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Abstract: Respiratory syncytial virus (RSV) is a major cause of severe respiratory disease in infants
and the elderly. The socioeconomic burden of RSV infection is substantial because it leads to serious
respiratory problems, subsequent hospitalization, and mortality. Despite its clinical significance, a
safe and effective vaccine is not yet available to prevent RSV infection. Upon RSV infection, lung
dendritic cells (DCs) detecting pathogens migrate to the lymph nodes and activate the adaptive
immune response. Therefore, RSV has evolved various immunomodulatory strategies to inhibit
DC function. Due to the capacity of RSV to modulate defense mechanisms in hosts, RSV infection
results in inappropriate activation of immune responses resulting in immunopathology and frequent
reinfection throughout life. This review discusses how DCs recognize invading RSV and induce
adaptive immune responses, as well as the regulatory mechanisms mediated by RSV to disrupt DC
functions and ultimately avoid host defenses.
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1. Introduction

Respiratory syncytial virus (RSV) is an enveloped, single-stranded RNA virus that belongs to the
Pneumoviridae family [1]. RSV was first isolated from chimpanzee with coryza and named Chimpanzee
Coryza Agent (CCA) in 1956 [2]. In 1957, Chanock and colleagues recovered two viruses from infants
with severe lower respiratory illness and reported that these viruses were indistinguishable from the
CCA virus [3,4]. Thus, CCA was renamed RSV, and has been reported as the major cause of respiratory
illness and morbidity in infants and children. RSV infection can lead to serious respiratory problems
in vulnerable populations, such as children younger than one year of age and immunocompromised
older adults. Furthermore, hospitalization and mortality associated with RSV impose economic and
humanistic burdens on society [5,6].

While most acute respiratory viral infections, such as influenza, elicit long-term durable immune
responses, RSV infection only leads to relatively short-lived protective immunity, which is why frequent
RSV reinfection can occur throughout a patient’s life [7]. Several attempts have been made to develop an
effective RSV vaccine. However, no vaccine exists today because candidates failed to induce persistent
immune responses against RSV antigen without causing vaccine-associated disease enhancement [8].

Dendritic cells (DCs), which participate in innate immunity, are professional antigen-presenting
cells that play an essential role in activating adaptive immune responses. During viral infection, DCs
detect viruses via the innate receptors discussed below and process the viral antigens into peptides,
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which are presented to T cells in a complex with MHC molecules as epitopes. In addition, DCs affect
the generation of a protective antibody response by fine-tuning CD4+ T cell polarization [9–12].

Lung DCs are classified into conventional DC1 (cDC1), cDC2, and plasmacytoid DC (pDC) [13].
cDC1s are generally considered as the primary subset that cross-presents antigens to CD8+ T cells,
while cDC2s mediate CD4+ T cell priming, and pDCs are well known as producers of type I interferon
(type I IFN) [14]. Each DC subset is widely distributed throughout the lungs. cDCs migrate to
lung-draining lymph nodes when they recognize invading pathogens to initiate protective immune
responses. In this review, we discuss how DCs recognize RSV infection and mediate anti-RSV immune
responses, as well as the immunomodulatory strategies that RSV utilizes to avoid host defense
mechanisms via DC regulation.

