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Abstract
The processing of captured motion is an essential task for undertaking the synthesis of high-quality character animation. The
motion decomposition techniques investigated in prior work extract meaningful motion primitives that help to facilitate this
process. Carefully selected motion primitives can play a major role in various motion-synthesis tasks, such as interpolation,
blending, warping, editing or the generation of new motions. Unfortunately, for a complex character motion, finding generic
motion primitives by decomposition is an intractable problem due to the compound nature of the behaviours of such characters.
Additionally, decomposed motion primitives tend to be too limited for the chosen model to cover a broad range of motion-synthesis
tasks. To address these challenges, we propose a generative motion decomposition framework in which the decomposed motion
primitives are applicable to a wide range of motion-synthesis tasks. Technically, the input motion is smoothly decomposed into
three motion layers. These are base-level motion, a layer with controllable motion displacements and a layer with high-frequency
residuals. The final motion can easily be synthesized simply by changing a single user parameter that is linked to the layer
of controllable motion displacements or by imposing suitable temporal correspondences to the decomposition framework. Our
experiments show that this decomposition provides a great deal of flexibility in several motion synthesis scenarios: denoising,
style modulation, upsampling and time warping.
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1. Introduction

The capturing and processing of human motion are very common
processes at present with well-established pipeline techniques that
generate realistic character animation. However, many of these tech-
niques, such as the retargeting, warping, blending and editing of in-
put motions, depend strongly on the original quality of the captured
data. Thus, the initial motion must be suitably processed, before it
can be used in the subsequent high-level operations so as to increase
the quality of the final motion.

Because human motion can be viewed as a type of high-
dimensional signal that varies over time, a variety of methods have

∗Both the authors contributed equally to this work.

been developed by generalizing conventional signal processing and
geometric techniques for problems that arise from various motion-
synthesis tasks. In particular, many researchers have employed
motion decomposition techniques that extract meaningful motion
primitives from the input motion. Then, based on the decomposed
motion primitives, new motions are easily synthesized to remove
high-frequency noise [XFJ*15], to compress dense data [LS01,
ZSD12], to change the style of motions [UAT95, RCB98, KPS03,
SCF06] or to recognize and retrieve a motion [Vas02, ZSD12].

Unfortunately, finding generic motion primitives by decompo-
sition is inherently difficult due to the complex nature of human
motion. Hence, existing decomposition techniques have mainly
attempted to search for meaningful primitives that are especially
designed for a specific motion synthesis scenario, which in turn
has complicated the generalization of these processes to different
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scenarios. For instance, it is often difficult to apply a technique that
is mainly designed to remove high-frequency noise to a different
context in which the primitives need to be amplified or time-warped
in a systematic manner.

As an alternative to motion primitives, the direct processing
or modulation of raw motion signals has been widely adapted to
achieve a general solution for various types of motions. Due to
its simplicity and computational advantages, a parametric model is
used most often for the decomposition of a single motion [RCB98,
LS01, BSH15]. Though the parametric model is well suited for
use with spline-based interpolation techniques, it is also associ-
ated with limited expressiveness that leads to re-parameterizations,
corrections or sophisticated manual interventions for further
extensions.

To address these issues, we propose a novel generative motion
decomposition technique for which the input motion is separated
into three motion layers corresponding to base-level motions, a
layer with controllable motion displacements and a layer with high-
frequency residuals. The key innovation of our approach is its flexi-
ble generation of smoothly decomposed motion layers, which makes
it suitable for a range of useful motion applications to synthesize
new character motions. As we opt for a non-parametric generative
method to extract each motion layer, our decomposition technique
is more robust against various motion signals compared to exist-
ing parametric or spline-based methods [LS99, LS01]. In addition,
the resulting synthesized motions from the combinations of lay-
ers are always smooth, which is vital for the subsequent high-level
motion processing.

Technically, the decomposition of smooth motion layers of ar-
ticulated characters entails careful considerations of certain motion
properties, such as the proper choice of orientation / rotation rep-
resentation and preservation of kinematic constraints, such as foot
contacts and joint limits. For the base-level motion, we propose to
extend linear Gaussian systems (LGSs) directly to joint orientations
- unit quaternions – with a strong smoothness prior. For the layer of
controllable motion displacements (rotations), the same technique
is utilized but with a weak smoothness prior. To preserve contextual
information of the given motion and to finalize the motion synthesis
process, a spacetime optimization method imposed with automati-
cally detected environmental constraints is used.

This paper is organized as follows. First, related studies and ap-
plications are introduced in Section 2. The application of an LGS to
compute reliable motion signals from given motion data is described
in Section 3. Next, explanations of how the LGS can be extended
to decompose a given motion into three motion layers by carefully
considering the motion properties of a human are discussed in Sec-
tion 4. Section 5 demonstrates the impact of smoothly decomposed
motion layers in several motion synthesis scenarios: denoising, style
modulation, upsampling and temporal warping of the given motion.
Finally, we conclude with a brief discussion of the limitations and
future directions in Sections 6 and 7.

