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ABSTRACT The number of digital healthcare mobile applications in the market is exponentially increas-
ing owing to the development of mobile networks and widespread usage of smartphones. However, only
few of these applications have been adequately validated. Like many mobile applications, in general, the
use of healthcare applications is considered safe; thus, developers and end users can easily exchange them
in the marketplace. However, existing platforms are unsuitable for collecting reliable data for evaluating the
effectiveness of the applications. Moreover, these platforms reflect only the perspectives of developers and
experts, and not of end users. For instance, typical clinical trial data collection methods are not appropriate
for participant-driven assessment of healthcare applications because of their complexity and high cost. Thus,
we identified the need for a participant-driven data collection platform for end users that is interpretable,
systematic, and sustainable, as a first step to validate the effectiveness of the applications. To collect reliable
data in the participatory trial format, we defined distinct stages for data preparation, storage, and sharing.
The interpretable data preparation consists of a protocol database system and semantic feature retrieval
method that allow a person without professional knowledge to create a protocol. The systematic data
storage stage includes calculation of the collected data reliability weight. For sustainable data collection,
we integrated a weight method and a future reward distribution function. We validated the methods through
statistical tests involving 718 human participants. The results of a validation experiment demonstrate that
the compared methods differ significantly and prove that the choice of an appropriate method is essential for
reliable data collection, to facilitate effectiveness validation of digital healthcare applications. Furthermore,
we created a Web-based system for our pilot platform to collect reliable data in an integrated pipeline. We
compared the platform features using existing clinical and pragmatic trial data collection platforms.

INDEX TERMS Digital health, Digital healthcare app data collection platform, Crowdsourcing, Participa-
tory trial, Biomedical informatics

I. INTRODUCTION

ITH the widespread popularity of wireless devices,
W such as smartphones, healthcare has become one of
the most promising fields in the applications industry. Ap-
proximately 200 mobile health applications are newly added
in mobile application stores every day, and investment in
digital healthcare is booming [1[], [2]. While many of these
applications are general wellness applications that help users
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manage their activities, some healthcare applications claim to
directly ameliorate a symptom or disease. These applications
offer information about the treatments they propose, which
may take the form of visual stimuli that are effectively
delivered to users as digital therapy. reSET-O, an 84-day
prescription digital therapeutic application for the treatment
of opioid use disorders, has been approved by the U.S.
Food and Drug Administration (FDA) [3]]. Akili Interactive
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has clinically demonstrated that interactive digital treatment
through a video game, which is under review by the FDA,
may reduce the symptoms of attention deficit hyperactivity
disorder (ADHD) and sensory processing disorder [4], [S].
Omada Health showed that a Web-based diabetes prevention
program can significantly lower the hemoglobin Alc levels
of a user. Moreover, the Web-based program showed a higher
rate of patient engagement than the traditional in-person
diabetes prevention plan [6]]. Researchers and the public have
shown considerable interest in this product as an example of
digital medicine [/7].

The increased interest in digital health has led researchers
to study the effectiveness of current applications. As a prac-
tical example, Pokémon GO, which is a game application
based on augmented reality, positively affects social inter-
action: in a study, 43.2% of users spent more time with
their family [8]]. In contrast, a six-week online intervention
experiment revealed that Headspace, which is a healthcare
application that is claimed to achieve mindfulness by guided
meditation, has a relatively small effect on mindfulness [9]].
This outcome contradicts the results of previous randomized
controlled trials of the application [10]. Because of such
contradictions, a reliable mechanism to validate digital health
applications is required [[11]].

Currently, no appropriate platform that evaluates the effec-
tiveness of an application using a systematic and objective
validation method, exists in the digital healthcare field [|11]].
In particular, the development of mobile health applications
is very fast and they present few safety issues, which tends
to reduce the burden of regulation. As a result, direct trade
in these applications between developers and end users is
facilitated. However, the few existing platforms are not suit-
able for evaluating the effectiveness of such applications. For
example, the review platforms and guidelines that are being
developed to resolve this issue, provide only limited technical
information obtained from the perspectives of developers, ex-
perts, and regulatory authorities [[12[]-[16]]. Thus, we identi-
fied the need for a participant-driven data collection platform
for end users as an interpretable, systematic, and sustainable
tool to validate the effectiveness of these applications.

In an appropriate validation method, first, reliable data
are collected; then, these data are analyzed for verification
[[17]]. Hence, data collection is the basis of data analysis. The
utilization conditions of healthcare applications differ from
an ideal research-intensive environment, and the collected
data are related to the term “real-world data” [[18]]. An incom-
plete collection of real-world data can cause inaccurate data
analysis as a result of inconsistency, poor data quality, and
noisy or missing data [|19]]. Thus, data collection is an essen-
tial stage of the verification workflow. In the following, we
compare previous expert-oriented data collection platforms
in existing research fields that are relevant to the development
of a participant-driven data collection platform.

A general study that offers a highly effective and ef-
ficacious measurement method is clinical trial. A clinical
trial includes a reliable data collection procedure based on
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a clinical protocol in a controlled environment [20]. The
clinical protocol is a translational guide for data collection,
and advanced digital technology has been developed to pro-
vide an electronic data capture (EDC) platform to prepare,
store, share, examine, and analyze data from electronic case
report forms (eCRFs) within the protocol. Therefore, the
platform is complex and the general public cannot easily use
it. For instance, Rave, an EDC platform created by Medidata,
showed the highest level of popularity and satisfaction in G2
Crowd, a software comparison Website [21]. Rave follows
a typical EDC design approach. In addition, it has a more
advanced feature for designing the basic document struc-
ture of a protocol and provides optimized protocols using
a PICAS database containing trial cost information [22].
Despite this functionality, Rave is still appropriate only for
expert use. Transparency Life Sciences (TLS) is a leader in
digital drug development services offering virtual and hybrid
clinical trials [23]]. TLS uses the crowdsourcing method for
protocol design. Here, experts create a survey project for a
disease and release the project to all TLS users. After the
release, the users interested in the project start to participate
and provide their identifying characteristic, such as patient
family member, researcher, or patient. In the last step of
the project, the TLS clinical trial team designs the protocol
using the collected data of the participants. However, in
this case also, the creation of the protocol is driven by an
expert team, rather than general users. Accordingly, because
of their complexity and high cost, the data collection methods
in clinical trials are not appropriate for participant-driven
assessment of healthcare applications, the number of which
is growing exponentially, [24], [25].

A pragmatic trial is a study of the real-world measure
of the effectiveness of intervention in broad groups [26].
A data collection platform of a pragmatic trial includes
not only EDC but also specialized research tools and gen-
eral surveys. These data collection platforms can be Web-
based survey applications, mailed questionnaires, or specific
healthcare applications developed from research kits [27]-
[29]. Therefore, while the platforms still suffer from the issue
of complexity, the possibility of collecting less reliable data
also exists. For instance, PatientsLikeMe is a platform that
shares experience data to help participants understand the
possible treatments of particular disease conditions based on
the experiences of others [30]. However, it does not provide
an environment in which members of the public can lead
the study preparation, and the platform has no feature for
evaluating the reliability of the collected data. An additional
example is Amazon Mechanical Turk (MTurk). MTurk is a
crowdsourcing marketplace for the recruitment of research
participants and for platforms for conducting surveys [31].
However, the platforms do not provide a standardized method
for the data preparation stage. In other words, the platforms
require clinical experts to prepare data collection procedures
and systems based on their knowledge. MTurk provides a
feature to approve or reject an individual participant, but the
feature relies on a subjective judgment and suffers obvious
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objectivity limitations. We found that this platform offers
no suitable method to measure the reliability of the data
collected from the participants.