2. Virological Features of RSV and the Immune Response

RSV is classified into subgroups A and B based on reactivity against monoclonal antibodies, with
most differences occurring in the G protein [15]. A study demonstrated that subtype A is more virulent
than subtype B [16]. The 15.2 kb RSV genome is a non-segmented negative-sense RNA encoding
11 viral proteins, namely nonstructural proteins NS1 and NS2, nucleoprotein (N), phosphoprotein
(P), matrix protein (M), small hydrophobic protein (SH), attachment glycoprotein (G), fusion protein
(F), M2-1, M2-2, and large protein (L) [17]. The RSV envelope contains three surface transmembrane
glycoproteins, specifically G, F, and SH (Figure 1). Airway epithelial cells have been considered
a primary target of RSV, with binding and entry of RSV into host cells mediated by the G and F
proteins [18]. The G protein, which is expressed as soluble (Gs) and membrane-bound (Gm) forms,
is responsible for viral attachment to host cells and immune modulation by RSV [19]. RSV entry is
mediated by the F protein, which undergoes a conformational change and fuses the viral envelope
with the host cell membrane [20]. Several candidate molecules have been proposed as an RSV receptor,
including CX3 chemokine receptor 1 (CX3CR1) [21–23], DC-SIGN [24], heparan sulfate proteoglycans
(HGPGs) [25], and annexin II [26]. The G protein contains a CX3C motif that can bind the CX3CR1
receptor on host cells; mutation of this motif or inhibition of the G-CX3CR1 interaction with a blocking
anti-CX3CR1 antibody is reported to reduce RSV infection [23,27]. Recently, nucleolin was identified
as a functional fusion receptor for RSV [28–30]. Silencing lung nucleolin using specific siRNA resulted
in diminished RSV titers in infected mice, suggesting nucleolin as a functional cellular receptor for
RSV [28]. The SH protein forms a pentameric ion channel that enhances membrane permeability in the
host [31,32]. Studies demonstrated that deletion of SH in RSV leads to viral attenuation [33]. Although
all three RSV surface proteins (F, G, and SH) are major targets of humoral immune responses, vaccine
development for RSV has been focused primarily on the F protein, which is generally conserved across
all known RSV strains [34]. Published reports have shown that F protein-specific antibodies induce
the most neutralizing activity, suggesting a critical role for this protein [35,36]. M proteins, which
are present on the interior side of the viral envelope, consist of a structural component and play an
essential role in viral assembly and filament formation [37,38]. Viral RNA is tightly encapsidated by N
proteins and the L, P, and M2-1 proteins that carry out viral RNA transcription [39]. The RSV M2-2
protein is involved in maintaining the balance between viral genome replication and transcription by
negatively regulating viral transcription [40]. Although the non-structural proteins NS1 and NS2 do
not directly participate in RNA replication, NS proteins facilitate RSV replication by disrupting type I
IFN signaling in the host [41].
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airway pathogenesis following RSV infection, suggesting that inappropriate activation of Th2 
responses is harmful for RSV-infected hosts. Although there were several attempts to develop a safe 
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revealed that FI-RSV boosted Th2-mediated immune responses [61–63]. 

Although an imbalance between Th1/Th2 immune responses accounts for the immunopathology 
during RSV infection, regulatory T cells (Tregs) are also essential for regulating a robust 
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loss and delayed recovery [64–66]. Selective chemoattraction of Tregs to the airway by chemokine 
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(P), and M2-1 proteins that mediate viral RNA transcription. M2-2 protein regulates viral RNA 
synthesis. 

Figure 1. The structure of respiratory syncytial virus (RSV). The RSV genome is 15.2 kb of nonsegmented
negative-sense RNA encoding 11 viral proteins. Viral envelope of RSV contains three transmembrane
glycoproteins: attachment glycoprotein (G), fusion protein (F), and small hydrophobic protein (SH).
Matrix proteins (M) are present on the inner side of the viral envelope. Viral RNA is tightly encapsidated
by nucleoproteins (N) and the large proteins (L), phosphoproteins (P), and M2-1 proteins that mediate
viral RNA transcription. M2-2 protein regulates viral RNA synthesis.

The Th1 and cytotoxic CD8+ T cell responses are both crucial for viral clearance and pathogenesis
following RSV infection [42]. Moreover, RSV-specific neutralizing antibody responses confer protection
against RSV infection [43]. It was reported that RSV-specific serum-neutralizing antibody levels
were positively related to the resistance against RSV infection in adults [44] and the elderly [45], and
the severity of RSV reinfection was inversely related to the titers of serum-neutralizing antibodies
in children [46,47]. Further, passive transfer with Palivizumab, a humanized murine monoclonal
neutralizing antibody to RSV F protein, achieved protection against infection with RSV in young
children [48] indicating a protective role of antibodies during RSV infection. Interestingly, RSV-specific
nasal IgA seems to be more effective than serum IgA to prevent RSV infection, but IgA+ memory
B cells were undetectable at convalescence [49]. As nasal IgA is responsible for protection against
RSV, inducing durable nasal IgA responses is considered an effective approach for RSV vaccine
development. In addition, recent studies showed that passive administration of antibodies to RSV G
protein also efficiently prevents RSV infection in mice, while treatment with the neutralizing antibody
Palivizumab, which targets the F protein of RSV, is the only FDA-approved method for prevention of
RSV infection [50,51]. Animal models [52–55] and human studies [56,57] of RSV infection demonstrated
that Th2 cytokines (e.g., interleukin (IL)-4, IL-5, and IL-13) contribute to airway pathogenesis following
RSV infection, suggesting that inappropriate activation of Th2 responses is harmful for RSV-infected
hosts. Although there were several attempts to develop a safe and effective RSV vaccine, the potential
candidates repeatedly failed to confer effective protection. Furthermore, some vaccine candidates
caused enhanced respiratory disease, rather than protection, upon exposure to RSV. Studies conducted
in 1966–1967 demonstrated that administration of formalin-inactivated RSV vaccines (FI-RSV) to infants
and children resulted in severe respiratory disease upon subsequent natural RSV infection [58–60].
Hospitalization was required for 80% of the participants, and two vaccinated infants died upon
infection, implying that primary immunization with FI-RSV induced aberrant pathologic responses.
Indeed, subsequent studies on animal models revealed that FI-RSV boosted Th2-mediated immune
responses [61–63].
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Although an imbalance between Th1/Th2 immune responses accounts for the immunopathology
during RSV infection, regulatory T cells (Tregs) are also essential for regulating a robust inflammatory
response. Treg depletion leads to enhanced RSV disease accompanied by severe weight loss and
delayed recovery [64–66]. Selective chemoattraction of Tregs to the airway by chemokine CCL17/22
administration ameliorated RSV vaccine-induced lung disease [67]. Consistent with these findings,
injection of an IL-2/anti-IL-2 immune complex resulted in Treg accumulation and reduced lung
inflammation following RSV infection [66], indicating that Tregs are responsible for controlling disease
severity during RSV infection.

