Enveloping Implicit Assumptions of Intrusive Data
Structures within Ownership Type System

Keunhong Lee

Jeehoon Kang

Wonsup Yoon

School of Computing School of Computing School of Computing
KAIST KAIST KAIST
khlee@an.kaist.ac.kr jeehoon.kang@kaist.ac.kr wsyoon@an.kaist.ac.kr
Joongi Kim Sue Moon
Lablup Inc. School of Computing
joongi@lablup.com KAIST

Abstract

Intrusive data structures (IDSes) are heavily used in system
programming, where achieving high performance is one of
the most important design goals. Yet, they are not supported
in today’s ownership type system that offer memory-safety
without garbage collection. Instead, IDSes force program-
mers to choose either unsafety or runtime overhead. This
limitation stems from the implicit assumptions pertaining to
the memory layouts and access patterns created by IDSes.

In this paper, we propose a new technique, referred to
as ownership pooling, which defines ownership for IDSes.
Ownership pooling consists of three new types, FieldOf,
OwnershipPool, and Shared, and their conversion rules.

We implemented the proposed types within Rust’s type
system and compared its performance capabilities against
the existing memory-safe implementations and the C++ im-
plementation without memory safety as baseline. The perfor-
mance of our implementation shows far better performance
than that of the existing memory-safe ones and comparable
to that of C++ implementation without memory safety.

1 Introduction

Type-safe languages' provide improved safety guarantees
by eliminating memory bugs such as use-after-free, memory
leak, and null dereference. Despite their safety guarantees,
they are not as widely adopted as C/C++ in the systems

!n this paper, type-safe language refers to a strongly-typed and memory-
safe language.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PLOS’19, October 27, 2019, Huntsville, ON, Canada

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7017-2/19/10...$15.00
https://doi.org/10.1145/3365137.3365403

16

sbmoon@kaist.edu

community, because most of them rely on garbage collection
that causes performance degradation. Rust, a recently devel-
oped memory-safe language, offers memory safety without
the runtime overhead of garbage collection. Rust is used in
microkernels such as Redox and Tock [6, 10], a web layout
engine [14], and network virtualization frameworks [11, 12].

The key component of Rust’s memory safety without
garbage collection is its ownership type system. Ownership
type systems require a language to define a unique, non-
cloneable handle for every object and corresponding own-
ership transfer rules for every operation. The ownership
type system then enforces the condition stating that the con-
straints of the ownership type be met over every operation.
Rust’s ownership type system was built for standard data
structures and synchronization primitives. However, an own-
ership type system has not been built for all types of data
structures. One prominent exclusion is the intrusive data
structures (IDSes).

IDSes are common. Especially, most data structures in the
Linux kernel code are intrusive. They do not allocate their
own metadata (e.g., the prev and next pointers in linked lists)
and require the elements to contain the metadata. Thus, the
insertion or removal of an element takes place without mem-
ory allocation or deallocation. They require fewer pointer
indirections, as pointer offsets are used instead. Due to these
performance advantages, IDSes have been widely used in
operating systems, database systems, and game engines.

Despite their importance in system programming, no own-
ership type is clearly defined for IDSes due to their implicit
assumptions regarding the memory layout and access pat-
tern. In this work, we review their operations and extract
implicit assumptions. By articulating these assumptions in
new types, we encapsulate the ownership of IDSes within the
confine of Rust’s type system. First, we propose the FieldOf
type to capture in-memory representations of IDSes. Sub-
sequently, we use the Shared type to represent reference-
counting pointers without claiming ownership. Lastly, we
introduce the OwnershipPool type to declare an effective
owner of the elements of IDSes. On top of the three types,

https://doi.org/10.1145/3365137.3365403

N o s W

PLOS’19, October 27, 2019, Huntsville, ON, Canada

we built such IDSes as linked lists, red-black trees, and con-
current stacks. In our evaluation, we show that our IDS im-
plementations perform better than the existing memory-safe
solutions and comparable to C++ implementation without
memory safety.