A participatory trial platform allows a public user to create
and conduct a participant-driven study to measure the effec-
tiveness of products in daily life. The core factors of the plat-
form are simplicity, reliability, and sustainability. According
to this description, we identified comparable platforms that
have alternative, similar, or essential features. For example,
Google Play and Apple App Store are alternative platforms,
because they maintain user ratings and reviews in the public
domain [32]-[34]. Both platforms provide free text reviews
and scaled rating functions as a data storage feature. How-
ever, the free text reviews have an issue with natural language
processing, which does not allow structural data collection
[35]]. In other words, the platforms offer no simple data prepa-
ration method to create a systematic data collection protocol.
In addition, because they reveal previously collected data to
new participants, a possible risk factor of the platforms is
transfer biases that could affect new reviews and ratings [36].
An additional limitation of the platforms is that they offer
no features for evaluating data reliability. RankedHealth and
NHS Apps Library also represent platforms that are similar
[37]1-[39]]. RankedHealth includes a procedure to minimize
the influence of individual reviewers to ensure data reliability.
NHS App Library publishes safe and secure applications by
utilizing questions designed by experts from technical and
policy backgrounds, in their evaluation procedure. However,
these platforms suffer from a limitation: the consensus of the
experts is focused on evaluating the technical performance of
an application and the expert assessment does not validate the
effectiveness or the user experience of the application. Thus,
they are not appropriate for participant-driven studies.

Finally, all the platforms mentioned above are limited in
that they address neither the prevention of participant drop-
out nor the software characteristics of digital healthcare ap-
plications. A study that included daily collection of pain data
using digital measures demonstrated that the average self-
report completion rate was 71.5% (261/365) days. In the most
recent research studies, attempts were made to develop an
incentivized program or in-game rewards system to increase
the self-report rates, because sustainable data sharing for
collecting large amounts of data is a crucial function of
participatory trial platforms [40]—[42].

Furthermore, unlike drugs, functional foods, and mechan-
ical devices that are difficult to modify after the market
launch, the software of healthcare applications can poten-
tially be updated [43]. The application features may require
iterative evaluation following the upgrade. In summary, a
new platform for digital healthcare applications should have
a sustainable data collection function.

In this paper, we propose a participant-driven reliable data
collection method for participatory trial platforms as a first
stage in a system for understanding the effectiveness of
healthcare applications. The method consists of three steps:
interpretable data preparation, systematic data storage, and
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sustainable data sharing. We utilized a clinical trial protocol
database and a semantic relatedness method for the participa-
tory trial protocol to prepare data collection. We developed a
data reliability weight (DRW) formula that collects data sys-
tematically. We propose a future reward distribution function
related to the DRW to enable sustainable data collection. In
the results section, we describe the experiments conducted
to validate the reliability of the data collection method. The
experiments included a comparison of the simplicity of the
data preparation method, validation of the data reliability, and
observations of the effect of future reward distribution. We
report the results of experiments that involved a total of 718
human participants. The Institutional Review Board (IRB) of
KAIST approved an IRB exemption for the experiments.

Moreover, we developed a Web-based pilot platform that
is accessible to the public with real-world data as a crowd-
sourcing tool based on the citizen science concept. The pilot
platform systematically integrates all the proposed methods.
We conducted case studies on the pilot platform to validate its
participant recruitment efficiency. To demonstrate the advan-
tages of the proposed platform, we compared its functionality
with that of an existing platform.

Il. DEFINITION OF PARTICIPATORY TRIAL
A participatory trial is an expanded form of a trial in-
volving humans, in which the public is utilized to test the
effectiveness of products in daily life. The concept follows
crowdsourcing and citizen science in the aspect of data-
driven science [44], [45]]. A participatory trial includes vol-
untary participation, in contrast to the selective inclusion of
clinical trials and the broad inclusion of pragmatic trials.
The participants who operate the trials, are members of the
general public. The objective of a participatory trial is to
inform consumers about the effectiveness of a product, and
the method consists of a protocol that reflects daily life to
maximize the reliability of the clinically relevant results. We
compare clinical, pragmatic, and participatory trials in Table
1 [46]. We define a participatory trial so that the difference
between this and other current types of trials conducted in
modern society is clear.

The definitions of the terms and phrases used in this
manuscript are as follows.

« Platform: Digital platform that is an environmental soft-
ware system associated with each functional part of
application programs.

o Data preparation: The process of determining the data
collection structure. The term has the same meaning as
the process of designing the protocol.

« Data storage: Evaluation of collected data to allow reli-
able storage and to determine the value of the data.

o Data sharing: Integration of collected data to allow
sharing with others and to provide benefits to the data
provider.

lll. RELATED WORK
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TABLE 1. Comparison of clinical, pragmatic, and participatory trials

Trial type Clinical trial Pragmatic trial Participatory
trial
Outcome Efficacy Effectiveness Effectiveness
Objective Assessment Decision Information
making delivery
Protocol Rigid Quasi- Interpretable
protocol explanatory protocol
protocol
Enrolment Selective Broad Voluntary
inclusion inclusion inclusion
Location Controlled Daily Daily
environment environment environment
Operation Expert Public

A. CLINICAL TRIALS AND PLATFORMS

Clinical trials have been the gold standard for the evalua-
tion and development of medical interventions for over 70
years [47]]. Focused on evaluating the efficacy of specific
interventions, clinical trials frequently use controlled settings
and apply strict criteria for the inclusion of participants and
practitioners. The EDC system is increasingly recognized as
a suitable method that has advantages in terms of real-time
data analysis, management, and privacy protection [48]]. The
system is most useful in trials with complicated contexts,
such as international, multi-centered, and cluster-randomized
settings [49]]. However, because of their strict and complex
nature, clinical trials still have certain limitations in the in-
depth evaluation of effectiveness or external validity [50].

B. PRAGMATIC TRIALS AND PLATFORMS

Clinical trials are frequently time consuming and challeng-
ing, because they utilize rigorous methods. These character-
istics of clinical trials have increased the need for pragmatic
trials that seek to understand real-world evidence, assessing
the effectiveness of an intervention in actual clinical practice
settings [26]. As introduced in the “PRECIS’’ assessment
by Thorpe et al., these trials are designed to maximize the
external validity of the research by including a heterogeneous
population and setting patient-centered endpoints [51]]. Vari-
ous platforms, including mailed questionnaires, Web-based
forms, and research kits, are used in these types of trials
[27]-[29]]. Consequently, pragmatic trials are an emerging
source of clinical evidence pertaining to issues ranging from
pediatric asthma and cardiovascular diseases to monetary
incentives for smoking cessation [37]], [52f], [53[]. However,
they are subject to several challenges, such as low patient
recruitment, insufficient data collection, and treatment vari-
ability [26]], [54]]. Further, inconsistency in data platforms is
an additional major limitation of pragmatic trials [|55].

IV. METHOD
We divided the data collection method for evaluating the
effectiveness of the healthcare applications, into the stages
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of interpretable data preparation, systematic storage, and
sustainable sharing. We used the essential methods at each
stage to continuously collect highly reliable data. In addition,
from a participatory trial perspective, we organized each
method so that the public can easily participate and organize
their own research, provide reliable information and share it
to induce continued interest (Figure [I)).

