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Abstract: To prevent driver accidents in cities, local governments have established policies to limit
city speeds and create child protection zones near schools. However, if the same policy is applied
throughout a city, it can be difficult to obtain smooth traffic flows. A driver generally obtains visual
information while driving, and this information is directly related to traffic safety. In this study,
we propose a novel geometric visual model to measure drivers’ visual perception and analyze the
corresponding information using the line-of-sight method. Three-dimensional point cloud data are
used to analyze on-site three-dimensional elements in a city, such as roadside trees and overpasses,
which are normally neglected in urban spatial analyses. To investigate drivers’ visual perceptions
of roads, we have developed an analytic model of three types of visual perception. By using this
proposed method, this study creates a risk-level map according to the driver’s visual perception
degree in Pangyo, South Korea. With the point cloud data from Pangyo, it is possible to analyze actual
urban forms such as roadside trees, building shapes, and overpasses that are normally excluded from
spatial analyses that use a reconstructed virtual space.

Keywords: visibility; visual perception; point cloud; driver’s safety

1. Introduction

Recently, the number of traffic deaths in Korea has steadily decreased from 5870 people in 2008 to
4185 people in 2017, but the number of accidents has remained almost unchanged, with 218,822 in
2008 and 216,353 in 2017 [1]. Previous traffic safety policies have contributed to reducing the risk of
accidents by limiting the speed of traffic and designating child protection zones, but such measures
have not been effective in reducing accidents. In this study, we propose a method to reduce traffic
accidents on roads through efficient regulation by identifying accident-prone locations instead of using
an overarching regulation at the city scale. In particular, we sought to develop an assessment method
to evaluate actual urban environments, including various objects on and near roads that affect the
visual perception of drivers. We defined a new Euclidean geometric visual perception model here,
considering driver cognitive behavior characteristics. In addition, visibility analysis was conducted
here using the line of sight (LoS) method, which is based on raycasting and is used in the fields of urban
science and geography. Then, we applied the proposed method to three-dimensional (3D) mobile
mapping data to find accident-prone locations with large differences in cognitive quantity in a city.

2. Background

Accident-prone locations are geographical locations where traffic accidents are concentrated [2].
Many scholars have sought to determine accident proneness in advance by studying the relationship
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between road geometry and traffic safety. Ahmed et al. [3] found that the geometry of a road is
strongly related to traffic accidents, and that the steeper roads are, the higher the traffic accident
rate. The average speed of a vehicle, headway time, and headway distance are also affected by the
road geometry [4]. Karlaftis and Golias [5] quantitatively measured the impact of road geometry by
analyzing road geometry and accident rates through a hierarchical tree structure regression model
and predicted accident rates on local roads. In addition, Moradkhani et al. [6] proposed a method
to predict accident-prone locations through techniques that match the locations of accidents and the
geometry of roads. These studies only focused on linking the actual road geometry with the number of
traffic accidents without considering the information that the driver visually obtains.

During driving, the driver generally obtains information through vision [7,8]. Therefore, the
visual information obtained by the driver is directly related to traffic safety [9]. To determine the
visual information obtained during driving, researchers in the field of computer science have tried to
quantitatively measure the visual perception of drivers. Altunm [10] calculated the visual perception
of drivers by analyzing images obtained through a camera attached to the vehicle using the image
fusion method. Yu et al. [11] developed a driver visual lane model to calculate the road alignments
perceived by the driver. However, these scene-based visibility analysis methods (such as image-based
or photograph-based methods) are not sufficient for analyzing a driver’s cognitive behavior, which
changes according to the situation.

It is important to understand the behavior of the driver in order to establish a desirable and
appropriate traffic safety policy. In the perceptual psychology area, various studies have been conducted
to analyze drivers’ visual behaviors, and empirical studies have mainly been conducted through driver
experiments [12-15]. In this case, as more data are obtained, the analysis becomes increasingly reliable,
but it is difficult to set various conditions and secure many samples. It is also difficult to remove
external variables other than the conditions that are assumed in the experiment.

The development of computing technology has focused on quantifying and measuring universal
human visual perception. There are two methods of analyzing information obtained via visual
perception, namely, directly analyzing an image or applying a geometric visual model. The method of
analyzing visual perception information through images involves quantifying human visual perceptions
by analyzing the color and depth values obtained from an image. However, this method often displays
poor objectivity in continuous environments or three-dimensional environments. In addition, there is a
limit to real-time interpretation with respect to cognition in this instance.

