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We derive the thermomagnonic torque associated with smooth magnetic textures subjected to
a temperature gradient, in the framework of the stochastic Landau-Lifshitz-Gilbert equation. Our
approach captures on equal footing two distinct contributions: (1) A local entropic torque that
is caused by a temperature dependence of the effective exchange field, the existence of which had
been previously suggested based on numerics and (2) the well-known spin-transfer torque induced
by thermally-induced magnon flow. The dissipative components of two torques have the same
structure, following a common phenomenology, but opposite signs, with the twice larger entropic
torque leading to a domain-wall motion toward the hotter region. We compare the efficiency of the
torque-driven domain-wall motion with the recently proposed Brownian thermophoresis.

PACS numbers: 75.78.-n, 75.30.Ds, 72.20.Pa, 75.10.Hk

Introduction. Spintronics aims at the active control and
manipulation of spin degrees of freedom in condensed-
matter systems1. Spin dynamics can be induced by var-
ious means, e.g., an external magnetic field2 or an elec-
tric current (in conducting systems, such as magnetic
multilayers)3. A thermal flux offers another general in-
strument to excite magnetic dynamics, which forms the
central subject of the field dubbed “spin caloritronics”4.
The spin Seebeck effect, in which a temperature gra-
dient generates spin current, is a prime example of a
spin-caloritronic phenomenon, which has been observed
in a ferromagnetic metal5, a semiconductor6, and an
insulator7. Thermal control of a magnetic system has
an advantage over an electronic control that is necessar-
ily associated with undesired energy dissipation due to
electronic continuum.

A ferromagnetic domain wall is a classic example of
topologically-stable magnetic textures; it has been ex-
tensively studied due to a fundamental interest as well
as practical motivations exemplified by the racetrack
memory8. Recent experiments have demonstrated that
a temperature gradient drives domain walls to the hot-
ter region9. On the theoretical side, a thermomagnonic
torque on a domain wall or, more generally, a mag-
netic texture has been addressed from several perspec-
tives. Hinzke and Nowak 10 predicted a thermally-
induced motion of a domain wall by numerical simu-
lations based on the stochastic Landau-Lifshitz-Gilbert
(LLG) equation11; Schlickeiser et al. 12 argued later that
the motion is driven by the so-called entropic torque that
originates from the temperature dependence of the ex-
change stiffness. Yan et al. 13 derived an adiabatic spin-
transfer torque (STT) on the domain wall exerted by
magnons based on the conservation of angular momen-
tum: Thermal magnons adjust their spins toward the lo-
cal magnetic order and react by exerting a torque on the
domain wall. Kovalev and Tserkovnyak 14 constructed a
phenomenological theory for the thermomagnonic torque
that includes the so-called “β-type” dissipative correction
to the STT, which has been further elaborated analyti-
cally in the framework of the stochastic LLG equation15.

In this Rapid Communication, we reconcile these the-

FIG. 1. (Color online) An illustration of the motion of a do-
main wall in a one-dimensional ferromagnet under thermal
bias. The unit vector n (blue arrow) in the direction of the
local spin density precesses around the equilibrium position
due to thermal magnons. As the temperature increases, the
length of the time-averaged n (yellow arrow) decreases, and
thus the effective exchange field decreases as well. The tem-
perature dependence of the effective field engenders a torque
on the domain wall, pushing it to the hotter region. The STT
acting in the opposite direction is not strong enough to reverse
the direction of the motion within the LLG treatment.

ories (resolving some of the conflicting findings) for the
thermomagnonic torque within the LLG phenomenology
(applicable at temperatures T � Tc, the Curie tempera-
ture), which serves as their common underlying frame-
work. In the following, we start by formulating the
model and summarizing our main results: The first is
the analytical identification of a contribution to the ther-
momagnonic torque that is caused by temperature de-
pendence of the effective exchange field, the existence
of which had been previously supported by numerics12.
The second is the expression of the total thermomagnonic
torque in terms of the magnon current density and the
gradient of the magnon-number density, which point to
the physical origin of each term. We then provide the
detailed derivations of the results. The thermomagnonic
torque adds an additional term in the equations of motion
for the collective coordinates, which parametrize slow
modes of a magnetic texture. We study the motion of
a domain wall (sketched in Fig. 1) as an example. Lastly
we discuss other possible effects on thermal motion of
magnetic domain walls.

