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We theoretically study thermally-activated phase slips in superfluid spin transport in easy-plane
magnetic wires within the stochastic Landau-Lifshitz-Gilbert phenomenology, which runs parallel
to the Langer-Ambegaokar-McCumber-Halperin theory for thermal resistances in superconducting
wires. To that end, we start by obtaining the exact solutions for free-energy minima and saddle
points. We provide an analytical expression for the phase-slip rate in the zero spin-current limit,
which involves detailed analysis of spin fluctuations at extrema of the free energy. An experimental
setup for a magnetoeletric circuit is proposed, in which thermal phase slips can be inferred by
measuring nonlocal magnetoresistance.
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Introduction.—A wire can carry an electrical current
without dissipation under favorable conditions in the su-
perconducting state, which is characterized by a complex-
valued function of position, Ψ(r), referred to as the su-
perconducting order parameter describing a condensate
of constituent particles1. When density fluctuations of
the condensate are energetically suppressed and thus the
magnitude of the order parameter is constant, an elec-
trical supercurrent is proportional to the gradient of the
phase of the order parameter. In some circumstances,
e.g., for thin wires or in the presence of strong mag-
netic fields, finite resistances arise2, of which understand-
ing has required both theoretical and experimental ef-
forts to be made over the last decades. In particular,
the theory for intrinsic thermal resistances in thin su-
perconducting wires has been pioneered by Little 3 , who
suggested that dissipation occurs via thermally-activated
phase slips (TAPS), jumps of the phase winding along the
wire by 2π, that necessarily accompany quenching of the
order parameter at some point in the wire. The quantita-
tive theory for TAPS has been developed by Langer and
Ambegaokar 4 and further elaborated by McCumber and
Halperin 5 , and has, therefore, been given the acronym
following their initials: LAMH theory.

No superconductivity has been observed at room tem-
perature, challenging its practical utilization, whereas
magnetism—another phenomenon resulting from spon-
taneous ordering—is ubiquitous in nature even at ele-
vated temperatures. Being integrated with the informa-
tion processing technology, it has spawned the field of
spintronics6. A spin analog of an electrical supercurrent,
superfluid spin transport, has been proposed in magnets
with easy-plane anisotropy, where the direction of the
magnetic order parameter within the easy plane plays a
role of the phase of the superfluid order parameter7–10.
Here, dissipationless spin current (polarized normal to
the easy plane) is sustained by a planar spiraling texture
of the magnetic order. The absence of strict conserva-
tion laws for spin, e.g., due to Gilbert damping, rules out
faithful analogy to electrical supercurrent, which requires
us to consider superfluid spin transport as being distinct
from conventional charge superfluid.

In this Rapid Communication, we theoretically study

TAPS in superfluid spin transport in easy-plane mag-
netic wires within the Landau-Lifshitz-Gilbert (LLG)
phenomenology. In equilibrium, the magnetic order is
kept within the easy plane and, thus, can be character-
ized by its winding number, the total azimuthal-angle
(phase) change along the wire. At a finite temperature,
the winding number can increase or decrease due to ther-
mal spin fluctuations via events that can be identified
as TAPS. The most probable path for the dynamics of
the magnetic order parameter during TAPS traverses the
saddle point of the free energy, where a few localized
spins develop significant out-of-easy-plane components.
We obtain the exact solution for these saddle points by
solving the time-independent Landau-Lifshitz equation.
We also provide an analytical expression for the rate of
TAPS in the zero spin-current limit, which involves de-
tailed analysis of spin fluctuations at extrema of the free
energy. To observe TAPS in magnetic wires, we adopt a
magnetoeletric circuit proposed in Ref.11, in which detec-
tion of nonlocal magnetoresistance can yield signatures
of TAPS.
Main results.—We consider a thin easy-xy-plane mag-

netic wire with free energy F [n] ≡
∫
dV (A|∇n|2 +

Kn2
z)/2, where positive constants A and K parametrize

the stiffness of the order parameter and the easy-plane
anisotropy, respectively. Here, the unit vector n(x) is the
direction of the order parameter: the local spin angular-
momentum density for ferromagnets and the local Néel
order for antiferromagnets12. When the wire is narrow
compared to the magnetic coherence length ξ ≡