2. Related Work

Motion signal processing Early studies in the area of motion sig-
nal processing mainly focused on generalizing conventional signal

processing and geometric techniques to manipulate motion data.
Some of the pioneering studies, fundamental theories of motion
signal processing by Bruderlin and Williams [BW95] and the time
warping of motion by Witkin and Popović [WP95], have been widely
used for decades. As the processing of orientation and rotation sig-
nals is known to be especially challenging, a significant body of
research has been compiled thus far in an effort to obtain stable
orientation and rotation signals during the processing steps [Sho85,
KKS95, RB97, Gra98, FHK*98, JS02, Lee08, Bou13, LDH14]. In
these studies, depending on the particular purpose of the application,
a single representation, either a unit quaternion or an exponential
map, was considered for simplicity. Our work employed unit quater-
nions for base-level motions to achieve stable decomposition of the
orientations and took advantage of rotation vectors with an expo-
nential map for a layer of controllable motion displacements, which
in turn provided a reasonable level of controllability.

Motion denoising As part of an animation pipeline, motion de-
noising is often required for cleaning up noisy input motion data.
Many research outcomes have been reported in this area over the
last two decades. Early studies of motion denoising mainly focused
on geometric processing, such as translational or rotational smooth-
ing [LS96, LS01, LS02, FHK*98]. Data-driven methods have been
proposed to preserve the spatio-temporal features of highly coor-
dinated human motions [HJ10, FJX*14, XFJ*15]. Recently, deep
learning frameworks have shown a high-quality performance in
the correction of motion data [HSKJ15, HSK16, Hol18, MLCC17,
LZZ*19]. While the direction that the deep learning framework pur-
sues is promising, its applicability in practice can be limited as it
requires training priors, such as noisy or corrupted motion data; the
resulting system is inevitably specialized to handle the situations
defined by the given data. In contrast, our approach effectively de-
noises the motion of any character, such as a human or a quadruped
by decomposing it into layers without any preprocessing or depen-
dency on pre-selected situations.

Motion decomposition and synthesis To accomplish various
synthesizing demands, many researchers investigated a rational
choice of motion primitives that were often decomposed or ex-
tracted from input motions. The motion primitives were then utilized
as bases to generate or synthesize new motions. Selecting sparse key
postures from a given dense motion has proven to be feasible for use
with spline-based interpolation techniques [LT01, BSH15]. The ex-
traction of sparse motion bases in the quaternion space [ZSD12]
or the extraction of high-level motion bases from large motion
databases [XFJ*15] has also been explored. Decomposing a mo-
tion into several important components, especially to synthesize a
new motion, has been another direction pursued since the work of
Rose et al. [RCB98]. To incorporate style variations on top of a base
motion, Unuma et al. [UAT95] split a motion into several frequency
bands by Fourier expansions, and Shapiro et al. [SCF04, SCF06]
decomposed a motion through an independent component analysis.
Among all related decomposition techniques, Lee’s work [LS99,
LS01], in which decomposition was achieved by a multiresolution
analysis, is most relevant to ours. Instead of using a spline-based
representation, we utilized a generative statistical model that pro-
vided stable estimates of orientation / rotation values as well as
considerable flexibility with various motion synthesis tasks using
decomposed motion layers.
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Recently, Holden et al. [HSK16] introduced a deep learning-
based approach that made it possible to synthesize and edit character
motion. Their approach works well for tasks such as following root
paths for the purpose of locomotion synthesis. In terms of appli-
cability to various situations, however, our approach has notewor-
thy advantages. For example, while Holden et al. [HSK16] require
training for each specific motion with corresponding data, such as
dancing and kicking, our method is not learning based and therefore
our system naturally allows input motion with any joint-structure or
motion type. Furthermore, in their method, the network has to be
redesigned for different tasks (style transfer vs. style modulation).
In contrast, our method can handle various synthesis scenarios, such
as style modulation, resampling, time warping and so on, in a uni-
fied framework.

Generative models for motion synthesis There has been
strong renewed interest in generative models for motion synthe-
sis recently due to the increasing power of computations and ad-
vances in solving relatively large systems rapidly. The Gaussian
process latent variable model has been used to model style-based
inverse kinematics [GMHP04], to model smooth dynamics in hu-
man motion [WFH08] and to control character motions [LWH*12].
To achieve style variations from given motion databases, re-
searchers employed a Bayesian network in several studies [LBJK09,
MXH*10]. Finally, Gaussian mixture models and Gaussian pro-
cesses (GPs) have also been adopted to compute smooth motion
paths [TL08], to edit and control a given motion [IAF09, UK12]
and to synthesize style variations [ZSSL14]. In this study, we ex-
tended the LGS in a motion decomposition framework, with a fo-
cus on estimating smoothly decomposed motion layers in a non-
parametric manner.

