otherwise, sellers are not willing to sell
their energy to the market. Hence, even though the theoretical
lower bound of p(t) can be 0, it should be updated as (16).

C. NON-COOPERATIVE GAME OF FOLLOWER - CASE
OF BUYERS

Definition 3: In the case of buyers, depending on the best
response function By, ;(p) of buyer i, it is possible to
derive an optimal strategy s,y (t) according to the leader’s
strategy p. Under this condition, we have

Bbuy,i (p) = argmax Ubuy (’Ybuy,i (t>7 P) (17)
Vouy,i(t)

Definition 4: As discussed in the preceding section, the

best responses of buyers are derived as optimal strategies
~ derived by the leader’s strategy p. In this case, we have
optimal value as follows:

Vouy,i = Bouy,i(P*)  Vi€EN (18)
Lemma 2: The utility function of Upyy (Ypuy,i (t), p) is strictly
concave on Ypyy ; (t). In this case, we could prove the concav-
ity of the function and could determine the optimal value as
mentioned in Section IV-B.

Proof: : In equation (3), we could take the first and second
derivatives of Upyy (Vouy,i (1), P)-

6

6Ubuy<7buy,i(t)vp) _ (pgrid(t) —p(t) x (1+ wtr))Ei(t)

67buy,i(t)
(19)
Ei(t), Ei(t
+ 2900(0)((1 = () ) Z
— parEi(t)
aQUbuy(’Ybuy,i(t%p) _ ) El(t)Q
Doy s(1)? = _2pd,z(t)7R$ (20)

In the equation (20), regardless of the value of Ypyy,i (%),
we can ensure that the second derivative term is always
less than zero, i.e., the utility function of the buyer ¢ is
strictly concave for Ypyy,s (t). Therefore, according to the first
derivative in equation (19), we could determine the optimal
value of 73, ;(t) as follow:

(pgrid(t) —p(t) X (1 + Wtr))Ei(t) _ApdTEA‘iA(t) 2D
+2pa,i(t) (1 - vbuyﬁi(t))E;é(f) ) ET“) =0
’Y; (t) =1 + pgrid(t) _p(t) X (il- + wt'r) — Pdr R2

2pd7i(t)Ei(t)
As can be seen in equation (21), we could determine the
optimal value of ~;,, ;(?). Given that we restrict the buyers’
reverse power flow in the system, we have to check that
Vouy,i(t) is located between 0 and 1.
Value comparison: Considering the prevention of reverse
power flow of a buyer in the system, we could set the

constraint of the bidding quantity of buyer ¢
0 < Yuyat) < 1. 22)

Given that v;,,, ,(t) is a dependent variable of p(t), equation
(22) could be expressed using the variable p(t) as

< pg'r'id(t)_p(l"':wtr)_pdr 2«
L N OO

In equation (23), the sides of the equation are developed
using variable p(t) and it is possible to induce the following:

(23)

ﬁ(pgm’d(t) — par) < p(t) (24)
p(t) < 15 (Zpd’ig;)%Ei(t) + Pgria(t) —par)  (25)

As shown in equation (24) and (25), p(t) should satisfy cer-
tain constraints. Specifically, equation (24) can be an lower-
bound value of p(t) to encourage buyers to participate in the
market.

D. NON-COOPERATIVE GAME OF LEADER- CASE OF
BROKER

By replacing 7;,,,, ; and 77, ;(t) into equation (5) and (6),
we can reconstruct an equation of the broker’s utility as
follows:
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Problem 1:
max werp(t (Z Vaeu,; (t +Zmy (1) Ei(£)(26)
M
s.1. Z 7:ell,j Z rYbuy i > C(27)
j=1 i=1
1
<p(t (29
G—wn(+ E@) ="
1
PR T4 t) — T S t 30
1+wtr(pgd() par) < p(t) (30)
1 2pa,; () Ei(t)
p(t) S 1+th( d R? +pgrid(t) _pd’l‘I31)

Equation (27) refers to power reliability in isolated microgrid
system which mentioned in III-D. Also, equation (28) is a
boundary condition of the normalized transaction price p(t)
mentioned in Section III. In addition, equation (29)-(31) are
constraints of p(t) acquired from previous sub-sections.