2 Background of Type Systems
2.1 Types and Conversion Rules

A type system consists of a set of types and corresponding
conversion rules defined over every expression. In C/C++,
int and double are the types and (int) + (double) ->
(double) is one of the conversion rules for addition expres-
sions. Types also dictate constraints that must be preserved
during type conversions. In the above example, the type int
declares that the variable’s 4-byte memory be treated as a
signed 32-bit integer while double dictates that the 8-byte
memory is treated as a 64-bit floating number.

However, C++ does not guarantee that a memory segment
adheres to conversion rules of a specific type. We present
the following example.

1.0;

double a =
= *((long=*)&a);

long b

In the first line, the variable a is declared as a double-precision
floating number and 8-byte memory is allocated accordingly.
In the second line, the memory is treated as a 64-bit inte-
ger. Thus, the value of b becomes undefined, depending on
the floating number representation and the host system’s
endianness.

2.2 Type-Safe Language

A type-safe language imposes strict conversion rules so that
a variable’s type is preserved through operations and ev-
ery operation output is well-defined. Let us examine how
type-safe programming languages enforce conversion rules
among types. We use two types, Nullable and NonNull,
found in most type-safe (and strongly-typed) programming
languages?. The type invariants of the two types follow
their names: Nullable may be a null pointer, while NonNull
should never be a null pointer. Their conversion rules dictate
that the invariants are never violated.

It is straightforward to consider that a conversion from
NonNull to Nullable is safe, as shown below.

NonNull x;

Nullable y = (Nullable)x; // always safe

The conversion in the opposite direction is not safe and is
only allowed under the conditions defined below.

if y !'= Null {

NonNull z = (NonNull)y; // conditionally safe
} else {

Nullable z = y;
3

20ptional type plays a similar role in some languages. e.g.,std: : optional
in C++17 or java.util.Optional in Java8

P I Y N

17

Keunhong Lee, Jeehoon Kang, Wonsup Yoon, Joongi Kim, and Sue Moon

Note that the single line of type casting, line #2, is a safe
conversion only because x is declared as NonNull. For any
variable y, line #4 alone is not a safe conversion and if-else
in lines #3-7 enforces NonNull’s invariant. We say that an
operation is safe when a type’s invariant is enforced through
an operation itself, and is unsafe when it is not. The above
conversion contains a single (potentially) unsafe statement,
but the code block becomes safe due to the if-then-else con-
struct.

2.3 Memory Safety

Memory-safety is the major reason behind the broad adop-
tion of type-safe languages, as such languages eliminate
potential memory bugs, including null dereference, use-after-
free, double free, and memory leak. We demonstrate how
memory-safety is enforced by adding two additional conver-
sion rules to the above examples.

First, we add a rule that Nullable should never be deref-
erenced. A Nullable variable may reference a valid object.
If this rule is enforced, such a variable should be converted
beforehand to NonNull before being dereferenced. The com-
piler of a type-safe language enforces this conversion rule.

The second rule to add is that NonNull should always
point to a valid memory segment. The previous rules should
enforce the pointer so as not be null in dereferencing cases,
but there is no guarantee that the pointed address is not only
not null but valid. The easiest way to enforce this constraint
is to use a garbage collector. This is why most type-safe
languages rely on garbage collection, leading to performance
degradations.

2.4 Rust and the Ownership Type System

Rust, a type-safe language designed for system programming,
relies on an ownership type system to ensure the validity of
pointers and prevent memory leaks. Here, we briefly explain
the basic concepts of an ownership type system. Ownership is
a type by which every variable must have exactly one owner.
In Rust, ownership is implemented as a unique handle onto
the memory segment of a variable. As the ownership type
system tracks ownership at compile time, Rust programmers
do not worry about races, as ownership ensures exclusive
access to a variable and because the Rust compiler automati-
cally frees a variable without the potential risk of use-after-
free. The following C++ example and the succeeding Rust
example demonstrate the difference between Rust’s mem-
ory management and simple RAII (Resource Acquisition Is
Initialization) objects [13].

vector<A> vec;

{
A a;
vec.push_back(a); // A's copy constructor
a; // a is still accessible

}

// A's destructors invoked twice; vec's once

P I N

B S N

Enveloping Implicit Assumptions of Intrusive Data Structures within Ownership Type System