Geometric visual models can simulate human visual behaviors. In this way, it is easy to interpret
the driver’s visual form in real time. Gibson [16,17] noted that the visual space must be geometrically
defined to match our perception to the physical world. Thomas Reid [18] defined such a visual space
as forming a spherical geometry, as recently supported by various studies [19]. In human vision, the
amount of information that can be obtained with a short glance without head movement is limited. This
visual area is called the useful field of view (UFOV) [20]. The driver’s UFOV generally decreases with
age [21] and can be characterized by a narrow viewing angle and a long sight distance as the driver’s
speed increases [22,23]. Therefore, it is necessary to consider the driver’s UFOV when designing roads
in a city for safety.

In order to geometrically define a driver’s vision, initial studies have mainly focused on only the
geometry of the road [24-27]. In this case, it is difficult to consider obstacles such as buildings
that affect the driver’s vision in a city. To overcome these limitations, researchers have used
geographic-information-system (GIS) data to analyze the visible space by considering more diverse
obstacles [28]. However, it is difficult to construct the various urban elements that drivers experience
in virtual reality based on GIS data alone. That is, surrounding elements that act as obstacles in the
visual field in actual cities are often ignored, e.g., buildings, trees, and signs. In this study, we use
3D mobile scanned data for driver-oriented visual analysis in a near-realistic driving environment.
While previous studies investigating driver’s field of view (e.g., [24-27,29,30]) have mainly focused
on only the geometry of road, this study sought to include a visual assessment of urban objects and



Sensors 2020, 20, 2763 3of16

environments on and near roads. Various urban objects (including trees, surrounding buildings,
and entrances to apartment complexes) affect visual perception on roads and provide drivers with
various confusing sources of information that are difficult to construct in virtual and conventionally
digitized environments.

3. Model Development

The basic assumptions of our visual perception model are as follows. First, the basic form follows
a hemispherical geometry with a limited vision range. The UFOV, which is a visual area recognized
momentarily by the driver, is determined by the horizontal visual angle and the vertical visual angle.
The driver’s UFOV varies with speed (as the speed increases, the visual angle decreases). For simplicity,
it is assumed that all humans have the same UFOV range and recognition ability. The faster the
speed of travel is, the smaller the field of view and longer the LoS. In addition, the vertical visual
angle O,jepation 1 set to a constant value to focus only on the horizontal visual angle 6., without
considering the size of the vehicle. Therefore, the assumptions applied for the visual perception model
in this study are summarized as follows:

1. A typical visually perceived space has a hemispherical geometry.

2. The parameters of the driver’s visible space are the visual angles and sight distance, but the
vertical visual angle is fixed.

3.  The faster the speed of travel, the smaller the visual angle and the longer the sight distance.

4.  Regardless of the vehicle speed, the maximum value of the information that is instantaneously
obtained is constant. Therefore, we focused on the ratio of perception.

3.1. Definition of Visibility Analysis

We sought to measure drivers’ perceived visibility through the degree of detection associated with
a driver’s UFOV. The implemented method casts a set of LoSs from the driver’s position. Thus, the
defined visible space should be replaced with an LoS. First, as described above, the visible space of the
stationary state is a hemispherical geometry, as shown in Figure 1a. We divided the space into certain
sections and generated a grid, as shown in Figure 1b. As shown in Figure 1c, each LoS is defined by its
vertical and horizontal angles and sight distance. The raycasting of the lines identifies the object in the
defined area in Figure 1d.
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Figure 1. Visible space for a stationary state. (a) Human field of view at standstill; (b) splitting the
visual field based on the unit line of sight; (c) line of sight variables; (d) recognition of an object with
the line of sight method in the visual field.
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One visually perceived space can be defined by a horizontal visual angle O,jeyti0,, @ Vertical visual
angle 0,1, and a sight distance, as shown in Figure 2a,b. An illustration of a driver’s visually
perceived space in three dimensions according to the determined variables is shown in Figure 2c.
Within this field of view, the LoS is adjusted by recognizing the object (Figure 2d). The LoS set generated
in the region is used in the visual perception model in this method. We can formulate this LoS set S as
follows (Equation (1)):

i=1,...,Lj=1 ..., Jand @; = @(rad), ;= M(md}}. (1)

If there is an obstacle in the visual area, the LoS is blocked by the object and the length of the line
is reduced. Accordingly, the degree of perception varies depending on the obstacle, which means
that as the volume of the visual field decreases, more obstacles exist in the visual field. Therefore, we
replace the LoS with a volume. Because one line corresponds to one segment of a hemisphere, the
volume of that segment area is proportional to the sum of the cube of the LoS distance in Equation (2):

S= {LOS(@{, @])

Volume of LoS; = a X (length of LoSl-)3, )

where «a is a constant used to calculate one segment of a hemisphere. Thus, if the whole volume is
divided into N pieces, this volume is a sum of one segment of a hemisphere expressed in Equation (3)
according to the volume of the visible space in a stationary state:

Total Volume = 2 x 7t (Sight distance)®
N x a x (Sight distance)3 (3)
= f\il Volume of LoS;.

