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Spin-torque-biased magnetic dynamics in an easy-plane ferromagnet (EPF) is theoretically stud-
ied in the presence of a weak in-plane anisotropy. While this anisotropy spoils U(1) symmetry
thereby quenching the conventional spin superfluidity, we show that the system instead realizes a
close analog of a long Josephson junction (LJJ) model. The traditional magnetic-field and electric-
current controls of the latter map respectively onto the symmetric and antisymmetric combinations
of the out-of-plane spin torques applied at the ends of the magnetic strip. This suggests an al-
ternative route towards realizations of superfluid-like transport phenomena in insulating magnetic
systems. We study spin-torque-biased phase diagram, providing analytical solution for static mul-
tidomain phases in the EPF. We adapt an existing self-consistency method for the LJJ to develop
an approximate solution for the EPF dynamics. The LJJ-EPF mapping has potential for producing
applications with superconductor-based circuit functionality at elevated temperatures. The results
apply equally to antiferromagnets with suitable effective free energy in terms of the Néel order
instead of magnetization.

Introduction.—It has been suggested [1, 2] that insu-
lating thin-film easy-plane ferromagnets (EPF) can ex-
hibit features of superfluid spin transport, which is at-
tractive for spintronics applications, due to low dissi-
pation and long-ranged signal propagation [3, 4]. How-
ever, complications can arise in that spin supercurrents,
i.e., spin transport with topologically-suppressed dissipa-
tion [1], can be inhibited in an EPF by the presence of
magnetic anisotropy within the easy-plane. This spoils
the requisite U(1) symmetry and pins the magnetization
along a particular direction. Such symmetry-breaking
anisotropies always exist in real materials, due to, e.g.,
underlying crystal symmetries or shape anisotropy, de-
moting the spin superfluid analogy to an imperfect one.
Potential signatures of spin superfluids were recently ob-
served in Refs. [19, 20], so measuring effects of anisotropy
may be viable in the near future.

In this Letter, departing from the previous view of the
EPF with in-plane anisotropy as a defective spin super-
fluid, we propose a description as a magnetic analog of
a long Josephson junction (LJJ), which consists of two
superconductors sandwiching a thin insulating layer [5].
This incorporates the in-plane anisotropy as a natural
and potentially desirable ingredient. Specifically, we con-
sider the magnetic dynamics of the EPF driven by the
out-of-plane spin torques exerted at its ends. The map-
ping between EPF and LJJ represents a key result of the
paper: Domain walls in the former correspond to phase
vortices in the latter, and symmetric and antisymmetric
combinations of the spin torques in the former correspond
to the magnetic-field and electric-current controls of the
latter.

In the following, we construct the spin-torque-biased
phase diagram, in which the multivortex stationary
states of the LJJ get mapped onto multi-magnetic-
domain-wall stationary states in the EPF. The mapping
from the equations of motion (EoM) for the LJJ to the

Landau-Lifshitz-Gilbert equations for the EPF is exact
for static cases, thus giving the full analytical solution
for static multidomain phases in the EPF. For dynamic
cases, the EoM for the EPF differ from those of the LJJ in
that the dissipative leakage at the boundaries due to spin
pumping [9] must be accounted for; however, techniques
for approximating the dynamical solutions in LJJ’s can
be carried over to the EPF with minor adjustments. As
an example, we develop an approximate analytical solu-
tion for the EPF dynamics by adapting an existing self-
consistent method for the LJJ [8].

Magnetic model.—In this Letter, we show that a mag-
netic strip connected to spin-injection leads bears close
analogy to a LJJ. We illustrate this by considering a sim-
ple structure depicted in Fig. 1(a). An insulating EPF
of length 2L is subjected to spin torques τr,l applied at
its left (right) interface. The underlying spin currents
are injected via the spin Hall effect [10] with spins ori-
ented out of the magnetic easy (xy) plane. The sys-
tem is similar to the EPF thin-film junction of Ref. [3]
but with the addition of a small in-plane anisotropy
K ′ � K. Our magnetic free energy is given by F [φ, n] =
1
2