According to the above C++ example, inserting an element
into a vector invokes a copy constructor. At the end of the
code, a is destroyed, and its copied object pushed into vec
is destroyed along with the containing vector’s destructor.
At this stage, we can write the same code in Rust as shown
below:

let mut vec =

{
Aa = A{};
vec.push_back(a); // a's ownership moved to vec
// a; // a is not accessible

3

// A's and vec's destructors invoked once each

vec![];

In Rust, inserting an element at line #4 moves the element’s
ownership to the containing vector. Thus, a is no longer
accessible and its destructor is not invoked after the scope
ends. A’s destructor is invoked when the containing vector
is destroyed. The above comparison demonstrates clearly
how the ownership type system enforces the ”safety” of a
variable by enforcing single ownership through insertions
and removals in and out of data structures.

3 Ownership Pooling for an Intrusive Data
Structure

IDSes have operations that are not represented by existing
ownership type systems. The challenge lies in the complex
memory layout and implicit rules to follow when accessing
them, such as pointer offsetting. In the current version of
Rust, IDS ownerships are not handled by the type system
and are implemented using locks, incurring major runtime
overhead.

In this section, we introduce the ownership pooling tech-
nique that explicates memory layout information and defines
ownerships for IDSes. It includes new types, constraints, and
conversion rules that comply with existing ownership type
systems. Next, we begin with a new type that captures the
implicit assumptions pertaining to the memory layout.

3.1 FieldOf: Captures memory layout

The memory layout is a crucial piece of information related
to the operation of an IDS. Unlike non-IDS cases, IDSes use
this information to convert an entry to an element, and vice
versa. First, we describe how this information is handled
without a type system in an intrusive doubly-linked list.

struct Element {

int data; ListEntry entry;
} elem;
struct Element e = {0, {0,
list.push_back(&e.entry);
struct ListEntry* tail_m = list.tail();
struct Elementx tail = (charx)tail_m - OFFSET;

0}};

[B N

PLOS’19, October 27, 2019, Huntsville, ON, Canada

In this example, we insert an element at the tail of an intru-
sive list and retrieve the tail element. Below we point out
line by line (#4-#7) how IDSes differ from non-IDSes.

1. Metadata is initialized along with e, not via an explicit
APL

2. push_back() takes &e.entry as an argument, not e
or &e.

3. tail() returns ListEntryx, not Elementx.

4. (tail_m - OFFSET) always points to a valid Element.

The last point is not an enforcement, but rather an assump-
tion that a programmer makes about the memory layout.
Thus, programmers using IDSes must pay close attention to
the memory layout; this assumption is not clearly enumer-
ated in any type.

We introduce the FieldOf type, which explicitly denotes
the memory layout information of an IDS. It forces the pro-
grammer to outline the memory layout and prevent unde-
fined behavior. We use it as a replacement for entry pointers
such as ListEntryx.

FieldOf is a 3-tuple of the element type, the IDS entry
type, and the offset. It represents the constraint stating that
the pointer of an element type plus the offset points to the
IDS entry type.

struct Element {

int data; ListEntry entryl; ListEntry entry2;
} elem;
FieldOf<Element, ListEntry, 4> xel = &elem.entryl;
FieldOf<Element, ListEntry, 20> *e2 = &elem.entry2;

Lines #6-7 above replace naive pointers with specific point-
ers with memory layout information. Following conversion
rules enforce the above constraint.

1. ((charx)Elementx + 4) and (FieldOfx*) are inter-
changeable
2. (ListEntryx) and (FieldOf*) are interchangeable

Note that the third offset parameter not only dictates the
memory layout but also disambiguates the fields with the
same entry type.

3.2 OwnershipPool: Declares an effective owner of
elements’ data fields

At this point, we discuss the effective ownership found in
common use cases of IDSes. For non-IDSes, a data structure’s
ownership states that the container has the ownership of
the enclosed elements. We access the elements of a non-IDS
while iterating through the data structure.

For IDSes, the container does not have exclusive owner-
ship of its elements, as an element contains multiple IDS
entries and no IDS can claim exclusive ownership of an ele-
ment. For instance, the task_struct structure, which man-
ages all threads and processes of Linux, contains as its fields
more than 20 IDS metadata entries, each of which is used

18

3This tuple of types is represented as ‘Traits” in Rust.