In this paper, the degree of perception was derived according to assumption 4, i.e., that the
maximum value of information is constant. Therefore, the visual perceptual degree of a driver (VPD)
can be formulated only based on the scale of the LoS as follows:

Y.(Scale of LoS;) 3
N

LoS;

VPD = , Scaleof LoS; = 4)

However, there is a limit to constantly measuring visibility according to the road situation from
the driver’s point of view with mobile sensor data. Notably, there are other objects on the road,
e.g., cars, people, and other moving objects. If the driver’s UFOV is measured according to one
model, the result may be inconsistent depending on the unexpected objects in the road. Therefore,
to evaluate the visibility of the periphery of the road from the driver’s UFOV, it is necessary to remove
the erroneous observer poses. For this reason, we established three models according to the driver’s

visual perception characteristics.

3.2. Development of Three Types of Visual Perception Depending on Speed

This study adopts three types of visual perception. Figure 3 illustrates the geometry variables,
and the vertical visual angle of all types of perception is fixed at 30°. For the first type, the speed
is 100 km/h, the visual angle is 30°, and the sight distance is 120 m. The second type has a speed
of 60 km/h, a visual angle of 60°, and a sight distance of 85 m. The third type has a visual angle of
120 degrees and a sight distance of 60 m when the speed is 40 km/h.
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Figure 2. Driver’s visually perceived space. (a) Horizontal view of the driver useful field of view
(UFOV); (b) vertical view of the driver UFOV; (c) stereoscopic view of the driver UFOV; (d) the line of
sight within the driver UFOV.
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Figure 3. Three types of visual perception depending on speed. (a) Vertical visual angle of all types of
perception fixed at 30°. (b) Three types of visual perception models according to vehicle speed.

3.3. Classification of Three Cases of Road Conditions

This study assumes that a road is basically open in the driving direction and that a driver’s view
is only obstructed by road features. When the viewing angle becomes narrower, the VPDs at the
30-degree angle, the 60-degree angle, and the 120-degree angle increase. However, since the data are
freely scanned using a mobile sensor, unexpected objects in the road can inevitably be encompassed
in the data. Unexpected objects in the road affect the detection of road conditions when the three
types of visual perception are used to identify changes in visibility depending on speed. Accordingly,
to identify the safety of road conditions for drivers depending on speed, we divided road conditions
into three cases by setting appropriate thresholds of the VPD, as shown in Figure 4. A grade of one to
four was assigned, where one is the safest and four is the least safe.



Sensors 2020, 20, 2763 6 of 16

Figure 4. Classification of three cases of road conditions according to the visual perceptual degree
(VPD) of a driver.

3.3.1. Case A

Case A includes a road wider than the 120-degree angle. In the case 1 road conditions, the VPDs
of all three types of visual perception based on speed are greater than 0.6. This means that the road
width and the road surrounding components rarely affect the degree of visual perception of drivers.
Thus, the roads in case A provide a wide visibility area and are usually safe, regardless of speed in
urban areas. Since the collected data include unnecessary and moving objects in or near the road, these
objects occasionally affect VPDs. To avoid this unexpected influence, the roads in case A are classified
as the safest grade, namely, grade 1.

3.3.2. Case B

Case B includes a narrow road for which the VPDs of all three visual perception models depending
on speed are less than 0.4. In this case, in contrast to case A, the road width and the surrounding
components heavily affect the driver’s degree of visual perception. The roads in case B are narrow,
or many objects are detected within the driver’s view. Thus, the roads in case B are the least safe since
drivers must identify many and various objects while driving in urban areas. In this case, regardless of
the road shapes and features, the roads in case B are classified as the least safe grade, namely, grade 4.