√
A/K,

variations of the order parameter across the wire (of
cross section A ) can be neglected, which allows us to
treat the order parameter n, at a given time, as a func-
tion of position x along the wire13. It is convenient to
parametrize n in spherical coordinates, θ and φ, defined
by n ≡ (sin θ cosφ, sin θ sinφ, cos θ), with a rescaled free
energy:

f [θ, φ] ≡
∫ l/2

−l/2
dx[θ′2 + sin2 θφ′2 + cos2 θ]/2 (1)

measured in units of F0 ≡ ξAK (which is the maximum
anisotropy energy that can be stored within the coher-
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FIG. 1. (color online) (a)-(c) Extrema of the free energy f
[Eq. (1)] for an easy-xy-plane magnetic wire with periodic
boundary conditions. The metastable state (a) that winds
in the easy plane once will decay to the ground state (c) via
TAPS passing over the saddle point (b), where a few spins
localized within the magnetic coherence length develop sig-
nificant out-of-easy-plane components. (d) A plot of the free
energy f as a function of spin current k (metastable states)
and k̄ (saddle points) for the wire length l = 48. A solid line
is a guide to the eye. A dashed line shows the free energy of
the metastable states for an infinitely long wire: f = k2l/2.
Points corresponding to the three configurations, (a)-(c), are
denoted accordingly. A dotted line illustrates transitions be-
tween nearby metastable states (a) and (c).

ence length), where the position variable x is measured
in units of ξ and runs over the wire length l ≡ L/ξ.

Extrema of the free energy are solutions of the time-
independent Landau-Lifshitz equation:

δf/δθ = −θ′′ + sin θ cos θφ′2 − sin θ cos θ = 0 , (2a)

δf/δφ = −(sin2 θφ′)′ = 0 . (2b)

The second equation is the consequence of the invariance
of the free energy under spin rotations about the z axis.
For static configurations, the associated conservation law
describes spatial independence of the z-component of the
spin current, Is ≡ −AA sin2 θφ′, so that the dimension-
less constant parameter k ≡ −Isξ/AA can be used to
index solutions of Eqs. (2). There are two types of solu-
tions of interest to us. The first is a local minimum of
the free energy:

θ(x) = π/2 , φ(x) = φ0 + kx (|k| < 1) , (3)

with φ0 an arbitrary reference angle. There is a critical
current, |k| = 1, for stable superfluid spin transport ac-

cording to the Landau criterion7,8,14, above which spin
fluctuations destabilize superfluidity. When the wire is
long enough l � 1 (which is assumed henceforth), ac-
tual boundary conditions at the ends of the wire are not
important. Imposing periodic boundary conditions on
the order parameter, n(x = −l/2) = n(x = l/2), quan-
tizes the total azimuthal-angle change: ∆φ ≡ φ(l/2) −
φ(−l/2) = 2πν, in terms of integer ν. The allowed val-
ues of k are thus kν = 2πν/l. Figures 1(a) and 1(c) show
the free-energy minima with winding numbers ν = 1 and
ν = 0, respectively.

At zero temperature, thermal spin fluctuations are
frozen out. Persistent spin current in a closed mag-
netic ring, therefore, can be sustained indefinitely, when
disregarding quantum spin fluctuations15. Finite tem-
perature, however, agitates spins and opens transition
channels between the metastable states carrying differ-
ent spin current [see a dotted line in Fig. 1(d)]. The
total azimuthal-angle change ∆φ = 2πν is quantized and
well defined provided that the order parameter n avoids
the poles, |nz| = 1, where the azimuthal angle φ is am-
biguous. In continuous transitions between two minima
with different winding numbers, ν 6= ν′, the order param-
eter must hit one of the poles; this is analogous to the
vanishing of the superconducting order parameter dur-
ing TAPS3. Supposing T � F0, the transitions between
metastable states are rare, which we assume throughout.