In equation (26), given that w; and v, are dependent
variables of the transaction price p(t), we could reformulate
the equation using the formula for p(t). Therefore, the utility
function of the broker could be reformulated as

M
Ubro = wirp(t)(Y_ (1) + M ~ ) (32)

(1 — wer)p(t)

+ OJtrp pdr R

+ Z pgm 2

i—1 2pdz

N
= 1+ wtr)p(t) R2)
Py 2pa,i(t) ’
In the equation (32), given that there are too many fixed
constraint values, we set k(t) = va 1 2pf @y for ease of

understanding. The problem in equation (26)-(28) is a convex
optimization because it satisfies the standard form of the
convex optimization problem as follows:

uMz

1) The object function in equation (26) is convex
2) Inequality constraints of broker are linear or convex form
Given that the equation in Problem 1 is formed using the

variable p(t), we could derive the optimal transaction price
p*(t) according to the first derivative equation (33).

aU 0
b = Wtr Z E + Wt'r’M + Wtrk( )(pgrid(t) - pd'r‘)
(33)
+ Wer Z Ei(t) = 2wir (1 + wyr ) kp(t)
82Ubv"o
B 20w (1 + wir )k (34)

The second derivative equation (34) is less than 0 for
variable p(t) which shows that the objective function of the
broker satisfies the constraint of concavity. Therefore, we
could determine the optimal transaction price p* based on
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the first derivative equation (33).

U, M
bro = Wp Z Ej (t) + thM + wt?“k(t)(pgrid(t) _ pdr)
ap(t) =
(35)
+waE — 2 (1 4+ wi ) kp(t) = 0
. *(t) — Zj:l Ej (t) + M + Zi:l EAl(t) (pgrid(t) _ pdr)R,?
LD 2(1 + wer ) k(L) 2(1 + wir)

Based on the equation (35), we could determine the optimal
transaction price that maximizes the broker’s profit in a
given environment. By substituting the result value for the
constraints in equation (27) - (31) by variable p*(t), we could
determine the Stackelberg equilibrium whereby the strategy
of leader and followers converges with the consideration
of power reliability. Therefore, we could convert variable
Vi ;(t) and 3, ;(t) in equation (27) in terms of p*(t)
wh1c171 derlved in equation (14) and (21). Therefore, we could
reformulate the equation (27) as

M N A
Z Veen ;O Ej(t) — Z Vouyi O Ei(t (36)

Z pgmd — Pdr — (1 + wtr)p(t) RZ
2pa,i(t) ’

|
<

+

i

M =

E;i(t)

.
Il
—

= L) = =gy RO+ ep(®)
) ) M
:m(()(l‘FWu) p”(t) + L(t)p(t) (1—wtr))20
VP + T2 (14w k(1) — L(1)
p(t) > o7

2k(t)(1 4+ wyy)
In equatlon (37), L(t) is the sum of the constant variable
>y B (0 +M—=1(pgria(t)—par)— > isy Ei(t) to simplify
the formula. According to the equation, it is possible to set
a minimum transaction price to satisfy the power supply
and demand in the system. With the consideration of the
boundary constraints in equation (27)-(30), we can obtain the
optimal transaction price as depicted in algorithm 1.

Corollary 1: A unique Stackelberg equilibrium exists in
the proposed heterogeneous multi-followers energy trading
game.

According to algorithm (1), we could ascertain that a
unique Stackelberg equilibrium exists in the proposed het-
erogeneous multi-followers energy trading game.

V. NUMERICAL RESULTS

In this section, we provide numerical simulation results to
illustrate that the suggested market mechanism is appropriate
in an off-grid system. We are interested in system reliability
and the net profit of participants according to the market
operation in an off-grid system.
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Algorithm 1 Decision of SE

1: Initialization :

2: (a) Initialize transaction price p* from the equation (35).

3: (b) Initialize the lower bound constraints in equation
(29),(30), and (37).

4: (c) Initialize the upper bound constraint in equation (31).

5: ll( )

1
=B )
lo(t) < 155 (Pgrialt) — par)
7 1y(t) o VP T (it
(

2l(1+w”)

8 1r1(t) 1+wt, (2p”” (W0 + pgrida(t) — Par)
9: U(t) 4 max (11(¢), 12(2), 13(t), Pmin (1))

10 (t) — mln( 1(t), pgria(t))

1= i U(t) <

t) < r(t) then
t

13: else if r(t) < p*(t) then

15: else
16: p*(t) =1(t)
17: end if () —p* (1)( )—
o Pgrid(t)—p () (1+wir) —pdr p2
18: ’Ybuy z(t) =1+ ‘ 2pa, 1(t)E (t) : Rl

19 Yo, () = '+ 5@ ~ Tomr 05 ®
20: return p* (1), Yoy is Veerr ()

In all the simulation results, the maximum transaction
price pgria(t) is set as $0.37/kWh considering the EV
charging rate announcement from the Pacific Gas and Elec-
tric (PG&E). In addition, we set a minimum trading price
Pmin(t) as half of Cgpiq in the simulation considering the
reselling price that seller directly sell their surplus energy
into maingrid [32]. The DR incentive for the diminishing load
consumption of buyers is set as $0.1/kWh in the system. In
addition, to determine the EV user’s dissatisfaction cost, we
set the number of EVs in the facility to between 8 - 10 users
and the weight factor vy to determine the dissatisfaction cost
is set to 0.025. To consider the characteristics of the EV
charging facilities, we set A = 5.0km, n = 5km/kWh,
d = 100km and the number of charging facilities in the
region is 10. For the case of renewable generation, we assume
that the average renewable energy generation in the region is
80kW h and the number of facilities is 10.