3.3.3. Case C

For the case C road conditions, the VPD increases as the viewing angle becomes narrower. In this
case, the shape of a road affects the driver’s VPD rather than other objects. The observation points
on the road in case C can be classified into appropriate grades according to the corresponding VPDs.
Accordingly, it can be determined whether streets are safe. In this case, the criteria for dividing the
safety grade depends on the VPD at the 120-degree angle, which is where road shapes and features
mainly affect the VPD at the largest viewing angle. Accordingly, grade 4 is assigned to the observation
points at which the VPD at the 120-degree angle is less than 0.4. Similarly, grade 3 is assigned to the
observation points at which the VPD at the 120-degree angle is between 0.4 and 0.5; grade 2 is assigned
for points at which the VPD at the 120-degree angle is between 0.5 and 0.6; and grade 1 is assigned for
points at which the VPD at the 120-degree angle is larger than 0.6.

3.4. Voxelization for the LoS Method in the Point Cloud

The VPD of a driver captures the amount of visible area. According to Equations (3) and (4), it is
necessary to implement an efficient method for analyzing the collected point cloud data. Because point
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cloud data consist of tens of millions of points, repeatedly checking all point clouds at every observation
position would require considerable computing resources and take a long time. To overcome these
issues, we seek to identify a targeting area at an observation position. Because observation positions
are stored in the collected point cloud data in a chronological order, the viewing direction at a selected
position is the direction from that position to an adjacent position in a sequence. The sight distance
depending on the three types of visual perception is equal to the radius of the visible area at an
observation point.

The collected point cloud data consist of points that do not include a volume. To capture volume
information in space using a raycasting algorithm, we voxelized the point cloud data using the octree
method, which has been widely adopted for analyzing large point clouds [31]. According to the octree
method, point clouds are recursively divided into small voxels. The criteria to voxelize point clouds
in this study are to divide a voxel if the number of points is more than 10 and to stop the division
when the size of a voxel is smaller than 0.5 m. Because the voxel resolution affects the processing
time in this study, we determined 10 points and 0.5 m by investigating the point resolution in the
collected data such that the mobile sensor resolution effectively captured spatial forms. Figure 5 shows
a visualization of voxelization using sample point cloud data.

(b)

Figure 5. Visualization of voxelization using sample point cloud data. (a) Example analysis area

required for each observer pose; (b) voxelization of point cloud data.

The visibility analysis can be performed within the voxelized point cloud, which makes it possible
to raycast objects such as trees that are hard to virtually describe. Figure 6 illustrates the visualization of
the raycasting method with the point cloud data and some trees that affect visibility in an urban space.

(a) (b)

Figure 6. Visualization of the raycasting method with point cloud data. (a) Example visualization (b)

Detailed visualization on the street with trees.
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4. Experiments in an Urban Space

4.1. Test Site

In this paper, the proposed visual perception model was applied to mobile laser-scanned data
from Pangyo [32] to evaluate traffic safety in the city. Figure 7a shows an aerial view of the Pangyo
area and Figure 7b shows the collected point cloud of the same area. The dataset consists of 77,416,102
points in the urban space and 200,510 driver observation locations, i.e., pose locations, which are points
that have been captured by a mobile scanner in the urban space. The driver observation points reflect
instantaneous locations. However, due to the required computing time and resource limitations, this
study has chosen 668 interval values for the driver observation locations to appropriately cover the
chosen site in Pangyo. Figure 8 shows a map of the point cloud from the top view and the observation
positions extracted at a certain interval with the driver’s path.

Figure 7. Aerial view of the test site in Pangyo, South Korea. (a) Aerial view (Naver Maps [33]),
(b) Collected point cloud data [32].

)
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Figure 8. Top view of the test site in Pangyo, South Korea. (a) Collected point cloud data [32],
(b) Distribution of observation positions.

4.2. Model Implementation

The VPDs for the three types of visual perception were calculated at 668 observation positions
using the point cloud data collected in Pangyo. The top images in Figure 9 show the VPDs for 30-, 60-,
and 120-degree angles at each observation position. As the viewing angle decreases (i.e., the speed
increases), the VPDs include more values that rarely follow a normal distribution. At small viewing
angles, abnormal values become more frequently observed in urban areas. Normality tests were
carried out to determine whether the VPDs for the 30-, 60-, and 120-degree angles at each observation
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position would be feasible to assess road conditions. According to the three normality tests, i.e., the
KolmogorovSmirnov test [34,35], Anderson-Darling test [35,36], and Shapiro-Wilk test [35,37], VPDs
at a 120-degree angle follow the normal distribution in Table 1 at a confidence level of 95%, except in
the case of the Shapiro-Wilk test. However, since the Shapiro-Wilk test is sensitive to the number of
samples, it is suggested to use the normality test instead of the Shapiro—Wilk test when the number
of samples does not exceed 50 [37,38]. According to the histogram and the frequency distribution
chart, unexpected VPDs are more frequently measured at the 30-degree angle than at the other angles.
Because VPDs at the 120-degree angle are normally distributed, VPDs at the 120-degree angle can be
effectively used to determine the road safety at each observation position.

quency
Frequency
s

p—
Expected Normal
Expacted Normai

(a) 30-degree angle. (b) 60-degree angle. (c) 120-degree angle.
Figure 9. VPD results at 30-, 60-, and 120-degree angles.