3. Motion Smoothing Using Linear Gaussian Systems

The key idea of our motion decomposition framework is to generate,
rather than interpolate, smooth functions from a given motion using
an LGS. An LGS is a non-parametric generative regression tech-
nique based on a Bayesian assumption pertaining to the underlying
functions. Thus, when relying on model priors with regard to the un-
certainty, an LGS has the benefits of naturally avoiding the over- and
under-fitting problems that commonly arise when parametric regres-
sion methods are used. The LGS has been widely adopted in various
domains, and we briefly explain the main concepts while focusing
on character motion. For more detailed explanations, the reader can
refer to Calvetti and Somersalo [CS07] and Murphy [Mur12].

Given a character motion, we assume that each joint channel
contains Nd noisy observations y = [yT

1 yT
2 . . . yT

i . . . yT
Nd

]T that
correspond to Nf hidden variables x = [xT

1 xT
2 . . . xT

j . . . xT
Nf

]T.
Without loss of generality, notation x and y can represent any entity
describing each degree of freedom of joints. For example, translation
can be represented as x, y ∈ R

3, while a hinge joint can be thought
of as x, y ∈ R. We can then model the likelihood p(y|x) using the
LGS as follows:

y = Ax + εy, (1)

where εy ∼ N (0, σ 2I), σ 2 is the observation noise and A is a
Nd × Nf projection matrix that selects the observed data from
the entire frame range Nf . For example, given three data points

(Nd = 3) corresponding to the first, second and fifth frames to es-
timate xj for five frames (Nf = 5), the following projection matrix
can be constructed:

A =
⎡
⎣ 1 0 0 0 0

0 1 0 0 0
0 0 0 0 1

⎤
⎦ . (2)

Note that the number of data points Nd is fixed, as it is identical to
the number of sampled postures of a given motion in our setting.
However, Nf is the number of target frames to estimate (hidden in
terms of the LGS), which can be used to control temporal variations
together with the projection matrix A. We describe how to design A
specifically in Section 5.3.

A smoothness prior can also be encoded by assuming that xj is
the average of its neighbours, xj−1 and xj+1, plus some Gaussian
noise:

xj = 1

2
(xj−1 + xj+1) + εj , (2 ≤ j ≤ Nj − 1), (3)

where εj ∼ N (0, 1
λ
I). In vector form, this equation can be

written as:

Lx = ε, (4)

where L is the (Nf − 2) × Nf second-order finite difference matrix.
The corresponding prior has the following form:

p(x) = (
x|0, (λ2LTL)−1

)
. (5)

At this stage, the posterior mean can be computed using a Bayes
rule for LGS as follows:

p(x|y, λ, σ ) = N (x|μx|y, �x|y),

�−1
x|y = �−1

x + AT�−1
y A = λ2LTL + 1

σ 2
ATA,

μx|y = �x|y
[
AT�−1

y y + �−1
x μx

]
= 1

σ 2

(
λ2LTL + 1

σ 2
ATA

)−1

ATy. (6)

Here, the posterior mean μ represents the resulting estimate for a
given signal. Note that the prior precision λ and the variance of
the observation noise σ can be used as smoothness parameters that
affect the posterior mean μ. In particular, for a strong prior (large
λ), the estimate is very smooth, while for a weak prior (small λ),
the estimate is close to the given motion. Although the observation
noise σ also affects the posterior mean, the prior precision λ will
contribute more to the overall smoothness, which is very useful
because it effectively extracts a base-level (coarse) signal from the
given data. The posterior mean can be computed equivalently by
solving the following optimization problem:

min
x

1

2σ 2

Nd∑
i=1

(xi �→j − yi)
2

+ λ

2

Nf −1∑
j=2

{
(xj − xj−1)2 + (xj − xj+1)2

}
, (7)
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Figure 1: The y values of the translation channel of the root joint
in the original motion (blue) and their corresponding y values from
three different types of synthesis: base-level extraction (red), de-
noising (green) and stylize modulation (yellow).

where xi �→j represents the mapping from the index i of the
data to the corresponding frame index j , which is analogous
to the role of the design matrix A in Equation (2). This can
be recognized as a discrete approximation of the Tikhonov reg-
ularization, where the first term fits the data and the second
term penalizes estimated values that vary too widely. These two
Equations (6) and (7) are used interchangeably throughout this
paper.

4. Multi-level Motion Decomposition

In this section, we explain how LGS can be efficiently uti-
lized in the context of a character motion. We treat a motion
as a discretized high-dimensional vector varying over time. Let
M(t) = (p0(t), q0(t), . . . , qNj −1(t)), (1 ≤ t ≤ Nf ) denote a given
motion, where p0(t) ∈ R

3 and qi(t) ∈ S
3, (0 ≤ i < Nj ) describe

the translational motion of the root segment and the rotational mo-
tion of the ith joint at time t , respectively. Nj is the number of
joints.