A. CORRELATION BETWEEN VARIABLES

As depicted in Section III, the decision of transaction price
and energy quantity that covered in this paper is closely
related to the average residual energy in EVs or energy price
in the market.

In Fig. 2, we could examine the relationship between the
EVs’ average remaining energy in the facility and the transac-
tion price p(t) in the market. In the general, The SoC value is
used to determine the average discomfort cost pg ; () in equa-
tion (3), and at the same time, influences the determination of
the auxiliary variable k. Based on the relationship among the
variables, we could examine whether SOC; ,.(t) affects the
boundary condition in equation (31), (37) and determine the
optimal transaction price p* in equation (35). According to
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FIGURE 2: Relationship between the transaction price and
the DR incentive in the market

equation (37), it can be determined that increasing the value
of SOC; ,(t) leads to a reduction in the transaction price at
the whole of different commission proportion. In addition,
we can see that the commission fee wy, affects the transaction
price such that the larger the wy,, the lower the transaction
price p*(¢) in the figure. According to the results, we could
confirm that the increase of the commission fee leads to a
faster decrease in the transaction price as depicted in equation
(35).
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FIGURE 3: Proportion of energy transaction to changes in
the DR incentive

As mentioned in Fig. 2, an increment of SOC; ,.(t) leads
to a decrease in the transaction price. To examine the strategy
change of other participants according to the SOC variation,
Fig. 3 shows the result of trading proportion change when
wir = 0.05. As shown in equation (14), sellers are sensitive
to the transaction price so that the sale volume sharply
decreases according to the decrease of this price. For the case
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of buyers, the transaction price is also inversely related to the
amount of the transaction price as depicted in equation (21),
so that a increment of commission fee leads to a reduction in
buyers’ power purchases.
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FIGURE 4: Transaction variation due to buyer’s average
dissatisfaction cost

As mentioned in equation (3), o is an auxiliary variable
that directly affect to decide the dissatisfaction cost that
occur if the buyer does not receive enough power. Since
this dissatisfaction cost is an important factor that directly
determining the transaction price in the market, it can be
concluded that it also affects the power transaction amount
of the sellers and buyers as shown in Algorithm 1. As a
result, an increment in the weight factor oy would lead to
an increase in transaction price as depicted in equation (35).
In this case, since sellers and buyers react sensitively to the
transaction price, the opposite results are shown in Fig. 4.

B. REVENUE ANALYSIS OF INDIVIDUAL MARKET
PARTICIPANT

For market participants, regardless of power system they are
interested in the profits that they will receive over the existing
market. Since the actual amount of energy transaction is
determined by the status of each participant, it is possible
to make a preliminary prediction of individual profits and
market operation result using current users’ status.

In Fig. 5, we analyze the profit of individual market
participants according to a given market environment. In the
simulation, we set the broker ’s commission proportion asso-
ciated with the transaction price as wy, = 0.05. In addition,
coverage of each charging facility A; is set between 4.0km -
6.0km and renewable energy generation is between 80kW h
- 120kW h. In this environment, the transaction price in the
market is $0.2943 with the consideration of various factors
in the environment. In addition, we set the total amount of
generated energy as 688kWh and the energy requirement
from the entire charging facility as 802kWh, where the
required energy in the region is higher than the total supply.
In this case, the voluntary reduction in energy consumption
of incentive-based buyers is necessary to stabilize the energy
supply in the system. Consequently, a reduced transaction
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FIGURE 5: Transaction results and revenue of the buyers
according to participation in the market
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FIGURE 6: Sales revenue and volume of sellers that partici-
pate in the market

price and DR incentive change the buyer’s total power con-
sumption to 605.9312kW h. Based on the simulation result, it
is evident that the individual buyer’s purchase power volume
and profit are derived as expected from equation (21). It
is also evident that the larger the initial desired purchase
amount F;, the greater the power purchase proportion and
profit from the market.

In Fig. 6, we can also examine the sales revenue and
volume of sellers in the market. Given that the sale volume of
the seller is determined according to their generation amount
and transaction price as depicted in equation (14). The sales
ratio also decreases in proportion to a decrease in the sales
volume. In addition, as previously indicated, in the case of
sellers, the sale volume decreases according to the increment
of the transaction price. In addition, the total sales energy in
the market is 666.4554kW h, which is larger than the total
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demand in the system that satisfies the stable energy supply.