Table 1. Test of normality.

Test of Normality
L. Kolmogorov-Smirnov Shapiro-Wilk Anderson-Darling
Viewing Angle
Statistic p-Value Statistic p-Value Statistic p-Value
30 degrees 0.070 0.000 0.954 0.000 7.619 0.000
60 degrees 0.037 0.034 0.984 0.000 1.849 0.000
120 degrees 0.031 0.195 0.995 0.027 0.528 0.170

Accordingly, VPDs were calculated in Pangyo. Figure 10 shows the distribution of grades at
observation points. Each observation position was evaluated based on grades 1 to 4. The red dots
are grade 1; the yellow dots are grade 2; the light green dots are grade 3; and the dark green dots are

grade 4.
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Figure 10. Distribution of grades 1 to 4 at the observation positions.

4.3. Analysis

According to the distribution of grades 1 to 4, road safety usually reflects the road width, i.e., the
number of lanes. Figure 11 shows a comparison of grades at observation positions and the number
of lanes.
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Figure 11. Comparison of grades at observation positions and the number of road lanes.

By comparing grades, the number of road lanes, and building polygon data obtained from a
Korean government website (the Korea National Spatial Data Infrastructure Portal www.nsdi.go.kr),
we identified six groups in this area. Although the grades at the majority of the observation positions
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correspond to the number of road lanes, the grades at some positions are different from those at nearby
positions. In the following section, we seek to identify why such differences occur (see Figure 12).
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Figure 12. Locations of six zones identified in Pangyo.

5. Discussion

We investigated why the six groups occur in this area. By obtaining and investigating road-view
panoramic images from Naver maps [32], we identified road shapes and features that affect the VPD
of a driver at observation positions in Pangyo. Accordingly, we identified features such as the tree
density, building layout, open space, construction of new buildings, overpasses, and moving objects
on roads in Figure 12.

5.1. Tree Density

The tree density affects driver visibility. Although the road widths and positions of buildings are
similar at locations 1-A and 1-B, the VPDs are different. According to the street view in Figure 13, dense
trees exist at location 1-B. Because dense trees obscure drivers’ views, the risk of road accidents increases.

(a) Location 1-A. (b) Location 1-B.

Figure 13. VPD difference according to the tree density (Naver Maps [33]).
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5.2. Building Layout

The layout and density of buildings affects drivers’ visibility on the road. Although the locations
of 2-A and 2-B have similar road widths and building positions, the VPDs are different. According
to the street view in Figure 14, buildings at location 2-A are closer to the road, and the buildings are
larger than those at location 2-B. Although some buildings along both roads have similar building
footprints, the spaces between the roads and buildings are different.

(a) Location 2-A. (b) Location 2-B.
Figure 14. VPD difference according to the building layout (Naver Maps [33]).
5.3. Open Space

Open space affects drivers’ visibility in urban areas. Even if the road width and layout are constant,
open spaces such as entrances and parks may exist. In this case, the driver’s view suddenly expands,
resulting in a high VPD. According to the comparison of the street views at locations 3-A and 3-B
in Figure 15, although the vegetation and buildings are arranged in a row, the visible area suddenly
changes at the entrance to the apartment complex at location 3-A and at the fire station at location 3-B.
Accordingly, if the VPD suddenly increases, it is necessary to focus on road safety.

(a) Location 3-A. (b) Location 3-B.

Figure 15. Sudden VPD changes as open space appears (Naver Maps [33]).
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5.4. New Buildings

Since this study analyzes point cloud data collected with a mobile scanner, VPDs reflect up-to-date
road features. At location 4, no buildings exist, but according to the street view recently obtained at
location 4, a new building is being constructed in Figure 16. Since the building polygon data were
created in 2015, the space at location 4 is empty on the map, and the VPD is expected to be high.
However, VPDs and driver visibility are influenced by new buildings. Accordingly, when we analyze
up-to-date point cloud data collected by a mobile scanner, it is possible to quickly and realistically
evaluate road safety.

