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This article presents a Model Predictive Control framework with a vi-

suomotor system that synthesizes eye and head movements coupled with

physics-based full-body motions while placing visual attention on objects

of importance in the environment. As the engine of this framework, we

propose a visuomotor system based on human visual perception and full-

body dynamics with contacts. Relying on partial observations with uncer-

tainty from a simulated visual sensor, an optimal control problem for this

system leads to a Partially Observable Markov Decision Process, which is

difficult to deal with. We approximate it as a deterministic belief Markov

Decision Process for effective control. To obtain a solution for the problem

efficiently, we adopt differential dynamic programming, which is a pow-

erful scheme to find a locally optimal control policy for nonlinear system

dynamics. Guided by a reference skeletal motion without any a priori gaze

information, our system produces realistic eye and head movements to-

gether with full-body motions for various tasks such as catching a thrown

ball, walking on stepping stones, balancing after being pushed, and avoid-

ing moving obstacles.
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1 INTRODUCTION

Physics-based simulation has been widely used in character an-

imation. The approach enhances physical realism in character

motion and facilitates convincing responses to environmental
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changes. Recent studies on this topic have dealt with physically

valid interactions between a character and external objects in an

online manner [Hämäläinen et al. 2014, 2015; Han et al. 2014; Jain

et al. 2009]. Most of these studies assumed that the character can

access all information necessary to interact with objects, such as

their precise trajectories. This often leads to unrealistic behaviors

that humans would not exhibit in real life. For example, a char-

acter would avoid an unseen ball flying to him/her from behind,

which cannot be achieved by humans in real life. This calls for

a new framework of motion synthesis that couples physics-based

simulation with visual perception.

In general, a visuomotor coordination entails essential sec-

ondary behaviors such as head and eye movements to adjust

visual attention. For instance, an observer pays attention to nearby

obstacles while walking, to avoid collision by turning the head

and eyes toward these. Despite the significance of these human

behaviors, few papers have addressed physics-based motion

synthesis for a full-body character equipped with a vision system,

partly due to difficulties in modeling visual perception of humans

as well as in achieving robust real-time physics-based character

control. The control problem with an integrated visuomotor

system leads to a Partially Observable Markov Decision Process

(POMDP) [Sondik 1971], since the character’s action results

from estimated environment states under certain uncertainty,

just like a human’s action performed based on the information

with uncertainty, which is instantaneously gathered through the

eyes. Several studies have shown that behaviors similar to those

of humans could be modeled with POMDPs [Baker et al. 2017;

Belousov et al. 2016], one particular example being eye–hand

coordination [Erez and Smart 2009]. In general, however, optimal

control on the POMDP is very difficult except for simple cases

[Madani et al. 2003; Papadimitriou and Tsitsiklis 1987].

To address this issue, we present a novel Model Predictive

Control– (MPC) based framework with a visuomotor system that

integrates visual perception and full-body motion control. This in-

tegration allows the synthesis of full-body motions of a character

that can naturally interact with external objects based on a partial

information on the environment. For subtle coordination between

a vision system and the full-body dynamics, it is necessary to syn-

thesize a physically correct full-body motion in an on-line manner

and also to explore the environment through the vision system

that drives eye/head movements. Note that this coordination is

extremely difficult, if not impossible, to achieve with a kinematic-

based vision system.

We adopt a simplified POMDP to control our visuomotor system

effectively. Inspired by the work of Erez et al. [2012], we model our
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POMDP as a fully observable belief MDP using a Kalman Filter and

further make its belief update deterministic, which simplifies the

formulation of trajectory optimization for the visuomotor system.

The role of the Kalman filter is to mimic the behavior of humans

[Rao and Ballard 1997; Welch and Bishop 2006] in tracking objects

under uncertainty. Unlike the previous approach, we deal with a

much more complex control problem based on full-body dynamics

with contacts and a vision system that reflects the characteristics

of human eyes more faithfully, exploiting focal length adjustment,

saccades and pursuits.

The contributions of this article are summarized as follows: We

propose a novel MPC-based framework with a visuomotor sys-

tem that effectively integrates human vision and full-body dynam-

ics models. Formulating the control problem of our visuomotor

system with a POMDP, we simplify it with a deterministic MDP.

Guided by reference motion data without gaze behaviors such as

head and eye movements, our framework can produce full-body lo-

comotive motions with natural looking secondary behaviors such

as head turning, eye saccades, and pursuits. Our framework can

deal with multiple objects by automatically switching the point

of sight through the optimization that reduces the uncertainty

of our vision system on the moving objects approaching to the

character.

2 RELATED WORK

Physics-based character control for realistic motion synthesis is a

challenging issue in computer graphics due to its complexity and

high dimensionality. Early studies in physics-based full-body mo-

tion synthesis employ constrained trajectory optimization [Fang

and Pollard 2003; Liu et al. 2005; Mordatch et al. 2012; Popović

and Witkin 1999; Witkin and Kass 1988]. Ye and Liu [2010] and

Han et al. [2014] adopt Differential Dynamic Programming (DDP)

to obtain a locally optimal solution for a motion control problem

while achieving an interactive performance. Tessa et al. [2012] ap-

proximate the contact dynamics of a full-body robot with smooth-

ing functions so that the resulting dynamics equations become dif-

ferentiable and solvable analytically. Todorov [2014] presents an

improved version of the smoothed contact dynamics based on the

regularization of contact impulses. Recently, Han et al. [2016] pro-

pose an interactive data-guided MPC-based framework for full-

body character control, accelerated with efficient techniques for

computing derivatives of the system dynamics. These approaches

have not taken into account a vision system and resulting gazing

behaviors. Built on a full-body MPC framework as in Han et al.