3. Innate Sensors Involved in RSV Recognition

Host immune cells possess various pattern recognition receptors (PRRs), such as Toll-like
receptors (TLRs), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), and nucleotide-binding
oligomerization domain (NOD)-like receptors (NLRs), that initiate innate immune responses. PRRs
recognize pathogen-associated molecular patterns (PAMPs) on pathogens to activate the production of
proinflammatory cytokines and type I IFNs. Upon RSV infection, TLR2/6, TLR3, TLR4, TLR7, RIG-I,
and NOD2 become important for recognizing RSV PAMPs (Figure 2). These PRRs are also expressed
on DCs and associated with initiation of the innate immune response against viral infection [68].

1 
 

 

Figure 2. Innate sensors involved in RSV recognition, and immunomodulation strategies of RSV.
Upon RSV infection, Toll-like receptors (TLR)2/6, TLR3, TLR4, TLR7, retinoic acid-inducible gene-I
(RIG-I), and nucleotide-binding oligomerization domain (NOD2) are responsible for recognizing
RSV pathogen-associated molecular patterns (PAMPs) in dendritic cells (DCs). The recognition of
PAMPs by pattern recognition receptors (PRRs) activates downstream signaling pathways, which
trigger DC activation and cytokine production. To avoid host immune responses, RSV has evolved
various immunomodulatory strategies that inhibit DC functions. RSV proteins, specifically proteins G,
NS1/NS2, and N, contribute to immunomodulation of RSV.

3.1. TLR Signaling

TLRs are essential for activation of innate immune responses by recognizing PAMPs derived from
various pathogens. TLR signaling is mediated though the specific adaptor molecules that activate
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NF-κB and IRFs and leads to subsequent initiation of innate immune responses including production
of cytokines and type I IFNs. MyD88 is a downstream adaptor protein involved in signaling from TLRs
except TLR3. MyD88 deficiency abrogated IFN-β secretion from bone marrow (BM)-DCs following
RSV infection, even though TLR7 was dispensable for RSV-induced IFN-β production [69]. BM-DCs
from MyD88-deficient mice also displayed impairment of IL-12 production during RSV infection [70].

The first PRR that was determined to be activated by RSV infection was TLR4. While TLR4
is well-known for recognizing lipopolysaccharide (LPS) on Gram-negative bacteria, the RSV F
protein also induces TLR4 activation [71–73]. Furthermore, RSV infection enhances TLR4 expression
on epithelial cells and monocytes [74,75]. RSV-induced TLR4 activation led to NF-κB mediated
proinflammatory cytokine production [76], and macrophages isolated from TLR4-deficient mice
displayed abolished IL-6 production following RSV F protein stimulation [71]. TLR4 polymorphisms
were implicated in determining susceptibility to RSV infection [77,78] and RSV viral clearance was
delayed in TLR4-deficient mice [71,72,79].

TLR2/6 is an extracellular receptor that recognizes microbial cell wall components. The specific
mechanisms involved in RSV sensing via TLR2/6 are unclear. Nevertheless, studies have shown
that TLR2/6 is activated during RSV infection and induces NF-κB-driven pro-inflammatory cytokine
production though the MyD88 pathway [79]. In addition, RSV infection leads to upregulation of
TLR2 expression [80]. Moreover, either TLR2- or TLR6-deficient macrophages displayed reduced
pro-inflammatory cytokine production (including IL-6 and TNF-α) following RSV infection, and
TLR2 or TLR6 knockout mice showed increased viral load and a reduced number of activated
DCs in bronchoalveolar lavage (BAL) samples following RSV infection. Collectively, these findings
demonstrate that TLR2/6 signaling is involved in the host defense against RSV [79].