∫
d2r

[
A(∂rφ)2 +Kn2 +K ′ sin2 φ

]
, where φ(r, t) is the

azimuthal angle of the directional (unit-vector) order pa-
rameter n(r, t) ≡ (

√
1− n2 cosφ,

√
1− n2 sinφ, n) Its z

projection, n(r, t), parametrizes the generator of spin
rotations in the plane, which thus dictates the Poisson
bracket s{φ, n} = δ(r − r′) and establishes the canoni-
cal conjugacy of the pair (φ, sn) [11]. s is the saturation
spin density and A is the order-parameter stiffness. The
hard-z-axis anisotropy K � K ′ keeps the magnetiza-
tion dynamics predominantly near the xy plane, which
allows us to neglect the gradient terms involving n. The
ground-state orientation is collinear with the x axis, ac-
cording to the magnetic anisotropy ∝ K ′, dictating the
presence of metastable domain-wall textures, as depicted
in Fig. 1(a).
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The dissipation associated with the magnetization
dynamics is introduced in the conventional Gilbert-
damping form [12], which for our easy-plane dynamics
reduces to the Rayleigh dissipation function (per unit
area) of R = αds(∂tφ)2/2, parametrized by a damping
constant αd. We assume the low-bias regime, such that
|∂rφ| �

√
K/A (the Landau criterion for the stability

of planar textures [1].), so as to prevent significant de-
partures of the magnetization away from the easy plane.
Thermal nucleation of magnetic vortices responsible for
superfluid-like phase slips [13] is likewise neglected.

Putting these ingredients together, we obtain the EoM,
s∂tφ = Kn and s∂tn = A∂2

rφ − K′

2 sin 2φ − αds∂tφ.
Boundary conditions are set by spin injection/pumping.
The total out-of-plane spin-current densities through the
right (left) interface, in the positive x direction are [3]

j
(s)
r,l = ∓ g

4π

[
µ

(s)
r,l − ~∂tφ

]
, (1)

where g is the (real part of) the spin-mixing conduc-
tance per unit length of the interface and µ(s) is the out-
of-plane spin accumulation near the interface, which is
induced by the spin Hall effect in the metal contacts.
For the sake of simplicity, we assume the spin-mixing
conductances to be the same for both interfaces. Rec-
ognizing the stiffness ∝ A term in the EoM as stem-
ming from the bulk spin current j(s) = −A∂rφ, so that
s∂tn = −∂r · j(s) + . . . [1], we invoke spin continuity to
obtain the boundary conditions:

−A∂xφ(±L, t) = j
(s)
r,l = τr,l ± γ∂tφ(±L, t) . (2)

Here, τr,l ≡ ∓ g
4πµ

(s)
r,l = ~ tan θSH

2e jr,l is the spin Hall torque
at the left (right) interface generated by an electric cur-
rent density jr,l flowing in the y direction through the
metal leads. θSH is the effective spin Hall angle of the
interfaces [14]. γ ≡ ~g/4π parametrizes spin pumping
out of the ferromagnet by the magnetic dynamics [9].

Eliminating n from the EoM and applying the substi-
tution

φ̃ = 2φ , (3)

we arrive at the damped sine-Gordon equation:

∂2
xφ̃ =

∂2
t φ̃

u2
+

sin φ̃

λ2
+ βd∂tφ̃ , (4)

with the wave speed u =
√
AK/s, characteristic domain-

wall width λ =
√
A/K ′, and damping constant βd =

αds/A. This equation admits a solution of an isolated
domain wall as well as low-amplitude spin-wave solutions
which obey the massive Klein-Gordon equation, with the
mass proportional to K ′. In the large spin-current limit,
so that |∂rφ| � 1/λ, the excitations become approxi-
mately massless. In this (linearly-dispersing) limit, the

FIG. 1. (a) EPF with spin injection from metal contacts on
two side. The spin polarization of the current is along the
z axis, while the spin-current flow is oriented along the x
axis. The ferromagnet is sufficiently narrow in the transverse
dimensions to treat it as quasi-one-dimensional. (b) Diagram
of the inline LJJ, with W much smaller than L as well as
the depth of the structure in the z direction. We assume
two conventional superconductors (SC) much larger than the
London penetration depth in all dimensions. The magnetic-
field screening currents as well as the circulating vortices are
schematically depicted with black oriented lines. The vortices
in the junction map onto the domain walls depicted in (a).

system approaches the behavior of the EPF without in-
plane anisotropy, thus allowing for states that closely re-
semble the spin superfluid of Ref. [3]. In the small spin-
current regime, on the contrary, the steady state configu-
ration is static, laking the aforementioned spin-superfluid
dynamics, but the analogy to LJJ nevertheless holds.