The key idea of our method is to decompose a given motion M(t)
that is noisy and difficult to manipulate within a high-dimensional
vector space of a single layer. The decomposition proceeds as fol-
lows. First, we define base-level motion Mb(t), as the invariant
primitive of input motion M(t), at time t . The base-level motino
is obtained by applying the LGS as described in Section 3. We
then apply the LGS once again to the residual between M(t)
and Mb(t) in order to separate it into a controllable motion dis-
placement vector δc(t) and the residual motion displacement δr (t)
that consists of high-frequency noise (Figures 1 and 2). To this
end, the given motion M(t) is decomposed into three levels as
follows:

M(t) = (Mb(t) ⊕ δc(t)) ⊕ δr (t). (8)

Here, the operator ⊕ represents a displacement mapping; simple
vector addition for the translational part and quaternion multiplica-
tion for the rotational part after exponentiating the 3D rotation vector
[KKS95, LS99, Lee08]. We chose quaternion multiplication for sta-
ble composition of a wide range of rotations. Other representations,

Figure 2: One of the translational channels of the original motion
(blue) is decomposed into three layers: the base-level movement
(red), a layer with controllable displacements (grey) and a layer
with high-frequency residuals (yellow). Note that the same geomet-
ric interpretation is possible for orientations and rotations as for
translations. However, it is difficult to effectively visualize their val-
ues altogether, as the rotation vectors in two layers (controllable and
residual) should be converted to quaternions to have an identical
geometric meaning.

such as an exponential map, produced interpolation artefacts on ex-
treme poses due to their singularity. The comparison result between
the choices is shown in Section 5.2.

In what follows, we explain in detail how to apply the LGS
described in Section 3 to extract the base-level motion Mb(t) in
quaternion space and a controllable motion displacement vector
in Sections 4.1 and 4.2, respectively. Section 4.3 explains a con-
tact handling method as we applied it to the decomposed motion
layers.

4.1. Base-level motion

To extract a useful base-level motion, we smooth out a given motion
by optimizing the LGS using a strong smoothness prior together
with the assumption of a significant observation noise in the input
motion. The strong smoothness prior can be enforced by assigning
relatively large values to λ and σ in Equation (6). The choices of λ

and σ depend on the type of given motions; however, we can find
practical values for them using a simple heuristic that is detailed in
Section 4.2.

For a translational joint, the base-level trajectory can be directly
extracted by computing the posterior mean p(Xt |Yt , λ

b, σ b) us-
ing Equation (6). Here, Xt and Yt are corresponding Nf × 3 and
Nd × 3 matrices created by stacking every translational vector along
the rows.

Because orientations (SO3) and their associated operations are
generally well defined in quaternion space, the direct approximation
of smooth orientations using Equation (6) may be ill-posed. As
Equation (6) is specialized for entities in Euclidean space, we are
required to solve a nonlinear optimization problem over quaternion

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



H. Eom et al. / Synthesizing Character Animation with Smoothly Decomposed Motion Layers 599

space for the stable estimation of joint orientations by extending
Equation (7) as follows:

min
qb

x

1

2σ 2

Nd∑
t=1

∣∣∣∣log
(
qb

x(t)Tqy(t)
)∣∣∣∣2

+λ

2

Nf −1∑
t=2

{∣∣∣∣log
(
qb

x(t − 1)Tqb
x(t)

)∣∣∣∣2 + ∣∣∣∣log
(
qb

x(t + 1)Tqb
x(t)

)∣∣∣∣2
}
.

(9)

Here, log(q) is the quaternion log map that converts a quaternion
into a rotation vector. As log(qT

a qb) represents a rotational differ-
ence between two orientations, each term is well defined. However,
it is difficult to differentiate the quaternion log map. Moreover,
optimizing the nonlinear equation can be costly for a large num-
ber of frames. With the observation that, for two close orientations
qa, qb ∈ S

3, the geodesic distance and the chordal distance are ap-
proximately equal [Bou13, LDH14],

g(qa, qb) = ∣∣∣∣log
(
qT

a qb

)∣∣∣∣ ≈ ||qb − qa||, (10)

where g(qa, qb) computes the geodesic distance between two dif-
ferent orientations, and where the cost function (Equation 9) can
be simplified for joint orientations without a quaternion log map as
follows:

min
qb

x

1

2σ 2

Nd∑
t=1

∣∣∣∣qb
x(t) − qy(t)

∣∣∣∣2

+λ

2

Nf −1∑
t=2

{∣∣∣∣qb
x(t) − qb

x(t − 1)
∣∣∣∣2 + ∣∣∣∣qb

x(t) − qx
b(t + 1)

∣∣∣∣2
}
. (11)

This equation is well suited for the setting of the LGS; therefore,
solving this equation is equivalent to computing the posterior mean
of p(Xq|Yq, λ

b, σ b) using Equation (6), where Xq and Yq are corre-
spondingly Nf × 4 and Nd × 4 matrices created by stacking every
quaternion q as a four-dimensional homogeneous vector along the
rows. Note that the resulting posterior mean of the orientations must
be renormalized to ensure that the quaternions retain the unit length.