(a) Location 4 in 2014. (b) Location 4 in 2019.
Figure 16. New building found at location 4 (Naver Maps [33]).
5.5. Overpasses

Overpasses affect driver visibility in urban areas. In particular, the VPDs for three-dimensional
urban features can be calculated because the collected point cloud data consist of three-dimensional
elements. In particular, overpasses are significant road features that affect drivers’ views. Similar to
trees, overpasses are rarely identified in two-dimensional (2D) geolocational data and constructed
virtual environments. Since the point cloud data are collected by a mobile scanner, it is relatively easy
to identify overpasses. According to Figure 17, the overpass affects VPDs at the location show, with
lower VPDs than at nearby observation positions.
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(b) Location 5-B. (c) Location 5-C.

Figure 17. Overpasses at which the VPD suddenly changes (Naver Maps [33]).
5.6. Moving Objects

Although we considered moving objects in the VPD calculation, some VPDs are highly influenced
by moving objects. Because a moving object on a road is scanned by a mobile scanner, some exceptions
may occur. Although the road consists of eight lanes at location 6-A, the VPD is low due to moving
objects, i.e., the vehicles in Figure 18a. A moving car at the intersection was captured by a mobile
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scanner at location 6-B, and this car obscures the driver’s view at the observation position in Figure 18b.
At locations 6-A and 6-B, the VPDs are low regardless of the road shape and features. To avoid these
unexpected findings, it is necessary to scan targeted areas when no or few vehicles are on the road.

(a) Location 6-A. (b) Location 6-B.

Figure 18. Unexpected VPD results due to moving objects.

6. Conclusions

In this study, we have proposed a method for evaluating road safety by analyzing point cloud data
collected by a mobile scanner. By developing three types of visual perception depending on vehicle
speeds, we have identified locational candidates that require further investigation. By analyzing point
cloud data with the proposed method, we have verified that trees and obscuring objects along a road
affect drivers’ visibility. Therefore, the proposed method is helpful for evaluating realistic and various
road safety conditions. However, it is necessary to develop a method to quickly and consistently
classify road safety grades. Additionally, in order to prevent errors caused by unnecessary road
elements, it is suggested to adopt the proposed method to evaluate road safety when moving objects
become least prevalent in urban areas, such as at midnight or dawn.

This study has developed a method to analyze urban environments and the visual perception
of real, sensor-collected physical forms in urban areas. In particular, this study has demonstrated
changes in perceiving elements of roads and urban physical contexts. In order to adopt the proposed
method in a large urban area, further studies are suggested. Since this study analyzes a district in
Pangyo, Korea, it would be necessary to examine whether roads in other cities can be assessed with the
proposed method. Further statistical analysis and conjecture on the extrapolation of this evaluation to
the larger road networks of a city or a country would provide guidance on how to extract results for
more theoretical analyses and practical applications. In addition, testing actual perceived elements on
roads with human eyes would be helpful to generalize the proposed method in order to assess road
safety. A further study would allow for the experiment in this study to be replicated in various urban
environments of other cities.

Author Contributions: Conceptualization, K.C. and Y.K.; methodology, K.C., G.B. and Y.K; software, K.C., and
G.B.; validation, K.C., A.K,, and Y.K.; writing—original draft preparation, K.C; and writing—review and editing,
G.B., AK. and Y.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by a grant (20TSRD-B151228-02) from the Urban Declining Area
Regenerative Capacity-Enhancing Technology Research Program and the Innovative Talent Education Program
for Smart City funded by the Ministry of Land, Infrastructure, and Transport of the Korean government.

Conflicts of Interest: The authors declared no potential conflicts of interest concerning the research, authorship,
and/or publication of this article.
References

1.  KNPA. Traffic Accident Statistics for 2017. Available online: https://www.police.go.kr/ (accessed on
6 November 2019).


https://www.police.go.kr/

Sensors 2020, 20, 2763 15 of 16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Geurts, K.; Wets, G.; Brijs, T.; Vanhoof, K. Identification and ranking of black spots: Sensitivity analysis.
Transp. Res. Rec. 2004, 1897, 34—42. [CrossRef]

Ahmed, M.; Huang, H.; Abdel-Aty, M.; Guevara, B. Exploring a Bayesian hierarchical approach for developing
safety performance functions for a mountainous freeway. Accid. Anal. Prev. 2011, 43, 1581-1589. [CrossRef]
Hamdar, S.H.; Mahmassani, H.S.; Treiber, M. From behavioral psychology to acceleration modeling;:
Calibration, validation, and exploration of drivers’ cognitive and safety parameters in a risk-taking
environment. Transp. Res. Part B Methodol. 2015, 78, 32-53. [CrossRef]

Karlaftis, M.G.; Golias, 1. Effects of road geometry and traffic volumes on rural roadway accident rates.
Accid. Anal. Prev. 2002, 34, 357-365. [CrossRef]

Moradkhani, F.; Ebrahimkhani, S.; Sadeghi Begham, B. Road accident data analysis: A data mining approach.
Indian J. Sci. Res. 2014, 3, 437—443.

