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Owing to the recent progress on endowing the electronic structure of magnetic nanowires with
topological properties, the associated topological solitons in the magnetic texture—magnetic do-
main walls—appear as very natural hosts for exotic electronic excitations. Here, we propose to use
the magnetic domain walls to engender Majorana fermions, which has several notable advantages
compared to the existing approaches. First of all, the local tunneling density-of-states anomaly
associated with the Majorana zero mode bound to a smooth magnetic soliton is immune to most
of parasitic artifacts associated with the abrupt physical ends of a wire, which mar the existing
experimental probes. Second, a viable route to move and braid Majorana fermions is offered by
domain-wall motion. In particular, we envision the recently demonstrated heat-current induced
motion of domain walls in insulating ferromagnets as a promising tool for nonintrusive displace-
ment of Majorana modes. This leads us to propose a feasible scheme for braiding domain walls
within a magnetic nanowire network, which manifests the nob-Abelian exchange statistics within
the Majorana subspace.

PACS numbers: 03.67.Lx, 71.10.Pm, 75.78.Fg

Introduction.—Majorana fermions (MFs) are of a great
current interest in the field of topological quantum com-
putation (TQC) for being non-Abelian anyons encod-
ing quantum information1. A heterostructure based
on conventional ingredients—a Rashba spin-orbit cou-
pled (SOC) semiconducting wire subjected to a Zeeman
field and proximity-induced s-wave superconductivity—
supports MFs at the ends of the wire in topological
phase2,3. Such wires can form a mesh, where the MFs can
be braided by slowly adjusting gate voltages4 or switch-
ing the supercurrents5, and thus provides a promising
platform for TQC.

Ongoing experimental efforts are devoted to observing
MFs at the ends of a wire by measuring zero-bias peaks
in the local tunneling density-of-states6. MFs, however,
are obscured by the spurious effects caused by the abrupt
physical ends of the wire. Realization of the aforemen-
tioned proposals for moving and braiding MFs is also
stymied by their need for flawless control of electrostatic
gates or supercurrents. A new idea that is able to render
MFs more tangible and easily movable would, therefore,
constitute a critical step towards TQC.

Spintronics aims at the active control and manipu-
lation of spin degrees of freedom in condensed-matter
systems7. Topologically stable magnetic textures, e.g., a
domain wall (DW) in an easy-axis ferromagnetic wire
or a vortex in an easy-plane ferromagnetic film, have
been extensively studied out of fundamental interest as
well as practical motivations exemplified by the race-
track memory8. Their dynamics can be driven by var-
ious means, e.g., an external magnetic field9, an electric
current (in metallic ferromagnets)10, or a temperature
gradient11,12. If we can identify a localized magnetic tex-
ture that supports MFs under suitable conditions, we
would be able to manipulate them by controlling the
magnetic host with standard spintronic techniques.

In this Rapid Communication, we propose to use the

FIG. 1. (Color online) A schematic diagram of a device sup-
porting two MFs in a SOC nanowire with proximity-induced
exchange field and superconductivity. The wire is sandwiched
between two easy-axis ferromagnets: one with a uniform mag-
netization and the other with a DW. In the right portion of
the wire, where the magnetizations of the two ferromagnets
are parallel, the net exchange field engenders the topological
region, fomenting MFs at locations marked by A and B. The
DW and its accompanying MF at A can be driven by applying
a temperature gradient.

magnetic DWs to engender MFs, which has several no-
table advantages compared to the existing approaches.
First of all, the local tunneling density-of-states anomaly
associated with the Majorana zero mode bound to a
smooth magnetic soliton is immune to most of para-
sitic artifacts associated with the abrupt physical ends
of a wire, which mar the existing experimental probes
(see Fig. 1). Second, a viable route to move and braid
MFs is offered by DW motion. In particular, we envision
the recently demonstrated heat-current induced motion
of DWs in insulating ferromagnets as a promising tool
for nonintrusive displacement of Majorana modes. This
leads us to propose a feasible scheme for braiding MFs
within a magnetic nanowire network, which manifests
the nob-Abelian exchange statistics within the Majorana
subspace (see Fig. 2).
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FIG. 2. (Color online) The exchange of two MFs bridged by a
topological region (dark green). The arrows indicate the local
directions of the magnetizations of ferromagnets. (a)-(g) MFs
interchange positions via a series of thermally-driven DW mo-
tions. (g)-(i) Uniform rotation of the magnetization between
MFs by 180◦ about the spin-orbit field direction transforms
the state (g) to the state (i). This is essentially monodomain
flipping, which can be done by standard techniques in spin-
tronics.