As mentioned in Section 3, the prior precision λ and the variance
of the observation noise σ in Equation (11) are essential parameters
concerning the smoothness of a base-level motion. If the base-
level motion is extracted with a weak prior (small λ and σ ), a
layer of controllable motion displacements eventually has a small
difference from the base-level motion that cannot provide sufficient
controllability. On the other hand, rotation vectors in the layer of
controllable motion displacements may be ill-defined if the base-
level motion is extracted with a strong prior (large λ and σ ). We
explain in the subsequent section how we find proper parameter
values for both λ and σ .

4.2. Controllable motion displacements

After the base-level motion is obtained, we can factor out motion
displacements δ(t) between the given motion and the base-level
motion as follows:

δ(t) = M(t) � Mb(t). (12)

Specifically,

δ(t) =

⎛
⎜⎜⎜⎝

p0(t)
q0(t)

...
qNj −1(t)

⎞
⎟⎟⎟⎠ �

⎛
⎜⎜⎜⎝

pb
0(t)

qb
0(t)
...

qb
Nj −1(t)

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

p0(t) − pb
0(t)

log(qb
0(t)

Tq0(t))
...

log(qb
Nj −1(t)

TqNj −1(t))

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

u0(t)
v0(t)

...
vNj −1(t)

⎞
⎟⎟⎟⎠ , (13)

where u0(t) ∈ R
3 denotes a translation vector, and

vi(t)= θ v̂i(t)∈ R
3 is a rotation vector that maps vi(t) to a

unit quaternion representing a rotation of θ = ||vi(t)|| about
the axis v̂i(t) = vi(t)/||vi(t)|| by the quaternion exponentiation
exp(vi(t)) [Lee08]. Note that the operator � is equivalent to the
inverse of the displacement map described in Equation (8).

Practical base-level motion In general, quaternion exponenti-
ation is a many-to-one mapping. Consequently, the domain is usu-
ally limited to ||vi(t)|| < π in order to define an inverse log map in
Equation (13). Therefore, in our decomposition setting for the base-
level motion, we need to design qb

i (t) to cover a sufficient range
|| log(qb

i (t))|| � π of a given orientation by smoothing the original
orientation qi(t). As a result, the exponential map of vi(t) guaran-
tees a one-to-one mapping and its inverse log map becomes well
defined within the limited domain ||vi(t)|| < π .

We employ a simple heuristic to find the best parameter values
for the smoothness prior explained in Section 4.1 that will lead
to a reasonably good and practical base-level motion. Starting from
weak prior values (λ = 1.0 and σ = 0.1), we iteratively apply Equa-
tion (11) to the given motion while increasing both λ and σ until the
inverse log map of motion displacements (Equation 13) becomes
higher than a certain threshold. Specifically, we stop the iteration if

max ‖vi(t)‖ > γ. (14)

Because of varying degrees of movement of a given motion, some
motions require greater maximum displacements than others. In-
stead of manually setting λ and σ for each case, the user can easily
extract a base-level motion from various motions according to an
intuitive criterion γ (π/2 ≤ γ < π ), which determines the range
of control.

Residual motion displacements Because the base-level motion
Mb(t) is extracted as smoothly as possible while reasonably ap-
proximating the given motion, the decomposed displacements δ(t)
may contain high-frequency noise from the original motion. In or-
der to remove this noise, we apply the LGS once again and separate
high-frequency residuals from the displacements as follows:

δc(t) = μXδ |Yδ ,λc,σ c (t),

δr (t) = ẽxp(δ(t)) � ẽxp(δc(t)), (15)

where ẽxp(δ) = (u0(t), exp(v0(t)), . . . , exp(vNj −1(t))) is an expo-
nential map generalized to the displacement vectors, and where
the smoothed displacement vector δc(t) is the posterior mean of
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(a) TheMalcolm model.

(b) TheGump model.

Figure 3: (From left to right) The original, a base-level, a denoised
(α = 1.0) and a style amplified motion (α = 3.0 for the Malcolm
model and α = 2.0 for the Gump model).

p(Xδ|Yδ, λ
c, σ c) at time t . Note that δr (t) contains only the noisy

residuals from the original motion, which it is always preferable
to remove.

Controllability From a geometric point of view, δc(t) can
be interpreted as the translation u0(t) of the root and rotations
{vi(t)|0 ≤ i < Nj } of every joint with respect to the base-level
posture Mb(t) = (pb

0(t), qb
0(t), . . . , qb

Nj −1(t)). Furthermore, as the

scalar multiplication of the rotation vector αv ∈ R
3 is well defined,

which represents a spinning motion around the same axis v̂ but
where the magnitude of its rotation angle ||v|| is scaled by a fac-
tor of α [Gra98, Lee08], we utilize δc(t) to control the resulting
synthesized motion as follows:

M′(t) = Mb(t) ⊕ W(t)δc(t). (16)

Here, M′(t) denotes the synthesized new motion and W(t) repre-
sents a block diagonal matrix that controls the scale of a displace-
ment vector for each joint at time t , as follows:

W =

⎡
⎢⎢⎢⎢⎢⎣

αu
0 I3 0 · · · 0

0 αv
0I3

...
...