Sivak, M. The information that drivers use: Is it indeed 90% visual? Perception 1996, 25, 1081-1089. [CrossRef]
Underwood, G. Visual attention and the transition from novice to advanced driver. Ergonomics 2007, 50,
1235-1249. [CrossRef]

Guo, Y.S.; Ma, Y.; Fu, R.; Meng, N.; Yuan, W. Influence of driving experience on gazing behavior characteristic
for car driver. Jiaotong Yunshu Gongcheng Xuebao 2012, 12, 91-99.

Altun, M.; Celenk, M. Road scene content analysis for driver assistance and autonomous driving. IEEE Trans.
Intell. Transp. Syst. 2017, 18, 3398-3407. [CrossRef]

Yu, B.; Chen, Y,; Wang, R.; Dong, Y. Safety reliability evaluation when vehicles turn right from urban major
roads onto minor ones based on driver’s visual perception. Accid. Anal. Prev. 2016, 95, 487-494. [CrossRef]
Mourant, R.R.; Rockwell, T.H. Mapping eye-movement patterns to the visual scene in driving: An exploratory
study. Hum. Factors 1970, 12, 81-87. [CrossRef] [PubMed]

Mourant, R.R.; Rockwell, T.H. Strategies of visual search by novice and experienced drivers. Hum. Factors
1972, 14, 325-335. [CrossRef] [PubMed]

Tsimhoni, O.; Green, P. Visual demand of driving and the execution of display-intensive in-vehicle tasks.
In Proceedings of the Human Factors and Ergonomics Society 45th Annual Meeting, Los Angeles, CA, USA,
8-12 October 2001; pp. 1586-1590.

Harbluk, J.L.; Noy, Y.I; Eizenman, M. The Impact of Cognitive Distraction on Driver Visual Behaviour
and Vehicle Control; (No. TP# 13889 E). Available online: https:/trid.trb.org/view/643031 (accessed on
7 May 2020).

Gibson, J.J. The Perception of the Visual World. Available online: https://psycnet.apa.org/record/1951-04286-
000 (accessed on 7 May 2020).

Gibson, ].J. The Senses Considered as Perceptual Systems. Ecol. Psychol. 2017, 29, 165-197.

Reid, T. An Inquiry into the Human Mind; Pennsylvania State University: State College, PA, USA, 1785.
French, R. The geometry of visual space. Notis 1987, 21, 115-133. [CrossRef]

Ball, K.K.; Wadley, V.G.; Edwards, ].D. Advances in technology used to assess and retrain older drivers.
Gerontechnology 2002, 1, 251-261. [CrossRef]

Sekuler, A.B.; Bennet, PJ.; Mamelak, M. Effects of aging on the useful field of view. Exp. Aging Res. 2000, 26,
103-120.

Bartmann, A.; Spijkers, W.; Hess, M. Street Environment, Driving Speed and Field of Vision; Vision in Vehicles—III;
Elsevier Science: New York, NY, USA, 1991.

Leaf, W.A.; Preusser, D.F. Literature Review on Vehicle Travel Speeds and Pedestrian Injuries; US Department of
Transportation: Washington, DC, USA, 1999.

Gattis, J.L.; Duncan, J. Geometric Design for Adequate Operational Preview of Road Ahead. Transp. Res. Rec.
1995, 1500, 139-145.

Hassan, Y.; Easa, S.M. Effect of vertical alignment on driver perception of horizontal curves. J. Transp. Eng.
2003, 129, 399-407. [CrossRef]

Jha, M.K,; Karri, G.A. Road Surface Development and Sight Distance Calculation with New Visualization
Methods. In Proceedings of the 2nd WSEAS International Conference on Sensors and Signals: Sensors, and
Signals and Visualization, Imaging and Simulation and Materials Science, Baltimore, MD, USA, 7-9 November
2009; pp. 220-225.