MF at a magnetic DW.—Consider a semiconducting
nanowire with Rashba SOC, which is deposited on an
s-wave superconductor and is proximity-coupled to adja-
cent ferromagnets2,3. See Fig. 1 for a schematic design
of a device. The superconducting quasiparticle spectrum
is obtained by solving the BdG equation HBdGΨ(x) =
EΨ(x), where

HBdG =

(
− ~2

2m
∂2
x − µ+ iα∂xσ2

)
τ3 +M ·σ + ∆τ1 (1)

acts on the spinor wavefunction Ψ = (u↑, u↓, v↓,−v↑)T.
Here, m, µ, and α are the electron effective mass,
the chemical potential, and the strength of SOC. The
proximity-induced exchange field M is perpendicular to
the spin-orbit field ∝ ŷ. The proximity-induced super-
conducting order parameter ∆ is gauge shifted to be real
and positive. Pauli-matrix vectors σ and τ act respec-
tively on the spin and the electron-hole subspaces of the
spinor Ψ. The corresponding quasiparticle creation oper-

ator is γ̂† =
∫
dx
∑
α=↑,↓[uα(x)ψ̂†α(x) + vα(x)ψ̂α(x)]. For

the uniform exchange field, the “topological gap” at zero
momentum is given by

Eg = |M| −
√

∆2 + µ2. (2)

When the gap Eg is positive, |M| >
√

∆2 + µ2, the wire
is in the topological phase, harboring a pair of MFs at
its ends13,14. Otherwise, for the negative gap, the wire is
in the normal phase, without MFs.

A spatially-varying exchange field induces the topo-
logical phase transition along the wire where |M| crosses√

∆2 + µ214. A DW in a ferromagnet adjacent to the
wire is a natural object to bring about such a position-
dependent field. We assume that the energy of the ferro-
magnet is given by

U [m(x)] =

∫
dx
[
A|∂xm|2 −Kxm

2
x +Kym

2
y

]
/2, (3)

where m(x) is the unit vector in the direction of lo-
cal magnetization. Here, A, Kx, and Ky are the posi-
tive coefficients characterizing the stiffness of the mag-
netization, the easy-axis anisotropy along the wire, and
the hard-axis anisotropy in the spin-orbit field direc-
tion, respectively9. Two ground states have uniform
magnetization m ≡ ±x̂. A DW is a topological soli-
ton solution minimizing the energy (3) with the bound-
ary condition m(x → ±∞) = ±x̂: its magnetization is

m(x) = tanh(x/λ)x̂ + sech(x/λ)ẑ where λ =
√
A/Kx is

the DW width9.
We sandwich the wire between two ferromagnets: one

with a DW and the other with a uniform magnetization,
as shown in Fig. 1. The proximity-induced exchange field
is described by

M(x) = M1 [tanh(x/λ)x̂ + sech(x/λ)ẑ] +M2x̂, (4)

which introduces a new length scale λ to the Hamiltonian.
The presence of the DW causes spatial variance of the
gap:

Eg(x) =
√
M2

1 +M2
2 + 2M1M2 tanh(x/λ)−

√
∆2 + µ2.

(5)

For example, when M1 = M2 and 2M1 >
√

∆2 + µ2,
there must be a pair of MFs in the wire: one at the
right end, x→ +∞, and the other one at the DW, x0 =
λ tanh−1[(∆2 + µ2)/2M2

1 − 1]. The topological stability
of the DW protects the hosted MF from disturbances of
magnetization.