. . . 0
0 · · · 0 αv

Nj −1I3

⎤
⎥⎥⎥⎥⎥⎦ . (17)

In this equation, αu
0 I3 and αv

i I3 are weight factors for the root trans-
lation and the rotation of the ith joint, respectively. Explanation
of how to design the control matrix W(t) for denoising and style
modulation is provided in Section 5.2.

4.3. Contact handling

Because our decomposition technique utilizes joint space signals,
the resulting joint trajectories in the operation space, i.e. a joint path
in the world space, may deviate from the original trajectories after
synthesizing a new motion. For closed-chain joints, such as a leg
that has rich foot contacts, this leads to undesirable artefacts, such as
foot sliding. To avoid these artefacts, every environmental contact

in the original motion is initially pre-computed using the method by
Le Callennec and Boulic [LCB06], and this is followed by solving a
spacetime optimization to synthesize a motion with a set of contact
constraints. The final motion accounting for environmental contacts
can be computed as follows:

M∗(t) = M′(t) ⊕ δe(t) = (Mb(t) ⊕ W(t)δc(t)
) ⊕ δe(t), (18)

where M′(t) is a synthesized motion by utilizing Equation (16)
without considering contacts, and δe(t) is a displacement vector at
time t computed by the spacetime optimization given the original
contact points as positional constraints [LS99].

5. Results

We now demonstrate how the proposed decomposition technique
can be easily applied to various motion-synthesis tasks. First, we
detail the experimental settings used to produce all of the results
in this paper. Next, we present the techniques for handling spatial
variations for noise removal and style modulation. Finally, we pro-
vide explanations of how the LGS can be used to modulate temporal
variations for upsampling and dynamic time warping.

5.1. Experimental settings

For all of the experimental results, the motion data were captured
via a Vicon optical system with eight cameras at a rate of 120 fps
and then sub-sampled to 24 fps. We demonstrated our method with
three different characters. First, the Malcolm model had a skele-
ton structure with 65 bones and 57 DoFs, while the Gump model
had a skeletal structure identical to that of the Malcolm model but
with different proportions (Figure 3). Finally, the Dog model had a
quadruped skeleton structure with 49 bones and 151 DoFs. All of the
redundant DoFs in the joints were excluded from the computation.
Please refer to the Supplementary Video for these models in action.

All experiments were conducted on a desktop computer using
a single thread with an Intel Core i7-5930k@3.50GHz and 32GB
RAM. We implemented our framework as a stand-alone applica-
tion and exposed a few user parameters (α and Nf ) with tunable
sliders; their values as used in each experiment are explained in the
following sections. We also set the parameters related to the decom-
position process: γ = π/2 for Equation (14), λc = 1 and σ c = 1
for Equation (15).

Since our system uses an LGS, which is essentially a GP, the
computation time grows exponentially when the number of data
points increases [IAF09]. As a remedy, we adapted a window-based
optimization technique by repeatedly optimizing the window of
120 frames at intervals of 60 frames. To prevent discontinuity
between the two windows, we interpolated overlapping frames with
weights computed from a sigmoid function. With this approach,
our system achieves a scalable computation time regardless of the
size of the input data. A breakdown of the computational costs
for the primary operations is summarized in Table 1. Note that
our window-based optimization is simply applied to all of our
synthesizing scenarios. In contrast, it is difficult to apply the same
principle to counterpart methods, such as a dynamic time warping
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Table 1: A breakdown of the computational costs required for various types of motions.

Total(s)

Motion Nd Nf entire frame window-based optimization

Denoising Body building 2526 2526 77 839.9 5.1
Sword 330 330 9.5 2.0
Dog 200 200 1.3 0.9

Style modulation Kick 230 230 3.2 0.6
Parkour 200 200 1.0 0.3
Dance 560 560 77.9 2.7
Throwing 360 360 17.7 1.7

Re-sampling Airplane 8 40 0.001 0.001
Ballet 34 680 6.0 6.0

Automatic time-warping Kick 230 286 3.9 –
Diving catch 211 261 3.0 –
Jump 79 139 0.09 –

Figure 4: (From left to right) Trajectories of the original, a denoised
and a style amplified motion.

because the correspondence of the frames between the observed
data and the desired result is not linear.

5.2. Denoising and style modulation

To synthesize spatial variations, with smoothly decomposed motion
layers, we directly leverage the controllable motion displacements
by adjusting the α value in Equation (17).