The damped sine-Gordon equation has found appli-
cation in a number of disciplines [15]. The equation is
commonly studied in relation to its physical realizations
in coupled series of pendulums and long Josephson Junc-
tions. Below we exploit some relevant results of the lat-
ter.
Relation to long Josephson junctions.—It is instructive

to recall the dynamics of the inline configuration of a LJJ
[16, 17], a diagram of which is depicted in Figure 1(b). A
Josephson junction permits coherent supercurrent tun-
neling through the insulating region up to a critical cur-
rent density jc, which depends on the tunneling strength
and the superfluid density in the superconductor. In the
presence of a magnetic field B = B(x)z inside of the
junction, we can choose a gauge A = A(x, y)x, so that
B = −∂yA. The DC Josephson relation for the tunneling
current flowing from SC1 to SC2 is

j = jc sinϑ+ gV , (5)

where ϑ(x) = θ1−θ2 is the superconducting phase differ-
ence across the junction, and we also added the normal
current component proportional to the conductance (per
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unit area) g and the local voltage V (x) = V1 − V2 across
the junction. B(x) satisfies the Ampère-Maxwell equa-
tion

∂xB =
4π

c
j +

ε

c
∂tE , (6)

where E = −E ·y = V/d is the electric field in and ε the
permittivity of the insulating region.

Next, we invoke the superconducting phase evolution
equation (e > 0)

V =
~
2e
∂tϑ (7)

and the relation ∂xθ = −(2e/~c)A well inside of the su-
perconducting regions (on the scale of the London pene-
tration depth λL), which leads to

B =
A2 −A1

d+ 2λL
=

~c
2e(d+ 2λL)

∂xϑ . (8)

Putting Eqs. (5)-(8) together, we reproduce the
damped sine-Gordon equation (4), thus identifying the

Swihart velocity u = c
√

d
ε(d+2λL) , the Josephson pen-

etration depth λJ = c
√

~
8πe(d+2λL)jc

, and the damping

parameter βd = 4πg(d+2λL)
c2 .

The boundary conditions are obtained from Eq. (8) by
noting that

B(±L) = Bext ±
2π

c
J , (9)

where Bext is the externally applied field in the z di-
rection and J is the applied current through the system,
per unit of length in the z direction. Comparing this with
Eq. (2), we see that the symmetric (antisymmetric) com-
bination of the torques, τr ± τl, realizes the effect of the
external field Bext (applied current J), in the mapping
from the LJJ to the EPF:

τr,l
A

 − e

~c
(d+ 2λL)

(
Bext ±

2π

c
J

)
. (10)

The EoM of the LJJ and anisotropic EPF systems dif-
fer only in the addition of the boundary spin pumping
term, γ∂tφ, in Eq. (2). If spin pumping is negligible, e.g.
time-independent solutions, the two problems are equiv-
alent. Having an exact mapping between the models of
the LJJ and EPF for time-independent solutions allows
the equilibrium stability analysis of Ref. [6] to carry over.
The close analogy of the EPF system to the thoroughly
studied LJJ model allows us to immediately draw sev-
eral conclusions about the static solutions. The substi-
tution (3) indicates that a 2π phase vortex in the LJJ
model corresponds to a domain wall (π rotation) in the
EPF. In particular, the symmetric torque τr = τl injects
static domain-wall textures into the EPF, which in the

FIG. 2. The regions of stability for equalibium p-vortex solu-
tions of the LJJ boundary-value problem, for L/λ = 1. The
spin torques τr,l are in units of A/λ. Overlapping regions can
have either solution. Outside of these regions, i.e., in the high
|τr− τl| limit, there are no stable time-independent solutions.
Inset: The dependence of the critical torque τc, for which
τr + τl = 0, on the length L in units of λ.