TLR7 is an endosomal single-stranded RNA (ssRNA) receptor that initiates type I IFN and
proinflammatory cytokine production via the MyD88-mediated pathway. RSV infection upregulates
TLR7 expression in the lungs. Although RSV-induced IFN-β production from bone marrow-derived
DCs (BM-DCs) and macrophages (BM-DMs) is independent of the TLR7 pathway [69], plasmacytoid
dendritic cell (pDC)-derived IFN-β production is dependent on TLR7-MyD88 in mice [81]. In addition,
TLR7 plays an important role in T cell polarization during RSV infection. Th1-promoting IL-12 levels
were shown to be diminished in TLR7-deficient BM-DCs, while Th17-promoting IL-23 expression
increased following RSV infection. TLR7-deficient mice displayed exacerbated airway pathological
features accompanied by mucus hypersecretion and overexpression of IL-4, IL-13, and IL-17 in the
lungs [82].

TLR3, an intracellular receptor localized in endosomes, is commonly regarded as a double-stranded
RNA (dsRNA) sensor. RSV increases TLR3 expression and immune responses to dsRNA in host
cells [83]. RSV-infected TLR3-deficient mice showed increased mucus production and pulmonary
IL-13 and IL-5 expression in the airway even though they did not display defects in viral clearance,
demonstrating that TLR3 deficiency during RSV infection skews host immunity toward a Th2-mediated
response [84].

These studies suggest that the TLR signaling pathway promotes the production of proinflammatory
cytokines and type I IFNs in DCs following RSV infection. Further investigation is still required to
better understand the underlying mechanisms in greater detail.

3.2. RIG-I and MAVS

RIG-I is an intracellular PRR that senses 5′-triphosphorylated viral RNA in the cytosol. RIG-I
detects 5′-triphosphate through its helicase domain and interacts with the mitochondrial anti-viral
signaling protein (MAVS, also known as IFN-β promoter stimulator 1), which induces proinflammatory
cytokines and type I IFN production via IRF3/7 and NF-κB activation. RSV infection induces RIG-I
expression in epithelial cells, and RIG-I recognizes RSV transcripts as a ligand [85]. Mouse fibroblasts
lacking RIG-I showed attenuated expression of IRF-3-dependent genes including ISG15, ISG54,
and ISG56 [86]. Moreover, siRNA-mediated RIG-I silencing in epithelial cells decreased IRF3- and
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NF-κB-mediated IFN-β, IP-10, CCL5, and ISG15 expression following RSV infection [85]. Indeed,
RSV-induced IFN-β production in BM-DCs and BM-DMs was abrogated following genetic ablation of
MAVS [69], and MAVS deficiency resulted in severe inflammation accompanied by reduced BAL fluid
IFN-β levels in RSV-infected animals [87]. Consistent with this result, cDCs isolated from Mavs−/− mice
were unable to produce type I IFNs during RSV infection. RSV-induced proinflammatory cytokine
and type I IFN levels in BAL fluid were also abrogated in these animals, suggesting a dependency on
MAVS [88].

3.3. NOD2 and Inflammasomes

NOD2 is a cytoplasmic molecule that detects ssRNA. Recognition of the RSV ssRNA genome
by NOD2 initiates type I IFN production via IRF3 activation. RSV-infected epithelial cells express
NOD2 within 2 h after infection and siRNA-mediated knockdown of NOD2 reduced activation
of IRF3 and IFN-β production in RSV-infected epithelial cells [89]. Consistent with this finding,
NOD2-deficiency abrogated IFN-β production in the respiratory tract of RSV-infected mice. Data
demonstrating uncontrolled RSV titers and severe lung pathology in NOD-deficient, RSV-infected
mice demonstrate that NOD2 is a critical component in triggering anti-RSV responses in hosts.

The inflammasome is a multimeric intracellular protein complex responsible for the activation of
inflammatory responses. Certain NOD-like receptors trigger assembly of the inflammasome complex.
Moreover, caspase-1 activation leads to the production of proinflammatory cytokines IL-1β and IL-18,
as well as programmed cell death. While specific mechanisms have yet to be fully elucidated, one
study reported that RSV infection causes IL-1β release via NLRP3/ASC inflammasome activation
and that caspase-1 activation is inhibited by NLRP3 or ASC deficiency [90]. Further, infection with
an SH-deficient mutant RSV failed to produce IL-1β from lung epithelial cells, indicating that SH is
responsible for inflammasome activation and IL-1β production during RSV infection [91].