[R . B I R

PLOS’19, October 27, 2019, Huntsville, ON, Canada

struct List {
— struct ListEntry *head;

struct ListEntry *tail; —
I

struct Element {

struct Element {

int data; int data;
ListEntry { <—| |——> ListEntry {
—— struct ListEntry *prev; struct ListEntry *prev;
struct ListEntry *next; -J struct ListEntry *next;

} entry; } entry;
I 1

(a) Memory layout of an intrusive doubly-linked list

Keunhong Lee, Jeehoon Kang, Wonsup Yoon, Joongi Kim, and Sue Moon

struct List {
— struct ListEntry *head;
struct ListEntry *tail; —

};

| struct ListEntry { | | struct ListEntry {

struct ListEntry M‘—struct ListEntry *prev;
| struct ListEntry *next; | struct ListEntry *next;
| struct Element *elem; | | struct Element *elem;
o T R e |
struct Element { struct Element {
int data; int data;

}; b5

(b) Memory layout of a non-intrusive doubly-linked list

Figure 1. Memory layout of intrusive and non-intrusive lists. The solid box represents the memory chunk allocated by
programmers and the dashed box represents allocation inside the list library.

for managing lock-wait lists, scheduling queues, or process
hierarchy.

// OwnershipPool ownership_pool;
for (auto it = list.iter(); it != end;
struct ListEntry* ptr = *it;
struct Elementx e_ptr = (charx)ptr - OFFSET;
// if (ownership_pool.is_owning(e_ptr)) {
e_ptr->data += 1; // possible races

++it) {

/73

Though exclusive ownership is not guaranteed, looping
through an list’s element is easily found in the Linux kernel,
e.g., iterating through task lists inside a scheduler. Line #6
includes the potential risk of races; however it does not incur
any race in actual use cases. From a careful observation, we
learned that safety does not come from the list itself, but
from an understanding of the abstract task that the list is
designed to perform. For a scheduler, there are a number
of distinct queue structures managing multi-level priority
scheduling, a least recently used (LRU) list, or a sibling list
for sibling processes. However, each list and queue refers to
the entry field assigned to itself and does not refer to other
data fields at all. In terms of ownership, the ownership of
e.data does not belong to one of the scheduling queues but
belongs to the scheduler containing all of the queues. In a
way, the schedule is the effective owner of the data fields
(e.data).

We propose a new type, OwnershipPool, which repre-
sents the effective ownership of elements. Exclusive access
to an element’s data field is guaranteed by the constraint
in line #5, as noted in the previous example. We propose
the following type constraints and conversion rules for the
effective ownership of elements.

1. An element relinquishes its data ownership to a pool
upon joining the pool.

2. Subsequent joins to other pools must fail.

3. A reference to a pooled element must not be derefer-
enced.

[N

19

4. Among the elements of a single pool, only one element
can be upgraded at any time for data modification.

3.3 Shared: Denoting shared ownership without
accessibility

Though an element is composed of dozens of entries shared
among multiple IDSes, the whole element occupies a single
memory allocation unit and individual entries cannot be
allocated nor deallocated separately. Nonetheless, each indi-
vidual entry owner must ensure the liveness of the enclosed
memory segment.

{
struct Element e = {0, {0,
list.push_back(&e.entry);
}Y // e is destroyed here.
list.tail(); // use-after-free

0}};

The element (e) is destroyed at line #4 and its memory seg-
ment is deallocated. The list encounters use-after-free when
the deallocated element is accessed. We choose to use refer-
ence counting to ensure the liveness of a memory segment,
increasing the reference count by 1 as each IDS entry field
claims its corresponding liveness?.

Additionally, the reference (&e.entry) used to invoke the
insertion operation, overclaims the ownership of e while
the list operation never accesses the other parts of e. De-
spite the fact that the reference is marked as read-only, one
cannot claim exclusive write access (i.e., ownership), as do-
ing so would run the risk of undefined behavior of other
readers. Thus, we propose a new type, Shared, a reference
counting pointer without read access. While Shared does
not have read/write access by default, a Shared variable is
promoted to a readable/writable reference according to the
type conversion rules of OwnershipPool.