Dynamics of a ferromagnet at finite temperature can
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be described by the stochastic LLG equation11:

s(1 + αn×)ṅ = n× (h + hth), (1)

where n is the unit vector in the direction of a local spin
angular-momentum density s ≡ sn, α is the Gilbert-
damping constant16, h ≡ −∂U/∂n is the effective field
conjugate to n. For the ferromagnet’s energy, we take,
for concreteness, U [n] ≡

∫
dV [A|∇n|2 + Kijninj ]/2,

where temperature-independent constants A > 0 and
Kij = Kji parametrize the exchange stiffness and mag-
netic anisotropies, respectively. Fluctuations of spins at
finite temperature are modeled by the Langevin field
hth; the fluctuation-dissipation theorem17 relates the
Langevin field to the damping term, which manifests in
the correlator of hth (setting kB = 1):

〈hthi (r, ω)hthj (r′, ω′)〉 =
2πδijαs~ω

tanh(~ω/2T )
δ(r− r′)δ(ω − ω′).

(2)
Main results. We split n entering Eq. (1) into two

orthogonal components: n ≡
√

1− δn2n(0) + δn. The
slowly-varying component n(0) describes a smooth mag-
netic texture; the fast component δn represents a small
deviation of the local spin density from n(0) that is caused
by thermal agitation. Thermal magnons constitute the
fast component δn, whose effect on the magnetic texture
is captured by the thermomagnonic torque in the (tem-
porally) coarse-grained LLG equation.

Averaging over the quadratic terms in the fast compo-
nent δn yields the low-temperature LLG equation (pro-
jected transverse to n(0)) for the slow component n(0):

s(1 + αn(0)×)ṅ(0) =n(0) × h(0) (3a)

−An(0) × ∂in(0)∂i〈δn2〉 (3b)

+A〈δn×∇2δn〉, (3c)

in the exchange-magnon approximation, within which
only the exchange energy is retained for thermal

magnons. Here, h(0) ≡ A∇2n(0)−Kijn
(0)
i x̂j is the effec-

tive field for n(0) at zero temperature18.
The second term (3b) on the right-hand side is a

magnonic torque that constitutes our first key result:

τ ex ≡ −(2~A/s)n(0) × (∂iρ ∂i)n
(0), (4)

which exists due to temperature dependence of the ef-
fective exchange field A∇2(

√
1− δn2n(0)) through the

magnon-number density ρ ≡ s〈δn2〉/2~. This contribu-
tion is analogous to the so-called entropic torque, which
has been argued in Ref. 12 to govern the domain-wall
motion.

The third term (3c), which is identified as the
magnonic STT13,14, can be expressed in terms of the
divergence of the spin current Jsi ≡ −A〈δn × ∂iδn〉:
τ st ≡ −∂iJsi . The spin current can be split into the lon-
gitudinal and transverse (relative to n(0)) components:

Jsi =−A[n(0) · 〈δn× ∂iδn〉]n(0)

−An(0) × 〈δn(∂in
(0) · δn)〉.

(5)

This finally leads to the following expression for the
magnonic STT:

τ st ≡ ~(J ·∇)n(0) + (~A/s)n(0) × (∂iρ ∂i)n
(0), (6)

to first order in the spatial derivative of the texture.
Here, Ji ≡ (A/~)[n(0) · 〈δn × ∂iδn〉] is the magnon-flux
density evaluated in the absence of a (slow) magnetic tex-
ture. For the circular exchange magnons, we similarly
evaluated 〈δn(∂in

(0) · δn)〉 = (~ρ/s)∂in(0).
Adding the two torque contributions, Eqs. (4) and (6),

yields the total thermomagnonic torque τ ≡ τ ex + τ st:

τ = ~(J ·∇)n(0) − (~A/s)n(0) × (∂iρ ∂i)n
(0), (7)

which is a central result of the Rapid Communication.
The benefit of using macroscopic hydrodynamic variables
J and ∇ρ for the thermomagnonic torque is twofold.
First, their directions relative to a temperature gradient
are apparent: J = −cJ∇T and ∇ρ = cρ∇T , with pos-
itive constants cJ and cρ. As a result, the relative sign
of two terms in Eq. (7) for τ is unambiguously estab-
lished, which was not possible in the phenomenological
approach14. Second, it sheds light on the physical origin
of the thermally-induced magnetic-texture dynamics. In
particular, a ferromagnetic domain wall is driven to the
hotter region at the speed v = ~A∂iρ/αs2 (normal to
the domain-wall orientation), which is governed by the
gradient of the magnon-number density.