R —

participants

Protocol
& ® Creation

creator

Participation
Reward

Data Reliability
Weight Calculation

Data Preparation Data Storage Data Sharing

FIGURE 1. Method overview. The data collection method consists of three
parts: data preparation, data storage, and data sharing. In the data
preparation part, a creator can devise a new study for the evaluation of an
application by searching in the protocol creation methods. Next, in data
storage, the participants conduct a study, and the platform stores all the
participants’ responses. At the same time, it collects the statistics of the
responses and calculates the data reliability weight (DRW) of each. After the
study is complete, in data sharing, the platform calculates future rewards
according to the reliability of both the participants and the creator and
distributes the rewards to each of them.

A. INTERPRETABLE DATA PREPARATION

At the data preparation stage, we determine the types of
data that should be collected, the manner in which the data
should be collected, and the preferred source of the data. Our
objective is to consider the data as an interpretable resource
for determining the effectiveness of a healthcare application.
In the fields of clinical and pragmatic trials, researchers
typically develop a protocol to facilitate the assessment of
a changing symptom or disease [S1], [56]. Healthcare ap-
plications are also focused on ameliorating a symptom or
treating a disease. A phenotype is an observable physical
characteristic of an organism, including a symptom and a
disease. Therefore, we can effectively measure the change
in a phenotype using an existing protocol that is semantically
related to it.

We developed a protocol database system and a concept
embedding model to calculate semantic relatedness to realize
a protocol retrieval system for accomplishing interpretable
data preparation. The database contains 184,634 clinical trial
protocols to assist context-dependent selection of protocol
elements [57]]. We created a model to find a vector on a
latent space based on the distributed representations of a
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documented method. Furthermore, we calculated the seman-
tic relatedness between the input phenotype and protocols
using cosine-similarity [58], [59]. Finally, we integrated the
methods into the proposed platform for participatory trials,
so that a member of the general public can create a study to
easily determine the effectiveness of a healthcare application.
Figure 2| shows the overall procedure of the method.

L 1

Creator

°
=
@ Symptom name

ex) Headache

=

o Concept
3 embedding

Semantic search
ex) C0018681

)
CIinicaI trial

Protocols =—4 protocol DB

Preparation for data collection
Protocol Creation

Created
L_  protocol

FIGURE 2. Preparation to collect data. The creator retrieves a previous
protocol based on the symptom name of the application to verify effectiveness.
Then, the creator prepares to collect data on the retrieved protocol and
creates the participatory trial protocol for data storing.

B. SYSTEMATIC DATA STORAGE

The participatory trial platform uses crowdsourcing methods
to collect data. Crowdsourcing refers to obtaining data for
scientific research through the voluntary participation of the
public. Data collection based on crowdsourcing is applied
in many research fields, because it is a method that can
quickly obtain a large amount of data from the public at
a low cost [|60]], [61]. However, it is frequently noted that
data collected by means of crowdsourcing are less reliable
than those obtained by systematic approaches [62], [63]].
Therefore, the main challenge with regard to data reliability
is to devise a method to measure data credibility.

The primary purpose of this method is reliable data col-
lection and delivery for evaluating effectiveness, which is the
subsequent level on the path to validation. To achieve this
purpose, a method to guarantee the reliability of input data
is required. Therefore, we propose a formula to calculate the
DRW through combined measures of the effort expended on
inputting data.
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Careful, relevant, and purposive data input by the par-
ticipant can improve the quality of data in systematic data
storage [64]]. Huang et al. developed an insufficient effort
responding (IER) detection method to determine the input
data needed for providing accurate responses and correctly
interpreting the data [65]. The recommended composition
of IER is response time (RT), long-string analysis (LSA),
and individual reliability (IR). RT is used to determine the
effort expended based on execution time [66]]. LSA uses
intentional long-string patterns to assess the effort expended
by a participant [67]. To calculate IR, a pair of data items
are divided into two halves and the correlation between them
is used to determine the normal response [68]. In addition,
Huang et al. also presented a single self-report (SR) IER item,
which has empirical usefulness [69]]. The SR is a single item
for detecting IER and consists of a 7-point Likert scale [[70].
We developed the DRW calculation method based on the IER
methods.

We calculated D RW; 4, (X) according to the type of eCRF
for obtaining the DRW (I). frr, frsa, fsr. and frp are the
indexes of the DRW. The created protocol contains eCRFs,
where an eCRF is a tool used to collect data from each
participant. We provided four types of eCRF, as described
in Supplementary Table 1. We calculated the DRW from the
symptom and data type eCRF. The symptom type eCRF mea-
sures the presence and the degree of targeted symptoms only
once, whereas the data type eCRF measures the effectiveness
of the targeted applications repeatedly. X = {xz1, zo, ...,z }
is the set of items in an eCRF. The platform receives 11 types
of data items in an eCRF, as shown in Supplementary Table
2. Type codes ED, TEL, SET, DATE, PDATE, and FILE were
not used to calculate the DRW.

f(X) = {frr(X), frsa(X), frr(X), fsr(X)} (1)

We calculated frp and frsa for the symptom and data
type of X. frr is calculated as the difference between the
start and end time when the participant inputs data to X.
The calculation of fr g4 uses the length of the input strings.
Conversely, we calculated fsg and f7 only for the symptom
type of X. We did not include the SR and IR item in the data
type of X to avoid distortion of the iterative procedures by the
response of the participant. To measure whether a participant
is attentive while entering data, we placed an SR item at the
end of the symptom type of X. The measured pattern of
participants should be similar to the symptom type. To reflect
the pattern for f;r, we calculated a Pearson correlation
coefficient [71]. r;gr is the correlation value of Z and A
. Zi = {214, 224, r Zm,, } and Z;, = {lew'z;k""vz;w}
are sets to measure 77 among items belonging to X. The
number of items in Z and Z’ is the same. We generated Z and
Z' such that the correlation is close to one. z,, ., and zm , are
the value of each item of Xj. K is the number of participants,
and k is the kth participant of K.
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FIGURE 3. Example of calculating the data reliability weight (DRW) of one participant in the study (a) The platform calculates the response time (RT),
long-string analysis (LSA), individual reliability (IR), and self-report (SR) based on the data entered to calculate the DRW of the symptom electronic case report
form (eCRF). Each participant has one symptom eCRF. (b) The platform stores the collected data in data eCRF. A data eCRF, unlike a symptom eCRF, does not
display a specific pattern, and therefore, RT and LSA excluding IR and SR are calculated. (c) The platform calculates the cumulative distribution function for the
normalization of the input values. (d) The platform calculates the cutoff values for RT, LSA, SR, and IR using values collected from all symptom type eCRFs entered
by all participants in a study. (e) The platform groups all participants in the study into an eCRF consisting of items that are the same as the data type entered. (f)
The platform then uses the values collected from each group’s eCRF to calculate the RT, LSA, SR, and IR. (g) The platform calculates the DRW index values of the
participant using the cutoff values obtained from each eCRF type. The platform uses the obtained cutoff values to calculate the DRW.

M3 2y Zmy) = (2 2m) (2 Zim, )

TIR, =
\/[msz2 — (X am )P lm Y 2, ? — (2 2,)°]
2
Each index has a cutoff value and the cutoff values for
each prepared eCRF in a study is calculated. In detail, we
calculated the mean (u) value and the standard deviation
(o) to remove outliers. We removed outliers having a value
greater than i + 30 or smaller than 1 — 3o0. After removing
the outliers, we calculated i’ and ¢’. Then, we calculated the
cumulative distribution function (CDF) for the values of the
DRW indexes (3)). One purpose of CDF is to find a cutoff
value that has the lowest area under the probability density
function (PDF) among the input values. The second is to
represent random variables of real values, the distribution of
which is unknown, using the collected values . Accord-
ingly, we used the CDF values to find the 1/ and ¢ again to
obtain a normal distribution. For the distribution, we obtained
the cutoff value using the z-score for the p-value (default is
0.05). h(X") returns 0 if the normalized input value is smaller
than the cutoff value and 1 if the value is larger than the cutoff
value (@). We calculated the DRW indexes using the binary
decision function.