Denoising Removing noise from a captured motion is an in-
dispensable pre-processing task that must be performed to achieve
a high-quality motion. As described in Section 4.2, our method
removes high-frequency noise δr (t) automatically during the de-
composition process. Specifically, denoised motion can be obtained
by simply setting α = 1, W(t) = I. Note that our method effectively
removes every instance of high-frequency noise in the joint space
such that the signals in the operation space of the joints are naturally
denoised (Figure 4). Smooth signals in the operation space are par-
ticularly important when spacetime constraints need to be imposed
for further processing of the resulting motion (Section 4.3).

We compare our denoising results to those produced by applying
a low-pass filter with various cut-off parameters. We first generate

Figure 5: The differences in denoising results from the ground truth
data (measured in the Euclidean distance). Our results (blue) gen-
erally have a smaller positional error than those from applying a
low-pass filter with various cut-off values.

synthetic noisy input data by adding random translation and rota-
tion values to each pose along the time. Then, we denoise the data
to reconstruct the ground truth motion. Figure 5 shows the posi-
tional errors of the denoised results from the ground truth data. Our
method reproduces the ground truth data reasonably well with a
small error over most of the time, while the application of a sim-
ple low-pass filter with various cut-off parameters fails to smooth
the motion in certain ranges. See the Supplementary Video for a
visual comparison.

We also compare the results produced using the quaternion repre-
sentation and an exponential map. Figure 6 shows that rotation mul-
tiplication becomes unstable near the singularity point(π/2) when
the exponential map representation is employed, as explained in
Section 4.

Style modulation By changing α values continuously instead of
setting α = 1, controllable motion displacements can be modulated
with respect to the base-level motion. Because base-level motions
can be considered as motions that reveal only global behaviour,
we can produce style variations ranging from flat (α = 0) to dy-
namic (α > 1) compared to the original motion, which is similar
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Figure 6: Denoising operation using different rotation representa-
tions. While the quaternion (green) produces stable rotation values
close to the ground truth data (blue), the exponential map (red)
suffers at the singularity point around π/2.

Figure 7: The original motion (left) is exaggerated by the MultiRes
method (middle) and our method (right). Our method modulates the
original motion more consistently than the MultiRes method when
the original motion has substantial rotational changes.

to the work of Wang et al. [WDAC06]. A more useful extension
can be achieved by designing a control matrix W(t) that affects
a set of joints separately, which is similar to the work of Zhou
et al. [ZSSL14] and Xiao et al. [XFJ*15]. Specifically, instead of
using a uniform α for all joints in Equation (17), our method mod-
ulates local styles by controlling only the partial set of αv

i that
corresponds to the joints of a selected body part.

Comparisons to spline-based techniques We compare our
method with a multi-resolution motion analysis technique (Mul-
tiRes) [LS01] that has a concept similar to ours in generating a final
motion in the context of style modulation. The MultiRes method ap-
proximates a given or an edited motion with multiple displacement
layers in a coarse-to-fine manner. To perform a same style modula-
tion task, we first exaggerate or attenuate a given motion using our
method and then mimic the same style using the MultiRes method.
As the MultiRes requires editing of given postures to embrace style
variations, we just use some of the key postures chosen from the final
result of our method. Because it is difficult to measure the differ-
ence between the two methods quantitatively, we instead evaluated
a visual quality and its interpolation performance in the synthesized
motion. Figure 7 shows that both methods generate a similar mo-
tion style exaggerated from the original kicking motion. However,
our method produces more visually consistent interpolation com-
pared to the MultiRes method for a highly dynamic motion. Though
a spline-based motion processing technique, such as the MultiRes
method, can modulate style variations in a wide range by properly

imposing spatial constraints, for simple style modulation tasks, our
method produces smooth and consistent motion variations without
imposing any manual constraints. Please see the Supplementary
Video for more examples.

5.3. Resampling and time warping

To synthesize temporal variations prior to the decomposition pro-
cess, we change the number of target frames Nf and map cor-
responding frame indices from yi to xj properly in Equation (7).
Specifically, these changes are encoded into the projection matrix
of the LGS, which in turn, generates retimed motions from the
original motion.

Resampling By simply mapping the corresponding frame in-
dices from yi to xj uniformly, globally resampled motion can be
easily achieved. Specifically, our method estimates the orienta-
tions more stably than does a spline-based technique, such as a
quaternion-based spherical linear interpolation (SLERP) (Figure 8).
In an upsampling case, while the quaternion SLERP operation is
apt to choose an incorrect path such that the in-between rotations
produce flipping artefacts, our method always explicitly generates
stable in-between rotations by considering neighbouring rotations
with the help of the smoothness prior.

Time warping Instead of using uniform correspondences be-
tween yi and xj , retimed motions are synthesized by dynamically
varying the correspondences over time, which is similar to the work
of Witkin and Popovic [WP95] and Hsu et al. [HdSP07]. For in-
stance, highlighting a portion of a dramatic action sequence by
gradually easing the motion in and out can simply be achieved
by automatically changing the correspondences between yi to xj

dynamically based on the amounts of displacements between adja-
cent frames (Figure 9). For time warping examples, please see the
Supplementary Video.