The solution for the fast component of the stochastic
LLG equation, which we obtain below by the standard
approach15,19, yields in d dimensions:

cJ =
Id

2dπd/2
1

α~λd−2
, cρ =

dId
2d+1πd/2

s

A~λd−2
, (8)

where λ ≡
√

~A/sT is the thermal-magnon wavelength.

Here, Id ≡ [1/Γ(1 + d/2)]
∫∞
0
dη ηd/2eη(eη − 1)−2 is a

numerical constant (which would need to be regularized
at low energies for d ≤ 2). For d > 2, it is given by
the Riemann zeta function20, Id = ζ(d/2), with I3 '
2.612 for the physically most relevant case. Note that the
first term ∝ J in the thermomagnonic torque τ , Eq. (7),
becomes dominant in the limit of damping α→ 0 as then
cJ →∞ while cρ remains finite.

The thermomagnonic torque (7) is composed of two
terms linear in magnetic texture: The one associ-
ated with the magnon-flux density J is the reactive
component of the adiabatic torque13,14. The other,
caused by the gradient of the number density ρ, is
known as the “β-type” dissipative contribution to the
adiabatic torque14,15. It has been introduced in the
form of β~n(0) × (J · ∇)n(0) by the phenomenological
approach14. Our derivation in the framework of the
stochastic LLG equation yields βJ ≡ −(A/s)∇ρ, where
β = (A/s)cρ/cJ = (d/2)α21. Note that the overall sign of
β is positive while the STT contribution (6) alone would
result in a negative β22.
Thermal magnons. In order to calculate the magnon

flux, J, and number, ρ, densities entering in Eq. (7), we
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have to solve the stochastic LLG equation (1) for the fast
component:

s( ˙δn + αn(0) × ˙δn) = n(0) ×A∇2δn + n(0) × hth , (9)

to the linear order in hth and supposing uniform constant
order n(0). When the average thermal energy of magnons
is much larger than the magnon gap, T � ~K/s, which is
usually determined by the strength of the anisotropy K,
it suffices to retain only the exchange energy of magnons.
The fast mode δn can be combined into one complex field
ψ ≡ δn · (ê1 + iê2) within the local orthonormal frame
{ê1, ê2, ê3 ≡ n(0)}. The complex field ψ satisfies the
stochastic Schrödinger equation with dissipation15,19:

is(1 + iα)ψ̇ = −A∇2ψ − h. (10)

Here the complex Langevin field h ≡ hth · (ê1 + iê2) has
the correlator, 〈h∗(r, t)h(r′, t′)〉 = 2〈hth(r, t) · hth(r′, t′)〉
(retaining only the transverse components hth ⊥ n(0)).
The magnon-flux density, J, and the gradient of the
magnon-number density, ∇ρ, are given by

J = (A/~)Im〈ψ∗∇ψ〉, ∇ρ = (s/~)Re〈ψ∗∇ψ〉, (11)

which can be easily obtained from Eq. (10).
Fourier transforming along the transverse coordi-
nates r⊥ = (y, z) and the time axis, ψ(x, r⊥, t) =∫

[dd−1k⊥dω/(2π)d]eik⊥·r⊥−iωtψ(x,k⊥, ω), yields the
Helmholtz equation:

A(∂2x + k̃2)ψ(x,k⊥, ω) = −h(x,k⊥, ω), (12)

with the complex-valued wave vector k̃2 = sω(1 +
iα)/A − k2⊥. The stochastic field correlator is given by
〈h∗(x,k⊥, ω)h(x′,k′⊥, ω

′) ∝ 2(2π)dδ(k⊥ − k′⊥), with the
remaining factors carrying over from Eq. (2). Employ-
ing the one-dimensional Green’s function G(x − y) =

i exp(ik̃|x − y|)/2k̃ [with Im(k̃) > 0], we finally obtain
after straightforward algebra

〈ψ∗(r, t)∇ψ(r, t)〉 =

(
αd

2
− i
)

Id
2dπd/2

∇T

αAλd−2
, (13)

keeping terms that remain in the limit α → 0. Sub-
stituting this result into Eqs. (11), we directly read out
coefficients (8).