(G O] _((m—%)z)
X' =g(f(X);p',0") = —=—e \ 7 Jd
oo 2o’
3)
~ [ 1 if X’ >= cutoff value
h(X7) = { 0 otherwise @)

We calculated the DRW of a participant when we com-
puted all the cutoff values of the DRW indexes for each eCRF
(3l6). N is the number of eCRFs assigned to a participant.
Cprw, is the number of DRW calculation item counts for
each eCRF type. Figure [3] displays an example calculation
procedure for the DRW.

hprw (X') = hrr(X')+hrsa(X')+hir(X')+hsr(X')
)

1

I X!
CDRWi DRW ( z)

N
1
DRWparticipantk = N Z (6)

C. SUSTAINABLE DATA SHARING

It is intuitive that a reward can drive active participation.
Recent scientific findings support the fact that rewards af-
fect data acquisition [41]], [73]]. In our method, we provide
financial future rewards in the form of exchangeable cryp-
tocurrency to achieve sustainable data collection [74], [[75].
To deliver the reward, we developed a study results transfer
function that sends statistical information on the completed
study to an external cryptocurrency system (Figure ). The
study participants periodically receive cryptocurrency as a re-
ward for providing their data. The total amount of the reward
depends on the external cryptocurrency system. However,
the reward is a compensation that the participants expect to
receive after the end of the study and does not constitute
an immediate profit. Therefore, we attempted to induce sus-
tainable data sharing by creating an expectation that active
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participation will earn high rewards [[76]]. A future reward
distribution method that induces this expectation drives the
creator’s continuous management motivation and encourages
the active involvement of participants.

We collect rewards for each completed study. Rioiq; iS
Rcreator + Rparticipants + Rsystem- R denotes rewards.
R reator calculates the reward amount based on the propor-
tion of the participants’ compensation and the ppgrw value
of the study (7). A low f1prw value acts as a type of penalty.
We introduced this factor to encourage the study creators to
create a better plan and stimulate a study.

Rcreator = UDRW X (1 - Oé) X Rtotal (7)

Here, Ryurticipant and Repeqror are substrates of Ryoiq;
(). K is the total number of participants. DRW}, is the
calculated DRW for the kth participant. The platform rewards
participants for their efforts to input data. A participant
receives a greater reward if he/she invests more than average
effort; otherwise, the participant receives a lower reward.
Rgystem acquires high compensation when the p.p gy value
is low. We added Ry sterm to recover the cost incurred when
careless participants waste platform resources by generating
unreliable data. We utilize Rgystem as a platform mainte-
nance cost.

Rparticipant = a X Riotal

_ i DRW/C > a X Rtotal (8)
= MDRW K
Blockchain
Community

@ Result posting
@ Cryptocurrency

[ Study ]

® Reward distribution

L r=—=-= T===1 H
! i i i @2
¢ vy
)
2 R
(=
=]
Creator Participants

FIGURE 4. Participation and future rewards of the study. When
participants take part in the study, the results are posted on the blockchain
community (D) and the community provides cryptocurrency to the study (®).
After the end of the study, the platform distributes the rewards according to the
participants’ level of involvement (®).
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V. PILOT PLATFORM IMPLEMENTATION

The proposed platform is designed for a participatory trial.
The characteristic of a participatory trial in terms of data
collection is that, through systematic collection of data based
on crowdsourcing, ordinary people can become researchers
and conduct experiments. They can then share the results
with the public [44]], [77].

To achieve this goal, we developed a platform that inte-
grates all the methods presented above, so that each feature
is systematically connected to another. The working logic of
the integrated platform is implemented as follows (Figure
B). Creators are people who recruit participants to suggest
research and evaluate the effectiveness of healthcare applica-
tions. They can build studies in the data preparation phase by
using the protocol database and protocol discovery methods.
When the created study has been activated, users can join
the study. The participants in the study are curious about
the effectiveness of healthcare applications, and therefore,
their attitude toward entering data is relatively serious. The
research data and basic information about the study are stored
in the blockchain to prevent data falsification in vulnerable
systems [74]. The study ends after its predefined duration.
Even if the number of participants is not sufficient to collect
an adequate amount of data, the study is closed at the pre-set
endpoint. The system then calculates the effectiveness score
using the study data. The research results are open to both the
public and experts in the data sharing phase, and participants
receive rewards based on the data they enter.

Technically, we designed the pilot platform according to
the interface segregation principle 78], which provides a user
with a tool that utilizes only the services that the user expects.
The platform consists of three layers: Web interface, appli-
cation programming interface (API) engine, and database.
The functions of each layer are based on Node.js, the Java
programming language, and the PostgreSQL database. In ad-
dition, essential functions and fundamental database schema
related to the EDC system were designed using OpenClinica
3.12.2 [[79]. We also applied the EDC function to receive data
in the Operational Data Model (ODM) XML format, which
is compatible with the Clinical Data Interchange Standard
Consortium [80], [81]. Finally, we integrated the blockchain
system to prevent data falsification in the crowdsourced data
collection platform in participatory trials [[74]]. See the Sup-
plementary Document for more information on the platform
development.

VI. RESULTS

The evaluation results of the proposed method consist of
both quantitative measurements, i.e., the test results for each
method, and qualitative measurements, i.e., a comparison of
the platform functions with those of other platforms. We con-
ducted the quantitative measurements with the participants
in the platform. The measurements included simplicity of
the protocol creation function in the data preparation stage,
DRW validation in the data storage stage, and influence of
expected rather than immediate rewards in the data sharing
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FIGURE 5. Working logic overview of the platform. The platform integrates and connects methods for reliable data collection at all stages of the study: creation,
conduct, and analysis. In the creation stage, the creator can create, modify, or delete the study. When the creator has activated the study, it is open to other
members of the public and they can participate. In the conduct stage, the creator can collect the data from the participants and monitor them. In addition, the creator
and participants can monitor statistical information related to the study. In the analysis stage, all the data generated after the study is completed, are disclosed to
the study creator, participants, and anonymous users. Thus, the data are available to the experts and the public. The platform services allow users to prepare,

collect, and share reliable data in an integrated environment at each stage.

stage. All participants filled and signed an electronic consent
form. In the quantitative measurements, the participants’ data
input was used for the purpose of method validation. We
did not collect any personally identifiable information during
the tests. We used qualitative measures to demonstrate the
benefits of a participatory trial, as compared with a clinical
or pragmatic trial.

A. COMPARISON OF THE SIMPLICITY OF DATA
PREPARATION
We developed a protocol retrieval method based on the
clinical trial protocol database and validated the methods de-
veloped in our previous studies [57], [59]. The methods con-
stitute the core functions of data preparation. We validated
that the semantic filters of the database can provide more
appropriate protocols than a keyword search [59]. We used
clinical trial protocols and corresponding disease conditions
extracted from ClinicalTrials.gov as the golden standard set
[[82]]. The F-1 score was 0.515; this score is higher than that
of keyword search, 0.38. The concept embedding model to
find the semantic relatedness of the clinical trial protocols
showed a Spearman’s rank correlation coefficient of 0.795
with the benchmark set from the Mayo Clinic [57]], [83]]. The
results were higher than those of the previous method, with a
Lesk of 0.46 and vector of 0.51. Finally, we conducted a user
evaluation test of the protocol retrieval system from the point
of view of 10 clinical trial experts [59]]. Our system presented
a score of 1.6 for difficulty and 6.5 for satisfaction on a 7-
point Likert scale. The scores of ClinicalTrials.gov were 6.2
and 2.3, respectively.