Jha, M.K; Karri, G.A K.; Kuhn, W. New three-dimensional highway design methodology for sight distance
measurement. Transp. Res. Rec. 2011, 2262, 74-82. [CrossRef]


http://dx.doi.org/10.3141/1897-05
http://dx.doi.org/10.1016/j.aap.2011.03.021
http://dx.doi.org/10.1016/j.trb.2015.03.011
http://dx.doi.org/10.1016/S0001-4575(01)00033-1
http://dx.doi.org/10.1068/p251081
http://dx.doi.org/10.1080/00140130701318707
http://dx.doi.org/10.1109/TITS.2017.2688352
http://dx.doi.org/10.1016/j.aap.2015.08.014
http://dx.doi.org/10.1177/001872087001200112
http://www.ncbi.nlm.nih.gov/pubmed/5445785
http://dx.doi.org/10.1177/001872087201400405
http://www.ncbi.nlm.nih.gov/pubmed/5054829
https://trid.trb.org/view/643031
https://psycnet.apa.org/record/1951-04286-000
https://psycnet.apa.org/record/1951-04286-000
http://dx.doi.org/10.2307/2214910
http://dx.doi.org/10.4017/gt.2002.01.04.004.00
http://dx.doi.org/10.1061/(ASCE)0733-947X(2003)129:4(399)
http://dx.doi.org/10.3141/2262-08

Sensors 2020, 20, 2763 16 of 16

28.

29.

30.

31.

32.

33.
34.

35.

36.

37.

38.

Castro, M; Anta, J.A ; Iglesias, L.; Sanchez, J.A. GIS-based system for sight distance analysis of highways.
J. Comput. Civ. Eng. 2013, 28, 04014005. [CrossRef]

Yu, B.; Bao, S.; Chen, Y.; Chen, Y. Using 3D Mobile Mapping to Evaluate Intersection Design Through Drivers’
Visual Perception. IEEE Access 2019, 7, 19222-19231. [CrossRef]

Héne, C.; Heng, L.; Lee, G.H.; Fraundorfer, E; Furgale, P; Sattler, T.; Pollefeys, M. 3D visual perception for
self-driving cars using a multi-camera system: Calibration, mapping, localization, and obstacle detection.
Image Vis. Comput. 2017, 68, 14-27. [CrossRef]

Elseberg, J.; Borrmann, D.; Niichter, A. Efficient processing of large 3d point clouds. In Proceedings of
the 2011 XXIII International Symposium on Information, Communication and Automation Technologies,
Sarajevo, Bosnia and Herzegovina, 27-29 October 2011; pp. 1-7.

Jeong, J.; Cho, Y.; Shin, Y,; Roh, H.; Kim, A. Complex Urban Dataset with Multi-level Sensors from Highly
Diverse Urban Environments. Int. J. Robot. Res. 2019, 38, 642—-657. [CrossRef]

Naver Maps. Available online: http://map.naver.com/ (accessed on 7 May 2020).

Kolmogorov, A.N. Foundations of Probability Theory, 2nd ed.; Chelsea Publishing Company: New York, NY,
USA, 1956.

Razali, N.M.; Wah, Y.B. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-
darling tests. . Stat. Model. Anal. 2011, 2, 21-33.

Anderson, T.W.; Darling, D.A. Asymptotic theory of certain “goodness of fit” criteria based on stochastic
processes. Ann. Math. Stat. 1952, 23, 193-212. [CrossRef]

Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52,
591-611. [CrossRef]

D’Agostino, R.B. An omnibus test of normality for moderate and large size samples. Biometrika 1971, 58,
341-348. [CrossRef]

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000317
http://dx.doi.org/10.1109/ACCESS.2019.2896217
http://dx.doi.org/10.1016/j.imavis.2017.07.003
http://dx.doi.org/10.1177/0278364919843996
http://map.naver.com/
http://dx.doi.org/10.1214/aoms/1177729437
http://dx.doi.org/10.1093/biomet/52.3-4.591
http://dx.doi.org/10.1093/biomet/58.2.341
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Background 
	Model Development 
	Definition of Visibility Analysis 
	Development of Three Types of Visual Perception Depending on Speed 
	Classification of Three Cases of Road Conditions 
	Case A 
	Case B 
	Case C 

	Voxelization for the LoS Method in the Point Cloud 

	Experiments in an Urban Space 
	Test Site 
	Model Implementation 
	Analysis 

	Discussion 
	Tree Density 
	Building Layout 
	Open Space 
	New Buildings 
	Overpasses 
	Moving Objects 

	Conclusions 
	References