LJJ corresponds to the external field Bext producing a
static multivortex configuration. The number of stable
domain walls is dependent on the boundary conditions
and the solution for a given boundary condition can be
multivalued, resulting in hysteretic effects. The multival-
ued solutions are dependent on the length of the system,
in units of λ. Figure 2 shows the regions of stability
for p-vortex equilibrium solutions for the case of L = λ.
The stability regions have greater overlap in the limit of
large L/λ, and in this limit the edge of the p > 0 stabil-
ity region asymptotically approaches the zero bias point
as ∼ e−L/pλ. See Ref. [6] for the analytic equations for
computing the phase boundaries.
Analytic equilibrium solutions.—Using the stable solu-

tions of the LJJ problem studied in Ref. [6], we map back
to the EPF to find the static domain-wall configurations.
We give the form of the φ(x) solutions after mapping to
the EPF, as well as some general remarks, and refer to
Refs. [6, 7] for further details. Similar solutions were re-
cently found for the one terminal case in Ref. [18]. From
the p-vortex LJJ solutions, we find p-domain-wall solu-
tions in the EPF have the form

φ(x) = η

{
π
2 (p− 1) + am (ξ +K(k), k) , for p even
π
2 p+ am (ξ, k) , for p odd

,

(11)

where ξ = x
kλ + α, and η = ±1 for τr + τl ≶ 0. Here, α

and k are parameters determined by the boundary con-
ditions, and am(u) and K(u) are the Jacobi amplitude
function and complete elliptic integral of the first kind,
respectively.

The zero-domain-wall region includes a portion, sepa-
rated by the gray line and labeled by s in Fig. 2, in which
Eq. (11) no longer holds. The solution in the s region has
the form

φ(x) = ζ cos−1

[
k

cn (x/λ+ β)

dn (x/λ+ β)

]
, (12)
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where k and β are again determined by the boundary
conditions, ζ = ±1 for τr − τl ≶ 0, and cn(u) and dm(u)
are the Jacobi elliptic cosine and delta amplitude, respec-
tively. In the case of L =∞, the s crossover line becomes
a phase-transition line from a no-domain-wall phase to a
many-domain-wall phase, but away from this limit the
crossover from s to p = 0 is smoothed out by finite-size
effects and no phase transition takes place.

In the special case of perfectly asymmetric boundary
conditions, i.e., τr = −τl, the equilibrium solution is
given by Eq. (12) with β = 0, up to the critical value
of |τr − τl| → τc. This critical asymmetric torque τc is
analogous to the critical current Jc in the LJJ model,
with, as shown in the Fig. 2 inset, its value depending on
the normalized length of the system. τc approaches A/λ
asymptotically as L→∞ and diminishes as τc = LK ′ for
L→ 0. For yttrium iron garnet, A ∼ 10−11 J/m

2
, so the

saturated critical torque (per unit area), corresponding

to λ ∼ 100 nm would be A/λ ∼ 10−4 J/m
2
. Using the

spin Hall angle θSH ∼ 0.1, the corresponding electrical
current density needed at the metallic contacts in order
to approach τc is of order 1012 A/m

2
, which is high but

feasible.
Dynamic solutions.—Here, inspired by the LJJ anal-

ogy, we apply a method similar to that of Ref. [8] in find-
ing an approximate dynamic, spin-propagating solution
for the EPF EoM, Eq. (4) with boundary conditions (2).
To simplify the discussion, we adopt dimensionless nota-
tion, such that A = u = λ = 1. It is natural to start with
a trial solution of the form φ̃(x, t) = Ωt + f(x) + ε(x, t).
where ε(x, t) is a small periodic function with the to-be-
determined period T = 2π/Ω and with zero time average,
and f(x) is a to-be-determined time-independent func-
tion. We consider the weak in-plane anisotropy limit for
which ε(x, t)� 1. The boundary conditions are

−∂xf(±L) = 2τr,l ± γΩ (13)

and

∂xε(±L, t) = 0 , (14)

where we discard the boundary term γ∂tε by consid-
ering the γ � 1 limit[21]. Plugging the trial solu-
tion into Eq. (4) and averaging over the period T , de-
noted by 〈. . . 〉T , we get the time-independent equation