However, previous results were limited, because tests were
conducted solely to obtain expert views. In addition, we
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obtained the results for a clinical trial, not a participatory
trial. In contrast, the interpretable data preparation method
we propose, is a publicly available system for applying the
above technique from the perspective of a participatory trial.
Therefore, further validation that the proposed method is
sufficiently simple to allow a member of the general public to
create an interpretable protocol for preparing data collection,
is required.

For the validation, we designed an experiment that col-
lected the Usefulness, Satisfaction, and Ease of Use (USE)
scores from human participants as a reflection of their experi-
ence of the different methods in terms of simplicity [84]. We
recruited human participants who represented general users
using MTurk [31]. We used an expected mean of 1.1 and
an expected SD of 1.14, as in the previous USE study [_85].
We set a power of 95% and a one-sided level of significance
of 5% to calculate the number of participants. The number
of participants obtained by adjusting the sample size for t-
distribution was 20 [[86]]. The participants in the experiment
compared the data preparation function, which is related to
protocol creation, of the proposed method and the existing
expert method. We prepared the data preparation method as
a simulation program (PM); the complicated method used
Openclinica 3.14, an open-source EDC program (OC) [79].
The two programs recorded a randomly generated ID for
each participant to allow their test scores to be identified.
The participants responded to the USE questionnaire, which
consisted of 30 items scored on a 7-point Likert scale to
obtain the comparison score and 6 short items for recording
their opinion after each use [84]]. We reversed the 7-point
Likert scale so that the participants would concentrate more
on the questionnaire [69]], [87]. We restored the modified
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scores in the results calculation.

In the experiment description, we provided only an ele-
mentary data preparation guide and no detailed manual. We
also divided participants into two groups to prevent recall
bias occurring in the order of the program usage [36]. We
reversed the order of use for each group. Finally, we iden-
tically configured the hardware environment on the cloud-
computing resources of Amazon Web services to identify
only software differences [88]].

After the experiment was completed, we excluded the re-
sults of participants who did not complete all the USE items,
recorded the same values for all the items, or did not complete
the test of method systems. Consequently, we could obtain
the results of 42 participants from the combined data set of
the two groups. See Supplementary Data. For conducting the
descriptive statistics of both methods, we divided the USE
items into four dimensions [85]]. Accordingly, the 30 USE
items were broken down into 8 usefulness (UU) items, 11
ease of use (UE) items, 4 ease of learning (UL) items, and
7 satisfaction (US) items. The statistics indicated that the
scores of the proposed method were above 5 for all the USE
dimensions (Figure [6] and Table [2). We also found that the
scores showed negative skewness for all aspects.

As shown in Table [2] the average USE score of PM
was 5.548 (SD=0.897) and of OC was 4.3 (SD=1.5). We
conducted a statistical test to confirm a significant difference
between the average scores. To check the USE score’s nor-
mality, we conducted a Shapiro-Wilk test [89]]. The test result
p-value of our score was 0.082, and the compared score was
0.238, which satisfied normality (p > 0.05). Therefore, we
conducted paired sample t-tests; the USE score presented a
significantly higher value for PM than OC, with t =7.243, p
<.001. Because the four dimensions in USE did not satisfy
normality, we conducted a Wilcoxon signed-rank test [90]].
The results of the test showed noticeable differences between
the two methods in all dimensions (Table[3)).

In addition to the above results, we also found that the
participants completed 100% of tasks on PM, whereas they
generated only basic metadata of the given tasks on OC.
Thus, we concluded that PM is more suitable for interpretable
data preparation in participatory trials.

B. DATA RELIABILITY WEIGHT VALIDATION
The DRW is a weight, in the calculation of which a score that
is the measure of the effort that a user expends when entering
data is included. We examined the correlation between the
Human Intelligent Task Approve Rate (HITAR) of MTurk
and the DRW to assess whether this score is an effective
measure. The HITAR is a score that evaluates how effectively
a worker is performing tasks assigned by a requestor on
MTurk. Consequently, we assumed that a higher HITAR
would lead to a higher DRW. To verify this, we performed
the following tests.

We prepared the first test to confirm that the DRW indexes
correlate with the HITAR. The DRW indexes include RT,
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7—point of Likert scale scores

FIGURE 6. Whisker box plots of the dimensions in USE for the two
groups. The proposed data preparation method (PM) showed higher records
than the existing expert method (OC) in all domains of the tests.

TABLE 2. Descriptive statistics of USE in the proposed data preparation
method and the existing expert method. Statistical description of proposed
data preparation method (P) and existing expert method (O).

o P Mean Std Min Max Skewness | Kurtosis

5.5 0.8 3.8 6.7 -0.4 -0.7
USE 41 14 15 6.4 -0.1 1.0

uu 5.6 0.9 34 6.9 -0.6 -0.3
4.7 1.4 1.0 6.9 -0.7 -0.3

UL 5.8 0.8 3.5 7.0 -0.9 0.1
4.0 1.5 1.5 7.0 0.2 -1.0

UE 5.6 0.7 4.3 6.8 -0.3 -1.2
4.0 1.4 1.5 6.5 0.0 -1.1

Us 5.2 1.1 24 7.0 -0.4 -0.5
3.6 1.7 1.3 6.7 0.3 -1.3

Note. N=42. Min = minimum; Max = maximum

TABLE 3. Related-samples Wilcoxon signed rank test of the dimensions in
USE of the proposed data preparation method and the existing expert method

Dimension N s.t.s. P

Usefulness (UU) 42 -4.327 <.001
Ease of Use (UE) 42 -5.196 <.001
Ease of Learning (UL) 42 -5.125 <.001
Satisfaction (US) 42 -4.848 <.001

Note. s.t.s = standardized test statistic

LSA, IR, and SR [[65]], [69]. Our objective was to organize the
DRW using empirical DRW indexes to allow simple calcula-
tion in the eCRF. Because the DRW is a subset of IER, we
built a questionnaire to calculate the DRW based on detecting
IER [69]. The questionnaire contained 60 items of the in-
ternational personality item pool—neuroticism, extroversion,
and openness (IPIP-NEO)—to calculate IR [91]. We also
added eight items of the infrequency IER scale to raise the
concentration level of the participants at the beginning of the
test and an SR item for the DRW score [70]], [92]. We placed a
self-input HITAR item box at the start of the questionnaire as
the LSA item. Thus, the questionnaire consisted of 70 items.
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To calculate the total sample size, we used a 0.13 expected
mean of the paired differences based on the results of our
operational test on the pilot platform, which used a total of
100 participants working in MTurk. We set a power of 95%,
a one-sided level of significance of 5%, and an equal group
size for sample size calculation [[86]. The calculated sample
size for each group was 153, and the total size was 306.
We recruited the participants using MTurk; that is, MTurk
workers took part in the study as participants. We divided the
participants into two groups, those with HITAR levels above
95 and those with HITAR levels below 90 (called 95SHITAR
and 90HITAR, respectively. Participants in the 95HITAR
group needed a record of more than 500 completed tasks
to participate. The purpose of this was to select participants
with an average of more than one year’s experience, given
that the average number of tasks completed in 2.5 years is
1,302, as analyzed in a previous study [93]]. Participants in
the 90HITAR group had no additional restrictions. This is
because the initial HITAR given is 100, from which points are
deducted when a task is not performed well. Participants read
the task description posted on MTurk. All the settings of the
test were identical for the two groups, except for the HITAR
levels. The endpoint of the test was set to the completion time
of the recruitment of one of the groups.