Several studies suggest that PRRs play an important role in initiating immune responses to RSV
infection. Activated PRRs that detect RSV-derived viral components are implicated in the production
of type I IFN and proinflammatory cytokines, as well as T cell response skewing. Consistently,
MyD88/Trif/Mavs−/− (MTM−/−) mice that cannot induce PRR-mediated signaling pathways failed to
produce innate cytokines such as IFN-α, IL-6, and IL-1β [92]. Despite the fact that MTM−/− mice
were still able to elicit RSV-specific CD8+ T cell responses, they showed enhanced susceptibility
to RSV infection accompanied by impaired viral control and severe weight loss. Furthermore,
anti-RSV antibody production was significantly reduced in MyD88−/− mice, Mavs−/− mice, and
MyD88−/−Mavs−/− double knockout mice [88]. These findings indicate that PRR-mediated signaling
is crucial for regulating disease severity in RSV-infected hosts. The specific roles of each PRR in
DCs are not yet fully clarified. Therefore, further DC-specific studies are required to understand the
contribution of PRRs to anti-RSV responses in DCs.

4. Lung Resident DCs and RSV Infection

Over the years, researchers have demonstrated that adaptive responses are responsible for
efficient viral clearance following RSV infection and RSV-induced pathology. As DCs are professional
antigen-presenting cells that mediate T cell activation by antigen presentation, various approaches
were attempted to elucidate the role of DCs in adaptive immunity against RSV infection.

DCs are specialized cells that play an essential role in linking innate and adaptive immune
responses. Following RSV infection, DCs acquire viral antigens directly through infection or indirectly
by phagocytosis of virus-infected cells. DCs express PRRs and the recognition of PAMPs by PRRs
activates downstream signaling pathways, which trigger DC maturation and cytokine production [93].
Consequently, RSV exposure promotes maturation of DC subsets, including those infected directly and
uninfected ones in which costimulatory molecules such as CD80 and CD86 are upregulated [94–98]. RSV
infection also promotes MHC class II expression [99] and induces the production of proinflammatory
cytokines and type I IFNs from DCs [95,100]. DCs that capture viral antigens migrate to the draining
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lymph nodes to initiate and organize viral-specific T cell responses by presenting antigen peptides
bound to class I or class II MHC molecules [101].

Lung DCs are classified into cDCs and pDCs in the steady state, and monocyte-derived DCs
(MoDCs) are generated after exposure to inflammatory stimulation (Figure 3) [102–105]. cDC subsets
are defined in terms of cell surface marker expression and their ability to induce adaptive immune
responses. Specifically, cDCs expressing CD11chi-MHC class II+ are subdivided into CD103+ cDC1
and CD11b+ cDC2 groups in mice and CD141+ (BDCA-3) cDC1 and CD1c+ (BDCA-1) cDC2 groups in
humans [106].

1 
 

 
Figure 3. Lung dendritic cell subsets. Lung DCs are classified into conventional DC1s (cDC1s), cDC2s,
and plasmacytoid DCs (pDCs). Each DC subset is widely distributed throughout the lungs and migrates
to the lung-draining lymph node when they recognize RSV to initiate protective immune responses.
cDC1s preferentially activate CD8+ T cells that mediate viral clearance, and cDC2s are responsible for
Th2-mediated immune responses and RSV-mediated pulmonary diseases. pDCs are the main source
of type I interferons (IFNs) and play an essential role in RSV-specific cytotoxic T lymphocyte (CTL)
priming and regulation of disease severity. * Human-specific marker.