∂2
xf = βdΩ +

〈
sin φ̃

〉
T

. Integrating and applying the
boundary conditions, we find the self-consistency equa-
tion

f(x) =

∫ x

−L
dx1

∫ x1

−L
dx2

[
βdΩ +

〈
sin φ̃

〉
T

(x2)
]

− (2τl − γΩ)x ,

(15)

with the constraint∫ L

−L
dx
〈
sin φ̃

〉
T

= 2(τl − τr − γΩ− LβdΩ) . (16)

FIG. 3. Plot of the approximate modulation of the super-
fluid phase solution, ε(0)(x, t), resulting from a weak in-plane
anisotropy, with L = 1, βd = 0.1, γ = 0.01, τl = 1.5, and
τr = −2.

Note that the integral on the right-hand side of Eq. (15)
depends on both f(x) and ε(x, t) through φ̃.

For the time-dependent part of the solution, the dom-
inant contribution is harmonic in Ωt and obeys ∂2

xε −
∂2
t ε − βd∂tε = sin(Ωt + f). The solution satisfying the

boundary conditions (14) is then readily found to be

ε(x, t) = Im
(eiΩt

2iω

[
eiωxF−(x)− e−iωxF+(x)

+A cos(ωx+ ωL)
])
,

(17)

where A = i
[
eiωLF−(L) + e−iωLF+(L)

]
/sin(2ωL),

ω2 = Ω2 − iβdΩ, and the functions F±(x) =∫ x
−L dx1 e

if(x1)±iωx1 . Equations (15), (16), and (17) form
a system of coupled integral equations for f(x), Ω, and
ε(x, t). Approximate solutions can be found iteratively

by starting with, for example,
〈
sin φ̃

〉(0)

T
= 0, which im-

plies f (0)(x) = βdΩ
(0)(x+ L)2/2− (2τl − γΩ(0))(x+ L),

with Ω(0) = (τl − τr)/(Lβd + γ). This agrees with the
XY-model solution [22] of Ref. [4]. This intermediate so-
lution can be plugged into Eq. (17) to get ε(0)(x, t), an
example of which is plotted in Fig. 3. These in turn can

be used to evaluate
〈
sin φ̃

〉(1)

T
for generating a new set

f (1)(x), Ω(1), and ε(1)(x, t), and so on.
Note that the frequency of oscillation of the superfluid

phase, Ω, is modulated as a function of EPF length, L, as
a result of the in-plane anisotropy. This is seen through
the dependence of Ω on the integral on the right-hand
side of Eq. (16). The predicted dependence of Ω on L
can in practice provide a useful experimental probe of
the underlying physics.

Because the transmitted superfluid current is depen-
dent on Ω, this modulation effect could in principle be
measured by injecting sufficient spin current (τ & A/λ)
into insulating thin film ferromagnets of variable length
and measuring the inverse spin Hall effect on the op-
posite end, using similar methods to those discussed in
Refs. [23, 24].
Discussion.—Given that Josephson junction systems

have many potential uses as computing circuit elements,
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e.g. as a transistor[25] or memristor[26], the close anal-
ogy between the EPF and LJJ suggests a potential
for similar spintronic applications which could operate
in much the same manner as the proposed LJJ de-
vices, due to the vortex/domain-wall corespondence be-
tween the systems, thus taking advantage of the history-
dependence and information storage potential of the do-
main walls. Such EPF-based devices would use currents
through the spin Hall contacts as inputs and would pro-
duce an output either by measuring the inverse spin Hall
voltages resulting from a change of state, e.g. injection
of a domain wall, or by directly reading the number of
domain walls, which is possible with e.g. the magneto-
optical Kerr effect[27] or magnetic force microscopy[28].
Using EPF-based spintronics devices instead of LJJ-
based superconducting devices as building blocks of cir-
cuit elements could have practical advantages, e.g. the
relevant physics such as the spin Hall torque[29] being
able to operate at room temperature and the use of elet-
rical current inputs instead of precisely controlled mag-
netic fields to control the state of the system.
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of the Letter. This work was supported by the Army
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