A total of 340 participants were involved in the test (see
Supplementary Data 2). Each group consisted of 170 par-
ticipants, and we considered that the number of participants
reflected the calculated sample size. According to the data
collected from the participants, we compared the average
value of the DRW and DRW indexes for each group. In all the
DRWs and DRW indexes, the 95SHITAR group scored higher
than the 90HITAR group (Figure a)). We conducted a
statistical analysis to understand the differences between the
two groups. Table [] displays the statistical description. The
DRW index values in the table were converted to CDF values
to calculate the DRW. The standard deviation (SD) in all
areas, except RT and LSA, showed similar values. The reason
was that the RT and LSA values of the 95SHITAR group were
very high. We calculated the cutoff values using the CDF
values obtained through the DRW calculation method. We
checked that only a range of values of approximately 0.5 or
more passed. We verified the statistical significance between
the mean values of the two groups using the independent
samples t-test. We performed a Levene’s test to consider
unequal variance in the t-test [94]]. The p-values indicate that
the results are statistically meaningful. In the two groups,
only the values of SR are similar. We presumed that the
mean value difference of SR was small; however, SR would
have only a small effect on the calculation of the DRW.
Furthermore, we calculated effect size, an indicator of the
amount of difference between the two groups [95]. Because
we were comparing two groups having the same sample size,
we calculated the effect size using Cohen’s d; the result was
close to a large effect (0.8) according to the interpretations of
Cohen’s d [96].

Then, we considered the correlation between the DRW and
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FIGURE 7. Correlation between data reliability weight (DRW) and the
Human Intelligent Task Approve Rate (HITAR). (a) Average DRW indexes of
worker groups classified by the HITAR; (b) correlation between the HITAR and
the DRW; c (d—g) correlation between the HITAR and the DRW indexes. *
signifies scaled values and ** normalized values.
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TABLE 4. Statistical description and independent samples t-test of individual reliability (IR), long-string analysis (LSA), response time (RT), self-report (SR), and
data reliability weight (DRW) of two groups having HITAR values greater than 95 and less than 90.

Index HIT.A.R Numl?er of Mean Star}d{ird Cutoff value t d.f. (degree of p Cohen’s d
condition participants deviation freedom)
>=95 0.582 0.232 o
DRW N/A 6.009° 338 <.001 0.652
<=90 0.425 0.251
. >=95 0.460 0.272
IR® 0.418 2.310 338 0.021 0.251
<=90 0.391 0.276
>=95 0.553 0.193
LSAc“ 170 0.473 6.690° 294.743 <.001 0.726
<=90 0.375 0.289
>=95 0.555 0.254
SR¢ 0.577 0.723 338 0.470 0.078
<=90 0.535 0.255
>=95 0.518 0.263
RT® 0.452 6.987° 263.457 <.001 0.758
<=90 0.357 0.146

Note. @ is not applicable. b: the t-test result was reported on the unequal variances based on the Levene test. : the value is normalized by CDF.

the HITAR values. The obtained HITAR values presented
high skewness (-2.138), because the HITAR average we
obtained had a relatively high value of 83.91. To improve
the performance of the data analysis and the interpretation,
we established a binning strategy. We thus divided the data
group by the same frequency and smoothed the grouped
data values to the average value. Specifically, the actual data
processing was as follows. We sorted the 340 data items of
the participants based on the descending order of their HI-
TAR values. We grouped the data items into groups of 10 as
frequency and averaged the HITAR, DRW, IR, SR, LSA, and
RT values. Based on these groups, we ranked the HITAR and
took the reverse order. Thirty-four participants did not enter
the HITAR values correctly, and 6 data items of participants
remained ungrouped. Accordingly, we removed 40 data items
and divided the remaining 300 data items into 30 groups.
To examine the effectiveness of the binning, we used an
information value (IV) that expressed the overall predictive
power [97]]. The measured IV value was greater than 0.3
(0.465), and thus, we determined that the binning was good.
Based on the binning, the data obtained showed significant
results that indicated a noticeable correlation between the
DRW and the HITAR values (Figure [7(b)—(g) ). The DRW
and HITAR results also present an interesting correlation
score (r=0.696, p < 0.001). In summary, we validated that
the DRW correlates with the HITAR and thus can be used as
a reliability measure.

C. OBSERVATION OF FUTURE REWARD DISTRIBUTION
EFFECT

Recent studies have confirmed that systems with immediate
virtual rewards positively affect continuous data collection
[98]], [99]. However, we evaluated the validity of a reward
distribution system that gives rewards to participants in the
future, rather than immediately. We show the validity as the
correlation between rewards and the DRW. Accordingly, we
evaluated the following scenario, in which the future reward
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system of our platform is seen to increase the participation
rate.

We created a simulation environment in MTurk to reduce
the observation time that exists in the real world. In a real-
world study of the reward distribution effects, a significant
time would have been required to collect the data and cases.
For example, PatientsLikeMe has required approximately
five years to collect a sufficient number of cases, which was
related to the extent of the site use to show the benefits
to communities [[30]. Thus, we conducted two tests in the
simulation environment. We designed one test in which infor-
mation about the reward distribution in the future (as in our
platform) was provided. In the second test, this information
was not provided. The remaining settings were the same for
both tests. For the sample size calculation, we conducted a
pilot test with 100 participants in MTurk. We obtained an
expected mean of the paired differences of 0.11 and an SD
of the results of the pilot test of 0.25. Based on the results,
we calculated the sample size as 168 in each group to have
a power of 95% and a one-sided level of significance of
5% [86]. The total sample size was 336. Then, we used a
questionnaire for data reliability validation and weights for
consistency comparison, except in the case of the HITAR.
However, we needed to consider the casual observation char-
acteristics of MTurk workers, because in this experiment,
there was no HITAR constraint [[100]]. Therefore, we added
five questions that induced the participants to enter as many
words as possible in the LSA index of the DRW [65]].

We recruited 336 workers from MTurk to participate in
the test. We allocated 168 workers to the test that contained
future reward information (RI condition) and 168 to the
test without future reward information (NRI condition). We
designed the test to be completed within two hours and
recorded the test start and end times for each worker to obtain
the RTs. We successfully collected data from 336 workers
(Supplementary Data 3). First, we analyzed the effect of RI
on the self-reporting rate using a two-way ANOVA test. Table
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TABLE 5. Statistical description and independent samples t-test of individual reliability (IR), long-string analysis (LSA), response time (RT), self-report (SR), and
data reliability weight (DRW) of groups receiving and not receiving future reward information.

Index Rew'a.r d Numl?er of Mean StaI.ldé.il‘d Cutoff value t d.f. (degree of p Cohen’s d
condition participants deviation freedom)
True 0.605 0.291
DRW N/A® 4.127° 334 <.001 0.450
False 0.472 0.301
True 0.492 0.284
IR€ 0.511 -0.697 334 0.486 0.076
False 0.513 0.291
True 0.538 0231 0.47,0.47, \
LSA¢ 168 0.48, 0.42, 4.671 331.783 <.001 0.509
False 0.415 0.251 0.49
True 0.541 0.211
SR¢ 0.574 0.576 334 0.565 0.063
False 0.528 0.215
X True 0.516 0.246
RT¢ 0.485 3.259 334 0.001 0.356
False 0.427 0.250

Note. ®: not applicable. °: the t-test result was reported on the unequal variances based on Levene’s test. °L: the value is normalized by CDF.