As an additional check, ∇ρ can be alternatively
calculated by considering magnons in the local ther-
mal equilibrium at temperature T (r). Using the
Bose-Einstein distribution function, the number den-
sity of the thermal exchange magnons is given by ρ =∫

[ddk/(2π)d](e~Ak
2/sT−1)−1, whose gradient reproduces

cρ in Eq. (8).
Dynamics of magnetic textures. The deterministic

magnon-averaged LLG equation for a general smooth
texture is given by

s(1 + αn(0)×)ṅ(0) = n(0) × h(0) + τ , (14)

in terms of the full thermomagnonic torque τ ≡ τ ex+τ st,
Eq. (7). The theory can be further simplified by focus-
ing on the relevant collective coordinates parametrizing
dynamics of interest. A canonical example of this is
a quasi-one-dimensional domain-wall motion described
by the azimuthal angle Φ(t) at the wall’s center with
position X(t)2. In general, encoding the dynamics of
a texture n(0)(r, t) with a set of coordinates, q(t) =
{q1(t), q2(t), · · · }, the motion of n(0) reflects evolution
of the coordinates: ṅ(0) = q̇i∂n

(0)/∂qi. Taking the inner
product of Eq. (14) with n(0) × (∂n(0)/∂qi) followed by
spatial integration yields the equations of motion for the
collective coordinates:

Gq̇− Γq̇ + F + Fm = 0, (15)

showing the interplay between gyrotropic, viscous, con-
servative, and magnon-induced forces acting on a slowly
varying texture23. Here, Gij ≡ s

∫
dV n(0) · (∂qjn(0) ×

∂qin
(0)) is the antisymmetric gyrotropic tensor24; Γij ≡

αs
∫
dV (∂qin

(0) ·∂qjn(0)) is the symmetric viscous tensor;
Fi ≡ −∂qiU is the conservative force; and, finally,

Fm
i ≡~

∫
dV [n(0) × (∂n(0)/∂qi)] · (J ·∇)n(0)

− (~A/s)
∫
dV (∂n(0)/∂qi) · (∂jρ ∂j)n(0)

(16)

is the thermal-magnon induced force.
As an illustrative example, we now specialize to

the case of a domain-wall motion under the temper-
ature gradient ∇T = ∂xT x̂, which is illustrated in
Fig. 1. For the easy-xz-plane easy-z-axis ferromagnet,
with energy U [n] =

∫
dV (A|∇n|2 + Kyn

2
y − Kzn

2
z)/2,

Ky,Kz > 0, a domain wall is a topologically-stable

equilibrium defect. It is explicitly given by n(0) =
(sin θ cos Φ, sin θ sin Φ, cos θ) with Φ = 0 and cos θ =

tanh[(x − X)/∆], where ∆ =
√
A/Kz is the width of

the wall. Slow dynamics of the domain wall are well de-
scribed by two collective coordinates: the position X and
the azimuthal angle Φ2. The equations of motion (15) for
X and Φ are

s(Ẋ − α∆Φ̇) = −~Jx + (Ky∆/2) sin(2Φ), (17)

s(∆Φ̇ + αẊ) = (~A/s)∂xρ. (18)

The steady-state velocity of the wall below the Walker
breakdown2 (in the three-dimensional case when wire’s
lateral dimensions are larger than the thermal-magnon
wavelength) is

v =
~A
αs2

∂xρ =
3ζ(3/2)

16π3/2

∂xT

αsλ
(19)

25. The associated steady-state azimuthal angle is given
(at small biases) by Φ ≈ ζ(3/2)∂xT/16π3/2αλ∆Ky. For
a numerical estimate, taking s = ~/nm3, α = 10−2, λ =
10 nm, and ∂xT = 10 K/mm, the resultant velocity of
the wall is v ' 1.15 mm/s. The domain wall moves
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to the hotter region, with the driving force proportional
to the gradient of the magnon-number density, which is
consistent26 with recent numerical findings12.