The most probable path of the order parameter during
the transition between two metastable states will pass
over the intervening saddle point of the free energy2,5,
which is the second kind of solution of Eq. (2) that we
obtain with spatially varying θ̄(x)16:

θ̄(x) = cos−1
[√

1− k̄2 sech(
√

1− k̄2x)
]
, (4a)

φ̄(x) = φ0 + k̄x+ tan−1

[√
1− k̄2 tanh(

√
1− k̄2x)

k̄

]
,

(4b)

indexed by spin current k̄, and any spatial translation
thereof. This exact saddle-point solution constitutes
our first main result. The periodic boundary condi-
tions on n discretize allowed values of k̄: ∆φ = k̄ν l +
2 tan−1[(1 − k̄2

ν)1/2/k̄ν ] = 2πν, where the quantities ex-
ponentially small for large l are ignored here and here-
after. Figure 1(b) depicts the saddle-point solution with
ν = 1, which mediates the transition between two min-
ima with ν = 1 and ν = 0. The spin currents of the
metastable states and the saddle-point solutions inter-
lace: kν−1 < k̄ν < kν (for positive ν), meaning that
there always exists the unique saddle point between two
nearest metastable states. See Fig. 1(d) for an illustra-
tion.

The rate of transitions, respectively increasing or de-
creasing spin-current magnitude, may be written in the
form

Γ± = Ωe−∆F±/T , (5)
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where temperature is measured in energy units so that
kB = 1. Here, ∆F± ≡ F0 ·∆f± is the free-energy barrier
to reach the intermediate saddle point, and Ω is the pref-
actor that depend on details of spin fluctuations around
the extrema17. Specifically, for the transitions between
the two metastable states [Eq. (3)] with kν and kν−1 via
the saddle point [Eq. (4)] with k̄ = k̄ν > 0, the free-
energy barriers can be directly obtained by evaluating
the differences in the free energy f [Eq. (1)]:

∆f−(k̄) = 2
√

1− k̄2 − 2k̄ tan−1[
√

1− k̄2/k̄] , (6a)

∆f+(k̄) = ∆f−(k̄) + 2πk̄ . (6b)

Since ∆f− ≤ ∆f+, fluctuations tend, on average, to re-
duce the spin-current magnitude and thus give rise to
equilibriation. In the limit of zero current, k̄ → 0, the
free-energy barrier is ∆F ≡ 2F0 = 2ξAK, which roughly
represents the energy cost due to the out-of-easy-plane
component of the order parameter in the phase slip re-
gion localized within the magnetic coherence length ξ.

Our second main result, which is derived in the supple-
mental material18, is the analytical expression of the pref-
actor Ω for ferromagnets in the zero spin-current limit:

Ω(T ) =
1

π
√

2π

αK

(1 + α2)s

L

ξ

√
∆F

T
, (7)

which is analogous to the result for the superconduct-
ing wire in the LAMH theory5, where α is the Gilbert
damping constant and s is the local spin angular mo-
mentum density. Here, αK/(1 + α2)s is the inverse of
the relaxation time for the perturbed uniform easy-plane
ferromagnet to return to the equilibrium state; L/ξ rep-
resents the number of possible independent phase-slip lo-
cations;

√
∆F/T stems from the breaking of the trans-

lational invariance of the system by the saddle point19.
The prefactor for antiferromagnets on bipartite lattice
can be obtained by replacing αK/(1 + α2)s with K/αs
for overdamped dynamics20, where s is the local spin
angular-momentum density per each sublattice.

For quantitative estimates, let us take following mate-
rial parameters of YIG thin film10,21: the spin angular
momentum density s = 10 ~/nm3, the Gilbert damp-
ing constant α = 10−4, the stiffness coefficient A = 5 ×
10−12 J/m, and the coefficient for easy-plane anisotropy
(created by demagnetizing field) K = 4× 104 J/m3. For
a wire with cross section A = 50 nm2, the energy barrier
for TAPS is ∆F = 5 × 10−20 J, which yields the Boltz-
mann factor exp(−∆F/T ) = 10−5. When the length of
the wire is L = 1000 nm, the typical rate of TAPS is
Γ = 2/ms.
Decay of persistent spin current.—The persistent spin

current in a closed ring will decay via TAPS at a fi-
nite temperature. From Eq. (5), the winding number
ν = ∆φ/2π, which characterizes metastable states, de-
cays with the rate