The technique to control a DW has been developed
over decades in spintronics7, which is directly trans-
lated into the ability to manipulate MFs15. DWs are
conventionally driven by an external magnetic field9

or a spin-polarized electrical current (in an itinerant
ferromagnet)10. These methods, however, affect the elec-
trons in the wire by altering the Hamiltonian. Instead, we
propose to induce the motion of a DW by a temperature
gradient11, which is not intrusive to the electrons (see
Fig. 1). The resultant velocity of the DW is proportional
to temperature gradient. Multiple DWs on the single
wire can be moved simultaneously, thereby providing the
ability to control a series of MFs. DWs can be created by
e.g., locally applying an external magnetic field opposite
to the magnetization of a ferromagnet. They may be cre-
ated away from a superconductor, and then be brought
into a composite system by applying a temperature gra-
dient.
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FIG. 3. (Color online) (a) The trajectories of the parameters
(ξ, η) of MF A and B in the proposed exchange process shown
in Fig. 2. The combined path of two trajectories forms a
closed curve on the parameter space which is topologically a
torus. (b) The trajectories of (ξ, η) in the process proposed
by Alicea et al. 4 . Two combined paths of (a) and (b) are
topologically equivalent.

Exchange of two MFs.—The exchange of two MFs is
possible in the Y junction of three nanowires, each of
which is sandwiched between two ferromagnets. Figure 2
shows the process to exchange MFs bridged by a topo-
logical region16. This proposal uses a well-controllable
topological soliton (DW) as a host of MFs, and thus does
not need intricate gate fabrication and control, unlike
the exchange process proposed by Alicea et al. 4 . The
non-Abelian exchange statistics of MFs is a universal
property, meaning that it is invariant under the con-
tinuous deformation of the Hamiltonian as long as the
gap Eg(x) (2) remains finite, except at isolated locations
of MFs4,17. Our proposal uses the spatially varying ex-
change field M(r) and the chemical potential fixed at
zero, µ(r) ≡ 0. These two functions, M(r) and µ(r), can
be continuously deformed to a uniform exchange field in
the z direction and a spatially-varying chemical potential
of the form studied by Alicea et al. 4 , without changing
the gap. This is accomplished by first locally rotating the
exchange field about the spin-orbit field direction to be
oriented along the z axis: M′(r) = M(r)ẑ, while keeping
the gap Eg(x) unchanged. The following transformation
then connects our Hamiltonian (s = 0) to that of Ref.4

(s = 1):

M(r; s) = M(r) + [−M(r) +Ms] s,

µ(r; s) =

√
{[−M(r) +Ms] s+ ∆}2 −∆2.

(6)

where Ms = maxrM(r). The gap-preserving transfor-
mation between two exchange processes, one performed
by controlling the exchange field and the other by gating
the chemical potential, ensures that the process shown
in Fig. 2 exhibits the non-Abelian exchange statistics ob-
tained in Ref.4.

Alternatively, we may understand the topological
equivalence of two processes following the general ap-
proach developed by Halperin et al. 17 . The state of each
MF, denoted by A and B, can be described by two param-
eters. One is the wire orientation ŵa = (cos ξa, sin ξa) (a

= A, B) in the xy-plane pointing from a nontopologi-
cal region to a topological region, e.g., ξA = 11π/6 and
ξB = 5π/6 in Fig. 2(a). The other parameter is the

exchange-field direction b̂a = cos ηa ẑ + sin ηa ŵa acting
on a MF, e.g., ηA = −π/2 and ηB = π/2 in Fig. 2(a).
The state (ξ, η) of each MF evolves under the exchange
process while making a trajectory on the parameter space
which is topologically a torus. When the Hamiltonian
goes back to the original form after the exchange, the
combined path of trajectories of two MFs forms a closed
curve on the torus. Figure 3(a) and (b) depict the com-
bined curves of the parameters of our process and Alicea
et al. 4 ’s process, respectively. Both curves wind the torus
once along the angle ξ: they are topologically equivalent.
Thus the two processes should exhibit the same exchange
statistics17.