[6lindicates that the reward condition showed interaction with
consecutive LSA items and is statistically significant at an
alpha level of 0.05 (p = 0.008).

TABLE 6. Two-way ANOVA test of the interaction of the reward condition and
long-string analysis (LSA)

Source Sum d.f. Mean F-value p
square square
LSA 30.180 4 7.545 93.083 <.001
Reward 4.688 1 4.688 57.836 <.001
Interaction*  1.119 4 0.280 3.451 0.008

Note. *: the interaction of reward condition and LSA.

In other words, we found that consecutive LSA items un-
der the RI condition consistently contained many characters,
and we inferred that the RI condition improves the rate of
self-reporting as compared with the NRI condition. Further,
we found that the average DRW of the RI condition was
0.605 and that of the NRI condition was 0.472 (Figure [g).
Table [5] shows the significant difference between the DRW
values of the RI and NRI conditions (p=0.03). Figure [§]
presents that DRW(SR), DRW(LSA), and DRW(RT) of the
RI condition also have higher average values than those
of the NRI condition. Table [5] provides detailed statistical
information. The DRW index values in this table are values
converted to CDF to calculate the DRW. DRW(IR) showed
a low average result in the RI condition. However, we in-
terpreted this as an indication that the effect size (0.076) of
the index was too low to affect the DRW results, as shown in
Table[5] We presumed that this occurred because the selection
of the workers was not controlled by their HITAR. Interesting
cases were found for both RT and LSA. Both indexes show
high average DRW values and a significant difference, as can
be seen in Table 5] In particular, we configured the DRW
method to measure RT and LSA only in the data type eCRF,
and we could confirm that the configuration was appropriate
according to the effect of rewards on continuous data collec-
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FIGURE 8. Reward distribution effects. Each average score of the data
reliability weight (DRW) index for all workers per test.

tion. Thus, we concluded that the reward distribution not only
increased the DRW but also helped improve the sustainability
of the data collection platform.

D. COMPARISON OF OVERALL PLATFORM FUNCTION
We developed “Collaborative research for us” (CORUS,
https://corus.kaist.edu) as a pilot data collection platform for
participatory trials. The design of CORUS is based on the
EDC for existing clinical trials, but it facilitates the design of
a study and provides services to allow users to participate
voluntarily and continuously in the data collection for the
study.

In this section, we analyze the features of CORUS and
compare them with those of other systems in detail. For spe-
cific comparisons, we selected programs mentioned or used
in studies presented in journals related to clinical research
from 2012 to 2019, which we described in the introduction
section. We summarize the comparison results in Table[7]and
provide the details in the following subsections.

1) Comparison of CORUS with clinical trial systems

CORUS includes a protocol creation feature for interpretable
data preparation that the public can easily use without the
help of experts. In the platform, the creator can utilize the
clinical trial protocol database feature according to the se-
mantically related symptom of the effectiveness of healthcare
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TABLE 7. Comparison of platform functions and features of participatory, pragmatic, and clinical trials in terms of reliable data collection

Participatory trial
Platform Usable Category | Pragmatic trial
Clinical Trial
Google Play
Transparenc . . . . Amazon NHS /
Program Name Rave EDC | 1 i "o ences | TrialChain | PatientsLikeMe | ro APPer | Store / Apple | poveanoin | corus
[22] 23] [101]] 130] Turk [31] App Store 37, [33]
[33], [34] ’
g Clinical protocol
S
g database O x X X x X x O
3
o
&
£ Protocol creation A A X X X x X O
[a)
oh Falsification
=
'g prevention x x o x x x x o
E
<
A Y
Data reliability y % % % < % y O
weight
o0 Participation
=
g reward x x x X O X x O
G
8
<
A Data distribution O O O O O O O O
g Study management O O O O O X X O
2
=
g Subject
% o O O O O X X X O
management
Clinical
monitoring o o O o x x x o
Community X X X O X x X O
. Expert, . Expert,
Target user group Expert Expert Expert Expert, Public Public Public Expert Public

applications. Moreover, the creator can obtain feedback from
the study participants within the community feature, which
allows the creator to enhance the protocol in the future.

2) Comparison of CORUS with pragmatic trial systems

The protocol creation feature of CORUS provides inter-
pretable and straightforward data preparation for public
users. The system features of CORUS help users lead a study
without requiring expert knowledge. Moreover, CORUS has
the DRW feature that automatically calculates the reliability
scores of collected data to ensure reliable data collection. The
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scores constitute an objective value that does not include the
subjective intention of the study creator. We also developed
the scores to evaluate the effectiveness score of applications
in further studies of the data storage stage.

3) Comparison of CORUS with other participatory trial
systems

We developed CORUS as a participatory trial platform. The
data preparation features of CORUS prepare data collection
such that immediate data analysis can be performed. Post-
processing for unformatted data is not necessary on these
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features. The features minimize the flawed study design bias
[36]. In addition to the DRW feature, the data falsification
prevention feature prevents transfer bias by not revealing the
collected data to the participants during a study. CORUS, a
participant-driven platform, also supports additional analysis
for the use of experts. Standardized data sharing is an essen-
tial feature for validating the effectiveness of an application.
Cryptocurrency is a distinctive participation reward feature
of CORUS. We connected CORUS to an external blockchain
to encourage participants to share their data continuously.
Participants can earn a future reward based on their data
input. CORUS calculates the participants’ portion of the
total cryptocurrency of a study based on the DRW of their
input. Thus, the participation reward can induce continuous
engagement and reliability.

A common limitation of all the platforms mentioned,
except CORUS, is the data falsification problem. The pos-
sibility of falsification of the data collected during a study,
whether intentional or unintentional, exists in all platforms
[ro2].

TrialChain uses a blockchain to solve the problem [101].
We classify TrialChain as an EDC system based on the ex-
planation of the platform. Thus, we consider that TrialChain
is difficult to use in a participatory trial. CORUS also uses
blockchain technology. We developed a data falsification
prevention feature based on the data immutability character-
istics of blockchain technology [74]. The feature solves the
problem of data falsification.

VIl. CASE STUDY: OPERATIONAL TEST OF THE PILOT
PLATFORM

The creators of projects post introductions to their project on
the platform and users can select a specific project in which
they wish to participate. Thus, they can easily participate in
their preferred projects. Participants enrolled in a project can
immediately participate in the trial and easily report data. The
platform also encourages participants to daily report their
data by using features such as leaderboards and alarms.

We conducted an operational test to observe the data col-
lection capabilities of the platform under actual participatory
trial conditions. The objective of the trial project used in the
test was to confirm that an application that enables blue light
filters on smartphones can help improve sleep disorders. Al-
though previous studies showed a relation between blocking
blue light from other sources and improvement in certain
sleep disorders, to the best of our knowledge, it has not been
clinically confirmed that blue light filters on smartphones
or other mobile devices have the same effect [[103]]. The
recruitment goal of the trial project was 100 participants.

We designed the participatory trial project and posted it
on the pilot platform. In the trial, participants were asked to
apply the blue light filter, which blocks blue wavelength light,
on their smartphones and report changes in the quality of
their sleep. The data that were collected showed no evidence
of the effectiveness of the application.