Discussion. In developing the long-wavelength theory
for magnetic-texture dynamics subject to thermal gra-
dients, we have tacitly assumed that the thermal wave-
length of magnons is much shorter than the characteristic
length scale of the slow texture. This allows us to focus
on the adiabatic torques that are first order in spatial-
texture gradients. Further simplifications are afforded by
assuming energy-scale hierarchy ~K/s � T � Tc, such
that thermal magnons are dilute and dominated by ex-
change interactions (hence circular). A strong anisotropy
on the atomistic scale, however, would require one to ac-
count for the noncircular character of magnons beyond
the exchange approximation. Topological defects, such
as domain walls, in this case, would, furthermore, be as-
sociated with textures that can be sharp compared to the
lattice constant. This would lead to strong nonadiabatic
effects in magnon transport and torques, engendered by
magnon reflection on sharp textures27,28, that are be-
yond our formalism. High temperatures approaching Tc,
furthermore, would invalidate the Landau-Lifshitz phe-
nomenology as a starting point, calling for alternative
approaches.

Whereas we focused on deterministic texture dynamics
in the long-wavelength limit of the bulk, a small topolog-
ical soliton, e.g., a domain wall in a narrow wire, should

generally behave as a particle immersed in a viscous
medium. As such, it must exhibit Brownian motion due
to random forces required according to the fluctuation-
dissipation theorem. We have recently pointed out that
a small antiferromagnetic soliton could drift to a colder
region by the Brownian motion under a temperature
gradient29. Naturally, small ferromagnetic solitons be-
have similarly. For a ferromagnetic domain wall of the
type considered above, the drift velocity by the Brown-
ian motion is vB = −(∆/2αsσ)∂xT , where σ is the mag-
netic wire’s cross section in the yz plane30. The ratio be-
tween the deterministic torque-induced domain-wall ve-
locity v, Eq. (19), and the stochastic Brownian drift vB is
v/vB ∼ −σ/λ∆. The thermomagnonic torque thus dom-
inates for larger cross sections σ (supposing rigid motion)
and/or at higher temperatures, corresponding to shorter
thermal-magnon wavelengths λ ∝ T−1/2.
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1 I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys.
76, 323 (2004), and references therein.

2 N. L. Schryer and L. R. Walker, J. Appl. Phys. 45, 5406
(1974).

3 J. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996);
L. Berger, Phys. Rev. B 54, 9353 (1996).

4 G. E. W. Bauer, E. Saitoh, and B. J. van Wees, Nat.
Mater. 11, 391 (2012), and references therein.

5 K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae,
K. Ando, S. Maekawa, and E. Saitoh, Nature 455, 778
(2008).

6 C. M. Jaworski, J. Yang, S. Mack, D. D. Awschalom, J. P.
Heremans, and R. C. Myers, Nat. Mater. 9, 898 (2010).

7 K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi,
J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai,
G. E. W. Bauer, S. Maekawa, and E. Saitoh, Nat. Mater.
9, 894 (2010).

8 S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320,
190 (2008).

9 J. Torrejon, G. Malinowski, M. Pelloux, R. Weil, A. Thi-
aville, J. Curiale, D. Lacour, F. Montaigne, and M. Hehn,
Phys. Rev. Lett. 109, 106601 (2012); W. Jiang, P. Upad-
hyaya, Y. Fan, J. Zhao, M. Wang, L.-T. Chang, M. Lang,
K. L. Wong, M. Lewis, Y.-T. Lin, J. Tang, S. Chere-
pov, X. Zhou, Y. Tserkovnyak, R. N. Schwartz, and
K. L. Wang, ibid. 110, 177202 (2013); J. Chico, C. Etz,
L. Bergqvist, O. Eriksson, J. Fransson, A. Delin, and
A. Bergman, Phys. Rev. B 90, 014434 (2014).

10 D. Hinzke and U. Nowak, Phys. Rev. Lett. 107, 027205

(2011).
11 W. F. Brown, Phys. Rev. 130, 1677 (1963); R. Kubo and

N. Hashitsume, Prog. Theor. Phys. Suppl. 46, 210 (1970);
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