Analytical solutions for MFs.—In the strong SOC
regime, Eso = mα2/~2 � max(|M|,∆), we can use the
BdG Hamiltonian density linearized at zero momentum:

Hlin = −iα∂xσ2τ3 +Mx(x)σ1 +Mz(x)σ3 + ∆τ1, (7)

where the chemical potential is set to zero14,18. In the
following discussions, we set α = 1.

To obtain an intuitive idea of the existence of MFs
bound to a DW, let us neglect the exchange field Mz for
the moment. The Hamiltonian density Hlin, then, can
be block-diagonalized by employing Majorana operators
instead of fermion operators19. Define four Hermitian

Majorana operators γ̂A,B↑,↓ in such a way that

ψ̂↓ = (γ̂A↓ + iγ̂B↓ )/
√

2, ψ̂↑ = (γ̂B↑ + iγ̂A↑ )/
√

2. (8)

Majorana operators are labeled by A and B for the con-
venience of the following discussion. The quasiparticle
creation operator is γ̂+ =

∫
dx
∑

α=↑,↓
β=A,B

[
uβα(x)γ̂βα(x)

]
,

where the new 4-component spinor Ψ̃ = (uA, uB)T ≡
(uA↑ , u

A
↓ , u

B
↑ , u

B
↓ )T is related to the original spinor Ψ

by the unitary transformation Ψ̃ = UΨ. In this new
basis, the 4-component Schrödinger equation i∂tΨ̃ =
(UHlinU†)Ψ̃ is cast as two Dirac equations

iγµ∂µu
A + [−Mx(x)−∆]uA = 0, (9a)

iγµ∂µu
B + [Mx(x)−∆]uB = 0, (9b)

where we have taken the representation of Dirac ma-
trices to be γ0 = −σ2 and γ1 = ±iσ3 (− for uA).
The masses of A and B, mA(x) ≡ −Mx(x) − ∆ and
mB(x) ≡Mx(x)−∆, are essentially the topological gap:
Eg(x) = mA(x) when Mx(x) > 0 and Eg(x) = mB(x)
when Mx(x) < 0. These Dirac equations coincide with
that of solitons with fermion number 1/2 that Jackiw
and Rebbi 20 studied. Each Dirac equation always has
a unique static normalizable solution when its mass
changes sign between two ends x → ±∞. The exchange
field M = [M1 tanh(x/λ) + M2]x̂ yields two zero-energy
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FIG. 4. (Color online) The solid and dashed lines show the
topological gap Eg(x) (2) corresponding to DW width λ =
1 and 5, respectively. Here, the superconducting order pa-
rameter is ∆ = 0.5, and the exchange field is M = [1 +
tanh(x/λ)]x̂ + sech(x/λ)ẑ. The amplitude squared |Ψ(x)|2 =∣∣uA
↓ (x)

∣∣2 +
∣∣uB
↑ (x)

∣∣2 of each MF in Eq. (11) is drawn by the
shaded area. MFs are localized where the gap vanishes.

solutions21

γ̂A =

∫
dx e−(M2+∆)xsechM1λ(x/λ)γ̂A↑ (x), (10a)

γ̂B =

∫
dx e−(M2−∆)xsechM1λ(x/λ)γ̂B↑ (x) (10b)

up to the normalization factor. γ̂A and γ̂B are normaliz-
able when M2 < M1−∆ and M2 < M1 +∆, respectively.

When the uniform field M2 is smaller than M1 −
∆, both masses mA(x) and mB(x) cross zero at
λ tanh−1[−(M2 ± ∆)/M1] (+ for A) and thus two MFs
exist22. Perturbations split the degeneracy generally. For
example, the kinetic energy

(
~2∂2

x/2m
)
τ3 omitted from

the original BdG Hamiltonian density (1) hybridizes MFs
with the energy . ~2 max(M2

1 ,∆
2)/2mα2, which is fi-

nite, yet still much smaller than the bulk gap ∼M1,∆.
When the uniform field exceeds M1 − ∆, while still

smaller than M1 + ∆, the left part of the wire x� −λ is
driven into the nontopological phase, destroying MF A.
The surviving MF B persists in the presence of finite Mz

as long as the bulk gap remains finite. In particular, for
the exchange field M(x) (4) with M1 = M2 > ∆/2, one
MF is located at x0 = λ tanh−1(∆2/2M2