C. ANALYZING THE RESULTS OF DAILY MARKET
OPERATIONS

In the case of EV fare, time of use pricing, which charges
differently depending on the time periods, is applied in the
PG & E. If energy purchase price from the maingrid is
charged differently according to the time period, different
results can be obtained depending on the amount of energy
held by sellers and the amount of renewable energy genera-
tion. In this Section, we will analyze the transaction price and
the power reliability results according to market price which
compared with different algorithm according to the change
of environment in each time period.

—6— Station charging cost

0.5

2 4 6 8 10 12 14 16 18 20 22 24
Time (hour)

FIGURE 7: Time of use pricing for EV published by PG&E

In Fig. 7, we could check the energy purchase from main-
grid that announced by PG&E. The price is determined by the
consideration of total energy consumption in the system. In
addition, PG&E decided different rates for charging at home
or at station according to the user decision. Here, we only
cover station charging cost which depicted in Fig. 7.

In our system model, seller sales in the market are based
on the remaining energy in storage and the renewable energy
generation. In Fig. 8, we could check the average value of
power generation from PV generator over a month period
from 8 buildings collected from KAIST in South Korea. In
the simulation, we consider PV generators which have the
maximum power generation as 80kW h - 100kW h per hour.
In Fig. 8, we could check that the most PV generators started
to generate after at 9 o’clock, and decreased their generation
drastically after at 14 o’clock. Since the renewable energy is
not further generated, the sellers’ strategy will be limited, so
we only deal with the results between 9 and 14 o’clock when
the renewable energy generation exists.

In Fig. 9, we illustrate the trading results in comparison
with the Cournot model that depicted in [33]. In the simula-
tion, a Proposed model means the simulation results derived
from the proposed market environment which considered
power reliability in the system. The Cournot model is the
case that determines the transaction price depending on the
total deficit and surplus energy as described in [33]. The

10

= Renewable 1
Renewable 2
Renewable 3
——#— Renewable 4
==& Renewable 5

Renewable 6
= © = Renewable 7
==#=-= Renewable 8

o
©

o
©

o
~N

Normalized value
o o
o (2}

o
~

0.2

0.1

2 4 6 8 10 12 14 16 18 20 22 24
Time (hour)

FIGURE 8: Sales revenue and volume of sellers that partici-
pate in the market

o

1

a
|

- = Proposed model -
i Cournot model Q
Market transaction price ’

—A— Market resell price ’

o
13
T

o N
o w o ~
w & ~ &

Transaction price ($)

o
N
o

0.2

10 11 12 13 14 15
Time (hour)

FIGURE 9: Sales revenue and volume of sellers that partici-
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Market transaction price is the price charged by PG&E for
supplying energy into EVs from maingrid. The Market resell
price is the price that seller resells the surplus energy into the
maingrid [32]. In whole of the time period, we could check
that the Proposed model and the Cournot model are located
between the market prices. In particular, we can check that
the transaction price in the Cournot model has a lower price
than that of the Proposed model. In this case, if we apply
Cournot model to determine transaction price, the sellers’
sale energy in the proposed market would decreases while
the buyers’ desired energy purchase increases and results in
an energy imbalance problem.

As mentioned in Section I, the advantage of the Stack-
elberg game model is that it limits the follower’s options
through the leader’s strategy. Thus, it is possible to derive
results that are more appropriate for the actual power system
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FIGURE 10: Sales revenue and volume of sellers that partic-
ipate in the market

environment than conventional methods, where market prices
are voluntarily determined. As can be seen in Fig. 10, we
show the simulation results of power supply and demand in
the system when applying the Proposed model and Cournot
model. In the case of Cournot model, it represents that it
requires more power than the power supplied to the actual
system. On the other hand, when the Proposed model is
applied, power supply and demand are the same in most time
period. The reason is that the power reliability suggested
in equation (6) is excluded in the case of Cournot model.
According to the result, we could check that the proposed
model is more proper in the practical environment.

In order to implement the proposed model in practical
environment, we have to manage various heterogeneous data.
That is, research on data security and management should
be preceded. In academia, various researches have been
proposed in terms of data processing using blockchain or fed-
erated learning in [34]-[36]. The research on the EV trading
platform considering the data security will be conducted in
the future.

VI. CONCLUSION

In this report, we address a method to supply energy to
multiple charging facilities in an off-grid environment. Us-
ing the heuristic Stackelberg game model, actual buyers
can choose strategies associated with self-degrading energy
consumption based on DR incentive and purchasing energy.
In addition, sellers are also allowed to choose their own
strategies according to revenue from the sale of energy or
the increase of their satisfaction based on charging operation.
With the consideration of the net profit of the broker in the
system, this approach allows each participant in the market
to maximize their own profits while stabilizing the energy
supply and demand in an independent energy environment.
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