14

In addition to validating technical issues, we also validated
that the system could effectively recruit participants for the
trial. The scheduled duration of participant recruitment was
one month; however, the actual rate of recruitment was faster.
In total, 100 participants were recruited in 21 days. We
compared the rate of recruitment in this experiment with
those found in previous studies. To represent the rate of re-
cruitment among trials, the recruitment rate is defined as the
number of participants recruited per month (or participants
per center per month, in the case of multicenter trials). In 151
traditional clinical trials supported by the United Kingdom’s
Health Technology Assessment program, the recruitment
rate was 0.92 [104]. According to the reports of 8 Web-
or mobile application-based studies collected from literature
databases, an average of 468 participants were recruited
during 5 months (recruitment rate = 93.6) [105]]. For the
platform, the recruitment rate was 142.8. This shows that
participant recruitment was more effective when the platform
was used than that achieved in traditional clinical trials; it was
also competitive with that achieved in other Web- or mobile
application-based studies. The response rate also tended to
increase over time after the beginning of the project period.
The response rate increased to 120% on recruitment days
17 and 18, when many new participants were enrolled, and
remained high for a significant time period (Figure [9).
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FIGURE 9. Recruitment rate and comparison analysis. (a) Recruitment
and response rate during one month in the platform trial project; (b) participant
rates among clinical trials (CLs), pragmatic trials (PRs), and participant trials
(PAs) based on the evidence presented in the literature

VIIl. DISCUSSION

Our method and platform are of technical value in that
they constitute a combination of various independent and
unrelated methods. We integrated a clinical trial protocol
and database, semantic correlation calculations, blockchain,
survey data evaluation, intrinsic and extrinsic motivation of
human behavior, cloud computing technology, and software
engineering methods into a participatory trial platform to
assess the effectiveness of healthcare applications. Although
many types of participatory trials exist, such as crowdsourc-
ing and crowd-science, these approaches still have critical
limitations for unstructured data collection and data sharing.
We suggested a new participatory trial concept, where the
beneficial characteristics of crowd-science and crowdsourc-
ing are combined. Then, we proposed a solution to solve
problems in the interpretable data preparation, systematic
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data storage, and sustainable data sharing stages. Our method
and platform are of great value, because they present a pri-
mary technique that can be used to validate the effectiveness
of various healthcare applications.

The minimization of bias that occurs intentionally or un-
intentionally at all stages of data collection is an additional
important factor in ensuring data reliability. We identified
and considered each source of bias in the data collection
stages according to the relevant research studies [36], [106].
At the data preparation stage, we addressed the problems of
flawed study design, channeling bias, and selection bias. We
attempted to prevent flawed study design by using the exist-
ing clinical trial protocols. We minimized channeling bias,
which leads to the inclusion of only specific participants, by
applying the unconditional eligibility criterion that anyone
can participate in a study. The editable eligibility criteria of
a creator, such as gender and age, still need to be considered
to resolve the channeling bias issue. However, the selection
bias, which can distort the data tendency, was not considered.
This is a difficult problem to solve in the field of Web-based
data collection [[107]. As a solution, we propose a social
relationship distance estimation method to maintain a certain
distance between participants. A social network estimation
method of participants to calculate the closeness rank among
participants is an example method for excluding participants
having a certain distance or less between them [108[]. At the
data storage and data sharing stages, we included interviewer
bias and transfer bias. The interviewer bias refers to the
potential influence on the participants derived from the data
collector. Our data storage method involves only mechanical
data collection functions, and therefore, we assumed that
interviewer bias did not occur. However, we do not include
a preventive measure against interviewer bias caused by the
study description or the eCRF items that a creator manu-
ally generates. The solution is to clearly define the digital
biomarkers that a creator seeks to evaluate for determining
the effectiveness of a digital healthcare application [109].
Further research and the consensus of experts are required to
enable standardized participatory trial protocols with digital
biomarkers. A transfer bias could be caused by data exposure
at the data storage stage and by the possible influence exerted
by the stored data on other participants. We avoided this
source of bias by preventing exposure of the stored data
during a study. Finally, we did not consider the bias generated
at the data analysis stage, because it is outside the scope of
this study, which considers only data collection methods.

There are additional considerations that may improve our
platform. First, the current platform cannot provide a quan-
titative comparison of the search results of the clinical trial
protocol. The platform takes the symptom provided by the
creator and returns all the relevant clinical trials. However,
many comparable clinical trials are provided as a search re-
sult, and additional analysis by the creator is required. In clin-
ical trials, various types of data—not only symptoms but also
genes and chemical compounds—appear. This information
can be used to retrieve the clinical trial data required by the
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user. If an advanced platform is developed in the future that
can quantitatively assess the relevance of all data involved in
the clinical trial, it will reduce the additional analysis burden
on the creator. Second, advanced DRW methods should be
developed. For example, the basic DRW is used to assess
the reliability of the input data based only on the length of
the input text, as in LSA. In other words, it cannot consider
semantic errors in the input text. Therefore, an advanced
method that considers semantic errors in the text is required.
In addition, we face a cutoff value calculation problem when
the SD is O from the collected data of a DRW index. We
solved the problem by using a predefined minimum cutoff
value on the platform; however, we need to improve this
approach so that we can actively determine the cutoff values
that are suitable for the collected data. Third, we will devise
an optimal strategy to reduce the cost of running the platform.
Fourth, an additional study is required to verify the platform.
We plan to conduct a small-scale pilot study to examine
whether the study results are the same as the verified effects.

All these limitations should be considered for further ex-
periments or improved computational methods. Moreover,
we suggest further studies, because data collection methods
are the basics of the digital healthcare field, which is currently
progressing exponentially. The suggested study objectives
are as follows. (1) The development of a standard for a par-
ticipatory trial protocol method that considers digital markers
and confounding factors. (2) The advancement of protocol
creation methods for the determination of specific param-
eters, such as the number of use, effective report counts,
study duration, or the number of participants. (3) The use
of natural language question models to generate DRW index
questions instead of human-managed templates. (4) Opti-
mization of the DRW calculation with the importance value
of each index. (5) Implementation of an effectiveness score
calculation method based on the collected data with DRW
scores. These further improvements and future studies would
allow our platform to be used as a valuable tool to assess
the effectiveness of various applications in a cost-effective
manner.

IX. CONCLUSION

As the first stage of the verification workflow to assess the
effectiveness of digital healthcare applications, we proposed
a reliable data collection method and platform. We presented
a participatory trial concept for a new type of data collec-
tion trial that uses the voluntary participation of end users
of digital healthcare applications. Then, we described the
essential methods of the reliable data collection platform
based on the participatory trial concept. Our interpretable
data preparation methods consist of a protocol database and a
retrieval system to allow a person to create a protocol without
expert knowledge. We validated the simplicity of the methods
by comparing the USE scores of the proposed system and the
existing system. We developed a DRW calculation method
for systematic data storage. The DRW score was shown
to be a reliable measure through its correlation with the
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HITAR. To achieve sustainable data collection and sharing,
we developed a reward distribution method. We indirectly
observed the effect of rewards using the DRW. The effect of
rewards presented as an increased DRW; i.e., it increased the
participants’ effort and thus achieved sustainable data col-
lection. Finally, we implemented a pilot platform, CORUS,
which integrated all the methods and essential features for
a participatory trial platform. We compared its features with
those of existing platforms in the field of clinical, pragmatic,
and participatory trials. We assert that CORUS has all the
necessary features to collect reliable data from the users of
digital healthcare applications on the path to the validation of
their effectiveness.

CODE AVAILABILITY

We will provide all the source code at https://github.com/
bisllaboratory/corus upon publication. The platform is open-
source to promote development in the public domain. The

repository describes software requirements and distributes a
README.MD file.
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