“The other choice is to create a destructor that removes an element from its
enclosed list. We may implement such self-removal algorithm for a doubly
linked list, but this approach is not general for every data structure such as
a singly linked list.

N

Enveloping Implicit Assumptions of Intrusive Data Structures within Ownership Type System

OwnershipPool’s conversion rules require runtime ver-
ification of the inclusive relationship between a Shared
and an OwnershipPool. Our implementation on Shared and
OwnershipPool provides the efficient verification of the in-
clusive relationship.

template <Element>

struct Shared {
atomic_int refcount;
Element elem; }

atomic_int pool_id;

struct OwnershipPool {
atomic_int id; }

A Shared structure reserves an additional integer along with
the reference count. This integer marks which ownership
pool to which it belongs. We use a monotonically increas-
ing integer to ensure an ownership pool’s uniqueness con-
straint. Below are the detailed conversion rules between a
Shared and an OwnershipPool extended from that of the
OwnershipPool type.

1. pool.register(shared) succeeds when shared’s
pool_idis not set. shared.pool_id is set to pool.id
upon successful registration.

2. A pair of (pool, shared) returns &shared.elem.data
when pool.id shared.pool_id.

3.4 Ownership verification on IDS side

We separated the ownership of the data field and the other
metadata fields to protect the metadata from being corrupted
by programmers. However, a metadata entry incurs competi-
tion for its ownership among the IDSes using the entry. We
demonstrate this point using the code below.

list1.push_back(&e.entry);

list2.push_back(&e.entry); //Error

The second insertion invalidates the list invariant of 1ist1

and thus should be forbidden. A list modifies the internal
metadata (prev, next) of e.entry, requiring the owner-
ship of the entry field. However, the ownership is transferred
to list1 and the second insertion cannot obtain the own-
ership. We leverage the actual implementation of the own-
ership representation to the implementation details of an
IDS. In general, OwnershipPool can be used to represent
such ownership relationship, however there are additional
optimization opportunities depending on the data structure
algorithm. For instance, a data structure without removal op-
eration can represent its ownership with a simple null-check
to determine whether this metadata entry is already used by
another IDS.

4 FEvaluation

In this section, we evaluate our IDS implementation against
existing memory-safe implementations and naive implemen-
tation without memory-safety. We choose a doubly linked as

20

PLOS’19, October 27, 2019, Huntsville, ON, Canada

the most common and popular use cases of IDSes. The Rust
standard library, denoted by Standard, offers non-IDS imple-
mentations of lists. The Rust library, intrusive_collect-
ions [4], denoted by Intrusive, contains straightforward im-
plementations of an IDS list. To represent the baseline per-
formance (operations per unit time), we use Boost’s C++
IDS implementation. In order to maximize its performance,
it does not use any safety features, thus representing the
upper bound of the performance as every operation in this
implementation is unsafe and incurs no runtime overhead.
Our evaluation scenario is set in a multi-threading en-
vironment. Lists run in a single thread but their elements
are shared among other threads, which is a common sce-
nario in many implementations, such as Linux’s struct
task_struct and Tokio’s struct Entry. Existing memory-
safe implementations use an atomic reference counted ob-
ject(Arc) with a lock-based ownership verification, RwLock.
The Arc object ensures the liveness of an object, and RWLock
ensures exclusive access by acquiring the lock. For our lock-
ing mechanisms, we use the following three: POSIX mutexes
(Rw), spin locks (Park) [5] and sequential locks (Seq) [3].

4.1 Evaluation Workload

For our evaluation workload, we use the following four types
of operations assuming a list with 10M elements.

1. Creation: generates a doubly linked list or a red-black
tree. All the elements are initialized randomly and
pushed one by one.

2. Delete-insert: iterates over the previously initialized
elements. It deletes each element from the data struc-
ture’s head and inserts it into its tail.

3. Read: iterates through the list and calculates the sum
of the values of all the elements.

4. Write: iterates through the list and increases the value
of each element by one.

Our evaluation server has two Intel Xeon CPUs E5-2670 v3
(12 cores, 2.30 GHz, 30MB cache) with 64GB of main memory.
Our implementation uses the Rust version nightly-2019-03-
14, and the baseline implementation uses gcc 8.2.0 and Boost
1.68.0. For a fair comparison, we use jemalloc[9] as a backend
allocator for all implementations.