6. Discussion

6.1. Limitations

As detailed in Table 1, the computational complexity of the pro-
posed decomposition technique scales with the number of frames to
estimate owing to the need to invert the Nf × Nf matrix in Equa-
tion (6). This can be further improved by employing more advanced
approximation techniques, such as that suggested by Quinonero-
Candela et al. [QCRW07]. A further speed-up can also be achieved
by parallelizing our decomposition process, because the process can
easily be applied to each joint independently.

The current implementation deals with kinematic constraints au-
tomatically. In certain cases, a smooth transition between constraints
is necessary. For instance, if a given motion has dense constraints,
such as a foot contact during a stationary motion, smoothness in
the final motion can be broken due to the density of the imposed
constraints. We plan to incorporate a smooth transition between
constraints to remedy this type of artefact.

Through controllable motion displacements, style variations can
be synthesized by changing the α values in Equation (17). However,
depending on the given motions, large values of |α| may produce
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Figure 8: A schematic experiment with sparse keyframes that include large rotational change (≥180◦) between frames 3 and 4 (left: frames
1–6 counterclockwise from the bottom row). While SLERP fails to interpolate natural changes (middle), our method generates a correct path
by considering the neighbouring rotations.

Figure 9: The y values of the root translation of the original motion
(blue) and their corresponding y values after the automatic time
warping are applied (red). Note that the range with large motion
displacements in the original motion (a time window around frame
110) is naturally highlighted with the effect of noticeable slowing
down compared to the neighbouring time intervals.

penetration artefacts as well as visually unnatural exaggeration in
the final motion. One simple means of solving this problem in the
current implementation is to impose joint limits during the synthe-
sis process, although complex situations, such as self-penetration,
would not be solved perfectly. A more sophisticated solution would
be to consider spatio-temporal relationships during the synthesis
process, which is similar to Ho et al. [HKT10].

6.2. Future work

While computing a posterior mean using the LGS, the posterior
variance is also computed, as expressed by Equation (6). Though
not used explicitly in the current implementation, this information
can be used for a number of interesting applications. Specifically, for
resampling and time warping scenarios, a system may be designed
to ask for more data intelligently by resorting to a posterior variance
similar to the concept of active learning. The animation quality for
regions with a high degree of uncertainty can be improved by these
additional data.

An interesting future direction would be to automatically find the
values of relevant user parameters, such as λ for each motion layer,
according to the type of motion. This would allow a consistent
decomposition of the base-level and the controllable motion
displacements for similar behaviours automatically, which may
be vital to providing a large number of motion databases for data-
driven techniques. In addition, a well-designed range of α values
in Equation (17) could be used to sample various style variations
automatically. We believe that such a systematic sampling strategy
would provide major benefits to the data augmentation process,
which has attracted growing interest from the deep-learning research
community.

Our contact handling is still prone to minor foot sliding when
dramatic style modulation is intended. Preserving essential motion
properties to ensure physical realism will be an exciting and
challenging direction to pursue. For example, it will be useful to
predict new contact points for the modulated motion in order to
automatically prevent penetration artefacts. Furthermore, adopting
a physics-based motion controller [HNJ*14, HEN*16] would help
produce both visually and physically correct motion that preserves
physical properties, such as velocity and acceleration after the style
modulation.

While we focused on estimations of decomposed motion layers
that were as smooth as possible, we plan to explore possible new
choices for the priors. By modelling different or additional priors
for each layer, we expect that interesting motions can be procedu-
rally synthesized. As an extension to modelling various priors, it
will also be interesting to design flexible user interfaces to handle
various aspects of our system, an example being compositing the
final motion by modulating local prior weights via easy-to-use user
interfaces similar to the work of Choi et al. [CBiRL*16].

7. Conclusion

We formulated our decomposition model with a purpose in mind,
indeed inspired by motion editors’ everyday workflow as well as
the recent advances in machine learning techniques. All of the
suggested applications were motivated by the typical motion pre-
processing stage that must be undertaken before further high-level
edits.
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Technically, the approximation of stable rotations is the primary
concern motivated by the difficulty of achieving them using existing
solutions. To this end, we presented a general and flexible decompo-
sition framework for motion synthesis, which provides a smoothly
synthesized final motion that is essential for high-quality character
animations and subsequent high-level motion processing. Instead
of interpolating a given motion, we estimated new postures using
linear Gaussian systems. As a result, all of the synthesized motions
in our experiments demonstrated stable and smooth approximations
of orientations and rotations. We also established the benefits of our
approach when it is used to synthesize spatial and temporal varia-
tions of a given motion, which in turn, provides useful applications
for denoising, style modulation, resampling and time warping in
one unified framework.
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