1 − 1). The anti-
commutativity of the particle-hole transformation oper-
ator σ2τ2K and the Hamiltonian density Hlin (7) allows
us to obtain a nondegenerate MF solution13, given by

uB↑ (x) = e∆x[1− f2(x)]1/4P
−ν+1/2
−1/2 [f(x)], (11a)

uA↓ (x) = −νe∆x[1− f2(x)]1/4P
−ν−1/2
−1/2 [f(x)] (11b)

up to the common normalization factor, where f(x) =
(1 + e−2x/λ)−1/2 is introduced to simplify expressions.
Here, P βα (x) is the associated Legendre function of the
first kind with degree α and order β, and ν = 2M1λ is
the characteristic degree of our problem. Figure 4 shows

the spatial profile of the topological gap and the ampli-
tude squared of the MF solution. The relative magnitude
of the two components can be obtained in two limiting
cases: |uA↓ (x)|/|uB↑ (x)| ' 2M1λ when M1λ� 1, and ' 1
when M1λ � 1. For an abrupt wall λ → 0, the solution
(11) converges to the solution (10a) which was obtained
in the absence of Mz.

Discussion.—We have proposed to bind MFs to mag-
netic DWs in the heterostructure of a SOC nanowire, an
s-wave superconductor, and ferromagnet wires. We have
also studied MFs analytically in the strong spin-orbit
regime. Typical strong SOC semiconducting nanowires
(e.g., InAs), magnetic insulators (e.g., EuO), and s-
wave superconductors (e.g., Nb) provide the parameters
α ∼ 5 meV nm, |M| ∼ 1 meV, and ∆ ∼ 0.5 meV13, which
must be sufficient to engender MFs in DWs. MFs can be
experimentally observed by measuring the local tunnel-
ing density-of-states anomaly6, free from parasitic arti-
facts associated with the abrupt physical ends of a wire.

We are able to maneuver MFs with diverse means
to control DW motion. In particular, we have pro-
posed a process braiding MFs in the Y junction per-
formed by thermally-driven DW motion, which exhibits
non-Abelian exchange statistics. Thermally-driven mo-
tion of a DW has been observed in yttrium iron gar-
net films at room temperature12: the DW moves at
the velocity v ∼ 100µm/s for a temperature gradient
∇T ∼ 2µeV/µm23. According to a theory11, the veloc-
ity of the DW is proportional to T 1/2∇T , which leads
us to expect a sizable velocity at tens of µm/s even at
T ∼ 3 K. The resultant temperature drop over the DW
width λ ∼ 60 nm is much smaller than the induced topo-
logical gap ∼ 200µeV6.

We have focused on thermally-induced motion of a DW
in this Rapid Communication. In principle, a tempera-
ture gradient in our proposal can be replaced by other
spintronic techniques for moving a DW provided that
they are not intrusive to MFs. For example, attaching a
normal metal exhibiting strong spin-Hall effect such as a
platinum to a ferromagnet allows us to drive a DW by an
electric current through the metal via an interfacial spin
accumulation24.

We envision that realization of TQC can be brought
forward by employing diverse objects and techniques of
spintronics. It would be worth pursuing higher dimen-
sional generalizations of our proposal based on a one-
dimensinoal wire. For example, a thin film of Fe0.5Co0.5Si
subject to an external field (in the ẑ axis) perpendicular
to the film supports a lattice of skyrmions which are two-
dimensional topological solitons25. A skyrmion is a cir-
cular domain with m = ẑ surrounded by a domain with
m = −ẑ (or vice versa), where m is the local direction
of the magnetization. The edges of skyrmions form do-
main walls, and, therefore, may host MFs under suitable
conditions, which can be braided by thermally-induced
motions of skyrmions26.

After the completion of this work, we became aware
of the paper that speculates that a field-driven-control
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of a domain wall between two ground states of a chiral
superconductor can give rise to a controllable transfer of
edge excitations such as Majorana modes27.
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