CD103+ cDC1s are functionally similar to CD8+ cDC1s in lymphoid organs [107]. Several studies
revealed that cDC1 subsets preferentially activate CD8+ T cells via cross-presentation of antigens with
MHC class I. cDC1s are also required for Th1 differentiation because they serve as a major producer
of IL-12 [14,108–112]. Batf3−/− mice, which lack CD103+ cDC1s [113], were used to elucidate the
indispensable role of cDC1s in the development of CD8+ T cell responses to multiple pathogens.
RSV-specific CD8+ T cells in the lungs were considerably reduced in adult Batf3−/− mice, suggesting
that anti-RSV CD8+ T cell responses in adult mice are dependent on CD103+ cDC1s [114]. In addition,
studies on RSV-infected neonatal mice revealed that lung cDC1 populations in neonates are functionally
defective compared with adults [114,115]. Neonatal DC responses against RSV are conducted primarily
by CD103+ cDC1s that display deficiencies in the uptake and processing of a soluble antigen, as well
as the expression of both CD80 and CD86 costimulatory molecules, following RSV infection [115].
Consistently, cDC1s in RSV-infected neonates showed early impairment in the ability to stimulate RSV
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KdM282–90 epitope-targeting CD8+ T cells, indicating that their limited ability resulted in a different
CD8+ T cell response hierarchy between neonates and adults [114–116]. Interestingly, Ruckwardt
et al. reported that CD103+ cDC1s in RSV-infected neonates were composed of two phenotypically
and functionally distinct populations, CD103lo DCs and CD103hi DCs, characterized by CD103
expression [114]. The authors demonstrated that CD103lo DCs were immature, underdeveloped,
and unable to stimulate the KdM282–90-specific CD8+ T cell response, while CD103hi DCs induced
proliferation of both KdM282–90-specific cells and DbM187–195-specific CD8+ T cells. Nevertheless,
CD103hi DCs seem to be different from adult CD103+ DCs because adult CD103+ cDC1s are more
functional than either neonatal population. In addition, transforming growth factor beta (TGF-β) is
suggested as regulator of DC-T cell responses against RSV [117]. Adult DCs isolated from peripheral
blood produced lower TGF-β than cord blood DCs following RSV infection, and the addition of TGF-β
changed cytokine secretion profiles reducing Th1 cytokines IFN-γ, TNF-α, and IL-2 productions during
adult DC and T cell cocultures. These findings suggest cellular mechanisms to understand functional
differences between adult and neonatal DCs.

Unlike cDC1s, cDC2 subsets are considered to be responsible for the activation of CD4+ T cells by
MHC-II-dependent antigen presentation [118]. Consequently, these subsets contribute to helper T cell
polarization, including differentiation into Th2, Th17, and T follicular helper cells [10,102,119–121].
These findings suggest the possibility that cDC2 populations support antibody-mediated protection.
While specific roles of cDC2s in RSV infection have not been fully clarified yet, studies suggest that
CD11b+ cDC2s mediate RSV-specific T cell responses. In mice, CCR6-expressing CD11b+ cDC2s
are responsible for the induction of Th2 responses and Th2-mediated lung pathology during RSV
infection [122]. Levels of CCL20, the ligand of CCR6, in the lungs are reportedly elevated following
RSV infection, and accumulation of CCR6-expressing CD11b+ cDC2s is reduced in anti-CCL20-treated
mice as well as in CCR6-deficient mice, demonstrating that CCL20/CCR6 plays a key role in recruiting
CD11b+ cDC2s during RSV infection. Furthermore, absence of the CCL20/CCR6 axis led to ameliorated
lung pathology accompanied by reduced Th2 cytokine and mucus production. Consistent with these
results, an RSV infection model in neonates suggests that lung CD11b+ cDC2s promote Th2-biased
immune responses in response to RSV infection [123]. Neonatal CD11b+ cDC2s displayed significantly
higher levels of IL-4Rα than their adult counterparts, and IL-4Rα expression on CD11b+ cDC2s
diminished with age. As expected, IL-4Rα-deficient CD11b+ cDC2s isolated from RSV-infected
neonates showed an impaired capacity to induce Th2 responses, and CD11c+ cell-specific deletion
of IL-4Rα protected mice from lung damage during RSV infection. These data are consistent with
previous results showing that local inhibition of IL-4Rα expression using antisense oligonucleotides in
neonates prevented pulmonary dysfunction following RSV infection [124]. Moreover, overexpression
of IL-4Rα on CD11b+ adult cDC2s induced robust Th2 cytokine production in RSV-infected adult
mice [123].