4.2 Performance Benefits of Our IDS

Figures 2 presents the evaluation results. The performance
of the baseline Boost C++ implementation is denoted by the
horizontal line at y = 1. For all workload and lock types, the
proposed method outperforms Standard. Between Intrusive
and ours, the former with the Park lock mechanism shows
comparable performance to the proposed approach with
regard to creation and delete-insert workloads. Otherwise,
our method greatly outperforms Intrusive for read and write
workloads, where the latter is x3 to x10 slower than the
baseline. Our implementation uses a comparison operation

PLOS’19, October 27, 2019, Huntsville, ON, Canada

1.0
0.8
0.6
04 -

: i

0.0
Rw |Park| Seq | Rw |Park Seq |
Standard Ours |

Relative performance

Intrusive

| Ecreation Bdelete-insert Oread Ewrite |

Figure 2. Relative performance against the baseline (Boost,
red line) implementation. All values are an average from 20
trials. Higher is better. The data size is fixed to 8B.

while the other two use a bit flag to store the locking state. In
modern CPUs, comparisons without modification are usually
pipelined and fast.

5 Case Study: Tokio Timer

In this section, we apply our ownership pool to a real-world
library, specifically to Tokio’s timer library. Tokio is the
most popular asynchronous I/O library suite implemented
in Rust [7]. In Tokio’s timer library, there are multiple dif-
ferent IDSes whose entries move across thread boundaries
and we show how our IDS implementations perform in a
multi-threaded environment.

5.020 ~

—{—original

Fired Time (s)
S.I'I W W
[(] (]
S —_ —
W (=) W

, ‘

5.000 """
IK 3K 5K 7K 9K 11K 13K I5K 17K 19K

Number of Spawned Delays

Figure 3. Mean fired time of Delays. All values are an aver-
age of 20 trials. Lower is better.

We spawn 1K to 20K Delays that are fired after 5 seconds
and measure when they are actually fired. Figure 3 shows
that our Tokio implementation has comparable or slightly
better performance than the original implementation. The
results illustrate the strengths of our IDS implementation: it
has almost zero overhead for both single- and multi-threaded
environments, without exposing any unsafe interface.

6 Related Work

Generalization of IDSes The Boost library provides a gen-
eralized implementation of IDSes with C++ templates, though
it nonetheless cannot offer any safety guarantees given the
characteristics of C++. Amanieu’s implementation [4] pro-
posed a memory-safe abstraction for IDSes; however it treats

21

Keunhong Lee, Jeehoon Kang, Wonsup Yoon, Joongi Kim, and Sue Moon

an element as sharing a single ownership handle. Accord-
ingly, no element can claim full ownership to write unless a
mutex is acquired.

Alternatives of Ownership Pooling There are several al-
ternatives that can replace ownership pooling in limited use
cases. One is rooting [2], which centralizes the ownership
of a set of objects into a single object. Rooting is induced
from a region-based memory management by stating that
the arena/region will take ownership of the allocated mem-
ory chunks. For example, a vector with 100 elements acts
as an allocator by returning non-overlapping indices of the
elements. The ownership still belongs to the vector and each
element is referenced by its index. In the notation of own-
ership pooling, vector becomes an OwnershipPool and the
indices become Shareds. Compared to ownership pooling,
rooting-based memory management entangles the allocation
and notation of ownership so that an element cannot change
its owner unless its index is invalidated and reclaimed from
a new vector.

Application of memory-safe IDSes Several systems [1, 8,
11] claim strong isolation arguments assuming a memory-
safe program. In the case of NetBricks, a user must write a
network function without using any IDS, while most high-
performance network systems rely on IDSes. Thus, owner-
ship pooling will benefit performance-critical systems with
memory-safety arguments based on the soundness of the
type system.