Γ+ − Γ− = −4π2(ξF0/LT )Ω(T )e−2F0/T ν , (8a)

≡ −κ(T )ν (8b)
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FIG. 2. (color online) (a) Schematics of an experimental setup
for detecting TAPS, in which two identical metals, parallel in
the electric circuit, are connected by a magnetic insulator sup-
porting superfluid spin transport. (b) Schematics illustrating
the origin of an electromotive force in the metals. TAPS un-
wind the equilibrium spiraling structure (at t = t1), resulting
in the uniform state (at t = t2). As the magnet returns to the
equilibrium spiraling structure, the magnetization at the left
(right) interface rotates counterclockwise (clockwise), which
in turn induces a detectable electromotive force in the metals.

to linear order in the winding number ν22. The spatially-
averaged spin current Is ≡ 2πνAA /L decays with the
rate κ(T )Is. Note that κ(T ) is independent of the length
of the wire since Ω(T ) ∝ L.

The dissipation of the spin current dictates the pres-
ence of the effective random force on the spin current to
meet the fluctuation-dissipation theorem23. The resul-
tant stochastic dynamics of the spin current is described
by

İs(t) = −κ(T )Is(t) + η(t), (9)

where the white-noise Langevin term η(t) with the cor-
relator 〈η(t)η(t′)〉 = 2(AA /L)κ(T )Tδ(t − t′) is intro-
duced to yield the thermal variance of the spin current,
〈I2
s 〉 = (AA /L)T , which we obtain from the thermal ex-

pectation value of the free energy.
Discussion.—TAPS in superfluid spin transport can

be detected in an experimental setup proposed in Ref.11,
in which two identical metals connected parallel in the
external electric circuit are linked by a thin easy-plane
magnetic insulating wire (see Fig. 2). In the presence of
spin-orbit coupling at metal|magnet interface, current in
the metal gives rise to a torque in the magnet, and, as an
Onsager reciprocal effect, dynamics of magnetic moments
induces an electromotive force in the metal24.

At zero temperature, this configuration supports static
spiraling structure of the magnetization11, with the left
metal injecting and the right metal draining spin cur-
rent [see Fig. 2(a)]. The associated electromotive force is
absent, and the effective resistivity of the circuit, there-
fore, is not affected by spin superfluid. At a finite tem-
perature, however, TAPS unwind the spiraling structure
stochastically with the net rate of κ(T )ν(t), where ν(t)
is the winding number at fixed time t25. As the magne-
tization rewinds to the original static spiraling structure,
the magnetic moment at the left (right) interface rotates
counterclockwise (clockwise), which induces an electro-
motive force in the adjacent metals26. In the steady state,
the time-averaged precession of the magnetization at the
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interfaces are φ̇l(t) = −φ̇r(t) = −πκ(T )ν(t). Induced
electromotive force reduces the effective resistivity of the
circuit (following the derivation of Ref.11): ρ → ρ + ρm
with ρm = −ϑ2κ(T )L/2A (considering TAPS as pertur-
bation to uniform spin-current states), where ρ is the
resistivity of the metal and ϑ is related to the effective
interfacial spin Hall angle Θ via ϑ ≡ (~/2et) tan Θ, with
−e being the electric charge of a single electron and t
being the thickness of the metals in the x direction11.
Observation of the characteristic dependence of the ef-
fective resistivity of the circuit on the length of the wire
(algebraic) or temperature (exponential) would provide
experimental signatures of TAPS.

Spins are treated classically in our theory for TAPS.
Quantum aspect of spins would become important in
the low-temperature regime, where quantum phase slips
may become a dominant source of dissipation of spin su-
percurrent. Two of us recently studied such quantum
phase slips in quantum antiferromagnetic spin chains27,

in which decaying rate of the spin supercurrent is shown
to qualitatively differentiate between integer and half-
odd-integer spin chains.

Our analysis on TAPS is based on the LLG equation,
which is applicable at temperatures much lower than the
magnetic ordering temperature. Note that Golubev and
Zaikin 28 revised the LAMH theory for superconducting
wires, pointing out parametric enhancement of the pre-
exponential factor near the critical temperature.
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