pDCs are known as the main source of type I IFNs. RSV infection results in the upregulation
of MHC class II and CD80/CD86 costimulatory molecule expression, as well as the promotion
of type I IFN production in pDCs [95,125–127]. Early studies on RSV demonstrated that pDCs
play a crucial role in regulating viral replication, clearance, and immunopathology following RSV
infection [125,128]. pDC depletion using the 120G8 antibody increased pulmonary RSV titers in
mice [125,128], and adoptive transfer of bone marrow-derived pDCs reduced viral mRNA expression
in RSV-infected lung tissue [125], indicating that pDCs regulate viral titers in RSV-infected mice.
Interestingly, Flt3 ligand-induced expansion of DC subsets protects the host from severe RSV-induced
immunopathology, which is dependent upon pDCs [127]. Pre-treatment of Flt3 ligand diminished
harmful RSV-induced Th2 responses and increased CD8+ T cell responses to RSV; however, selective
depletion of pDCs exacerbated lung inflammation and hampered RSV-specific CD8+ T cell responses in
Flt3 ligand-treated mice [127]. Furthermore, diphtheria toxin-induced pDC depletion in BDCA2-DTR
mice led to attenuated cytotoxic T lymphocyte (CTL) responses against RSV infection [81]. Both
studies consistently reported that pDCs are required for RSV-specific CTL priming. In addition, mice
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that had undergone antibody-mediated pDC depletion exhibited severe pulmonary inflammation,
airway hyper-reactivity, and mucus production following RSV infection [125,128]. Remarkably, mRNA
expression levels of Th2 cytokines, which contribute to airway pathogenesis, were significantly
increased in the lungs of pDC-depleted mice during RSV infection. Th2 cytokine production by
lymph node T cells was also enhanced in these pDC-depleted mice [128]. Studies of neonatal mouse
models of RSV reinfection demonstrated that RSV-infected neonates produced significantly lower
levels of type I IFNs along with reduced pDC recruitment in lungs compared with adults. IFN-α
treatment or adoptive transfer of adult pDCs prior to neonatal RSV infection attenuated Th2-biased
immune responses and lung pathology upon RSV reinfection in adult animals [129]. These findings
suggest that pDCs are associated with regulating harmful Th2-type responses and Th2-mediated
immunopathology following RSV infection. Recently, a study using a murine model of pneumonia
virus of mice (PVM), a mouse-specific pneumovirus related to RSV, revealed that surface expression
of Semaphorin 4a (Sema 4a), the ligand for Nrp-1, by pDCs contributes to the expansion of Nrp-1+

Tregs that prevent the development of PVM-induced bronchiolitis in early life and subsequent asthma
following reinfection [130]. pDC depletion or Sema4a blockade in neonates abrogated Treg expansion
during PVM infection, as well severe bronchiolitis and asthma in later life, suggesting that pDCs limit
PVM-induced immunopathology by expanding Tregs [130]. Taken together, these studies demonstrate
that pDCs play an essential role in inducing adaptive T cell responses that protect the host from severe
RSV disease.

MoDCs constitute a heterogeneous group of cells derived from monocytes under inflammatory
conditions [14]. Since both cell subsets express CD11b, it is difficult to distinguish MoDCs from CD11b+

cDC2s. Although studies examining the role of MoDCs during RSV infection are limited, data from
in vitro studies suggest that MoDCs are very susceptible to RSV [95,131]. Productive infection of
MoDCs by RSV upregulated the expression of maturation makers such as CD83, CD86, and MHC
molecules on these cells; however, the ability of MoDCs to induce naïve CD4+ T cell activation and
proliferation was inefficient [95,96]. While the specific mechanisms underlying their role remain
unknown, these findings suggest that MoDCs are implicated in the immunomodulation of RSV.

5. Immune Evasion Strategies of RSV That Modulate DC Function

RSV utilizes several mechanisms to evade the host immune system by disrupting both the innate
and adaptive immune responses. RSV proteins, specifically proteins G, NS1/NS2, and N, contribute to
immunomodulation of RSV. These proteins interfere with host immune components to promote viral
propagation (Figure 2).

As described above, RSV G proteins are expressed as both membrane-anchored (mG protein) and
soluble forms (sG protein) [132]. G protein binds to the CX3C chemokine receptor CX3CR1 on host
cells through the CX3C motif, and therefore competes with CX3CL1 to induce leukocyte chemotaxis as
well as facilitate RSV infection [21]. Regarding DCs, DC-SIGN and L-SIGN are binding targets for
RSV G protein [24]. Interactions between G protein and DC- or L-SIGN inhibit DC activation and
the production of cytokines including IFN-α, MIP-1α, and MIP-1β from DCs. Interestingly, these
interactions are not associated with productive RSV infection [24]. Finally, G protein downregulates
IFN-α and TNF-α production in pDCs [133], plus IFN-β production in mDCs [19], indicating that the
RSV G protein alone yields insufficient immune responses against RSV infection in DCs.