7 Conclusion

In this paper, we presented a new technique, referred to as
owernship pooling, which operates in Rust. It includes three
new types, FieldOf, Shared, and OwnershipPool, and their
corresponding constraints and conversion rules. Combined,
they allow IDSes to be built in a memory-safe manner. We
implemented the proposed types and evaluated their applica-
tion on a doubly-linked list against non-IDS implementations
and an existing Rust IDS library in a multi-threaded envi-
ronment. We used three locking mechanisms for non-IDS
implementations and an existing Rust IDS library. The evalu-
ation results show that our implementation delivers as close
performance to the baseline implementation of the Boost
C++ IDS list. We applied ownership pooling with Tokio’s
time library and demonstrated performance comparable to
that of the original implementation in Rust.

Acknowledgments

This work was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea govern-
ment(MSIT) (No. NRF-2019R1A2C2008439).

Enveloping Implicit Assumptions of Intrusive Data Structures within Ownership Type System PLOS’19, October 27, 2019, Huntsville, ON, Canada

References [8] Galen C Hunt and James R Larus. 2007. Singularity: rethinking the

[1] Abhiram Balasubramanian, Marek S. Baranowski, Anton Burtsev, Au- software stack. ACM SIGOPS Operating Systems Review 41, 2 (2007),

rojit Panda, Zvonimir Rakamari¢, and Leonid Ryzhyk. 2017. System 37-49.

Programming in Rust: Beyond Safety. In ACM HotOS. [9] jemalloc Developers. [n.d.]. jemalloc memory allocator. http://jemalloc.
[2] Without Boats. 2018. Shifgrethor III: Rooting. https://boats.gitlab.io/ net.

blog/post/shifgrethor-iii/. [10] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B Giffin, Pat
[3] Amanieu d’Antras. 2016. SeqLock. https://crates.io/crates/seqlock/0.1. Pannuto, Prabal Dutta, and Philip Levis. 2017. Multiprogramming a

1. 64kB Computer Safely and Efficiently. In ACM SOSP.
[4] Amanieu d’Antras. 2018. intrusive-collections. https://crates.io/crates/ (11] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Rat-

nasamy, and Scott Shenker. 2016. NetBricks: Taking the V out of NFV..
In USENIX OSDL.

intrusive-collections/0.7.2.
[5] Amanieu d’Antras. 2018. parking_lot. https://crates.io/crates/parking_

10t/0.6.4. [12] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy.
[6] Redox Project Developers. [n.d.]. Redox - Your Next(Gen) OS. https: 2018. SafeBricks: Shielding Network Functions in the Cloud. In USENIX
NSDIL

//www.redox-os.org.

[7] Tokio Project Developers. 2018. Tokio: A runtime for writing reli- (13] C++ Refere?ce. 2018. RAIL https://en.cppreference.com/w/cpp/
able, asynchronous, and slim applications with the Rust programming language/raii.
language. https://crates.io/crates/tokio/0.1.6. [14] Mozilla Research. [n.d.]. Servo, the Parallel Browser Engine Project.
https://servo.org.

22

https://boats.gitlab.io/blog/post/shifgrethor-iii/
https://boats.gitlab.io/blog/post/shifgrethor-iii/
https://crates.io/crates/seqlock/0.1.1
https://crates.io/crates/seqlock/0.1.1
https://crates.io/crates/intrusive-collections/0.7.2
https://crates.io/crates/intrusive-collections/0.7.2
https://crates.io/crates/parking_lot/0.6.4
https://crates.io/crates/parking_lot/0.6.4
https://www.redox-os.org
https://www.redox-os.org
https://crates.io/crates/tokio/0.1.6
http://jemalloc.net
http://jemalloc.net
https://en.cppreference.com/w/cpp/language/raii
https://en.cppreference.com/w/cpp/language/raii
https://servo.org

	Abstract
	1 Introduction
	2 Background of Type Systems
	2.1 Types and Conversion Rules
	2.2 Type-Safe Language
	2.3 Memory Safety
	2.4 Rust and the Ownership Type System

	3 Ownership Pooling for an Intrusive Data Structure
	3.1 FieldOf: Captures memory layout
	3.2 OwnershipPool: Declares an effective owner of elements' data fields
	3.3 Shared: Denoting shared ownership without accessibility
	3.4 Ownership verification on IDS side

	4 Evaluation
	4.1 Evaluation Workload
	4.2 Performance Benefits of Our IDS

	5 Case Study: Tokio Timer
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