Studies have established that the NS1 and NS2 non-structural proteins suppress type I IFN
production and signaling in RSV-infected cells. NS1 and NS2 proteins inhibit anti-RSV responses
in the host both independently and in conjunction with each other [41]. Early studies on
recombinant RSV lacking NS1 and NS2 demonstrated that NS1/NS2 deficiency induces attenuated
viral replication [33,41,134,135]. Specifically, NS1 and NS2 interfere with the RIG-I/MAVS-dependent
type I IFN production pathway. NS1 binds to MAVS [136], while NS2 targets the N-terminal CARD of
RIG-I [137] to disrupt RIG-I/MAVS interactions and inhibits downstream activation of IRF-3, which
initiates transcription of type I IFN genes [134,138]. NS1 also directly interacts with IRF-3, thereby
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preventing IRF-3 binding to the IFN-β promoter region [139]. Indeed, NS1 and NS2 decrease type I IFN
responsiveness in host cells by inhibiting STAT2, a transcription factor downstream of the type I IFN
receptor [140–143]. Both NS1 and NS2 elicit ubiquitination and proteasomal degradation of STAT2. In
RSV-infected DCs, NS1 and NS2 mediate the negative modulation of DC maturation [144]. In addition
to regulating type I IFN production, NS1/NS2 suppress the surface expression of maturation markers,
including CD80, CD86, and CD38, on DCs [144], and control the ability of DCs to activate T cells. NS1
promotes DCs to induce pathogenic Th2-biased CD4+ T cell responses and inhibits the activation of
CD8+ T cells that express the tissue homing integrin CD103 [145]. Overall, NS1/NS2 suppress the
ability of DCs to activate protective T cell responses.

The RSV N protein also possesses immunomodulatory properties. RSV prevents T cell activation
by disrupting DC-T cell synapse assembly, and N protein plays a role in this inhibitory process [146,147].
Early in vitro studies on RSV-infected BM-DCs showed that the interaction between RSV-infected DCs
and T cells results in unresponsiveness to TCR stimuli by T cells due to impaired formation of the
immunological synapse [146]. While the specific mechanisms are unclear, surface-expressed N protein
on RSV-infected DCs accumulates at the synaptic center with the TCR complex, inhibiting MHC–TCR
interactions [147].

Interestingly, RSV seems to manipulate gene expression in host cells through microRNA [148,149].
In monocyte-derived DCs, let-7b expression was upregulated following RSV infection while let-7i and
miR-30b were upregulated in NHBE human bronchial epithelial cells [148]. RSV-infected A549 human
alveolar epithelial cells displayed changed microRNA expression profiles including let-7f [149]. While
RSV G protein [149] and NS1/2 proteins [148] appear to be associated with the regulation of miRNA
expression, further studies are needed to elucidate the role of miRNA in host immune responses.

6. Conclusions

RSV infection is a leading cause of severe respiratory disease and hospitalization in infants, as
well as children. Most people experience their initial RSV infection by two years of age [47] and RSV
reinfection occurs throughout life. While RSV reinfection causes mild symptoms in healthy adults,
elderly and immunocompromised individuals have high morbidity and mortality risk. Due to the
health burden of RSV, several approaches were attempted to develop an effective vaccine to prevent
RSV infection. In the 1960s, the first RSV vaccine candidate FI-RSV failed to establish suitable anti-RSV
immune responses. Instead, a fatal respiratory illness following natural RSV infection was elicited.
Since then, the goals for RSV vaccine development involve prevention of both viral infection and
serious adverse side effects. However, previous RSV vaccine strategies were unsuccessful, and a
licensed vaccine remains available currently. Palivizumab, a humanized monoclonal neutralizing
antibody targeting the F protein of RSV, is the first and only FDA-approved agent for the prevention of
RSV infection. While prophylactic treatment with Palivizumab prevents viral infection effectively [48],
this therapeutic is expensive and thus recommended only for infants who are at high risk. Therefore,
additional investigation is still required to develop a safe and effective vaccine, as well as therapeutics
for RSV infection.

Since DCs play an essential role in establishing both protective and pathogenic immune responses
following RSV infection, understanding the specific mechanisms of how these cells recognize RSV and
initiate adaptive immune responses, as well as how RSV inhibits DC functions to avoid host defensive
tactics, will provide insight into strategies for anti-RSV therapy and vaccine development. Interestingly,
TLR-agonist treatment at the time of RSV infection increased RSV-specific CD8+ T cells in neonates via
upregulation of CD86 expression on cDCs, indicating that DCs can be potential targets of anti-RSV
therapy [150]. Recently, a novel protein-based RSV vaccine was reported [151,152]. The researchers
developed the DS-Cav1 vaccine, which targets the pre-fusion form of RSV F protein, and vaccination
with DS-Cav1 elicited superior neutralizing antibody responses in healthy adult volunteers [152].
Increasing vaccine immunogenicity by fusing DS-Cav1 to nanoparticles was reported to induce more
robust humoral responses than trimeric DS-Cav1 [153]. Thus, combining DC-targeting therapy with
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vaccination could potentially produce an additive or synergistic effect that ultimately treats RSV
infection with minimal adverse effects.
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