[2016] our system focuses on generating secondary behaviors for

gazing, including eye and head motions, to synthesize convincing

and more human-like full-body motions.

To facilitate realistic interaction of a character with an envi-

ronment, Jain et al. [2009] present a framework that can auto-

matically generate responsive motions to environmental changes.

They employ a visual sensor model to measure the proximity of

environment objects from a character. Han et al. [2014] apply a

low-dimensional model to their MPC-based framework for legged

locomotion synthesis and demonstrate its effectiveness on avoid-

ing obstacles and walking on stepping stones. Hämäläinen et al.

[2014, 2015] propose sampling-based MPC schemes for balance

recovery and interaction with the environment, with improved

computational efficiency compared with previous sampling-based

methods [Al Borno et al. 2013; Liu et al. 2015, 2010]. These studies

assume that the character knows the environmental information

fully from the beginning, unlike our system in which the character

gathers the environmental information with uncertainty through

visual observation.

During the Past decade, studies on gaze animation of virtual

agents have been conducted actively in computer animation

and virtual reality for realistic interaction of the agents with the

environment. Ruhland et al. [2015] provide an excellent survey on

synthesizing gaze behaviors in computer animation. Early work

on gaze animation synthesis [Deng et al. 2005; Lee et al. 2002]

focuses on saccades and pursuits [Leigh and Zee 2015]. Lance et al.

[2010] suggest a method to synthesize gaze behaviors, including

eyes, head, and upper body movements. Neog et al. [2016] demon-

strate real-time animation of realistic soft tissue movement around

eyes in accordance with input gaze behaviors. Peters et al. [2010]

and Pejsa et al. [2015] propose a procedural model for the control

of eye movement based on neurophysiological observations.

Recently, Pejsa et al. [2016] present a method for adding gaze

animation to existing skeletal full-body motion data, considering

scene features and the head and torso kinematics. Such studies

mainly layer gaze behaviors on given motions in an off-line

manner. Unlike these studies, our approach synthesizes gaze be-

haviors in accordance with full-body dynamics while responsively

reacting to the time-varying environment in an on-line manner.

A POMDP-based approach [Thrun et al. 2005] has been utilized

to model a decision process for planning under uncertainty, such as

robot control [Pineau and Gordon 2007] and a baseball outfielder’s

ball-tracking [Belousov et al. 2016]. However, this approach has

been mainly applied to problems in a low-dimensional and dis-

crete space because of its computational burden [Papadimitriou

and Tsitsiklis 1987]. To address this issue, approximation schemes

for the belief dynamics have been proposed [Du Toit and Burdick

2012; Platt Jr et al. 2010; Van Den Berg et al. 2012, 2017]. Kalman

filters have been widely used for state estimation of non-linear sys-

tems [Welch and Bishop 2006]. Rao and Ballard [1997] employ a

Kalman filter for visual cortex modeling. Building the vision sys-

tem on top of a Kalman filter, we adopt a similar approximation

scheme to incorporate this system into the physics-based full-body

motion control.

In character animation, there have been a few studies on motion

synthesis based on the internal models of a human in perceiving

external objects. Yeo et al. [2012] propose a kinematic upper-body

motion synthesis system that is capable of perceiving an object

using a vision system. Recently, Nakada et al. [2018] adopt a vision

deep neural network for the biomimetic sensorimotor control of

muscle dynamics. Unlike these earlier studies that handle only

a single object, our system can visually track multiple static or

moving objects by automatically selecting gazing targets and

switching between these based on the uncertainty model that we

adopt for our vision system. In addition, our system can generate

various types of full-body motions such as running or balancing,

in which the root of a character moves dynamically. Erez et al.

[2012, 2011] present an optimal control approach to eye-hand

coordination, based on a minimax algorithm and an MDP with
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Fig. 1. System overview.

belief approximation. They demonstrate the effectiveness of their

approach for a simplified 2D model with an eye and two hands.

We extend these methods to full-body character control based on

articulated-body dynamics with contacts.

3 SYSTEM OVERVIEW

As shown in Figure 1, our framework consists of three compo-

nents: a vision system, a trajectory optimizer, and a visuomotor

system. Given a full-body character state including an eye pose

from the visuomotor system, the vision system determines the

character’s point of sight and estimates the states of perceived

objects by approximating the belief dynamics of the POMDP using

a Kalman filter to track the noisy perceived states of external

objects. The estimated state of each object is composed of its po-

sition and velocity together with their uncertainty, which is used

by the trajectory optimizer to generate a locally optimal control

policy that adjusts full-body motion, eye and head movements,

and focal length, guided by the reference motions. We adopt

DDP [Jacobson and Mayne 1970] to find the control policy of a

full-body character. To support an online interactive performance,

our system repeatedly updates the character control policy for

a short time window while shifting it along the time axis. The

visuomotor system performs a forward dynamics simulation to

update the full-body character state, given the control policy

together with external forces, if there is any.

4 VISION SYSTEM

This section describes our vision system. In Section 4.1, we model

an eye coordinate frame and eye behaviors such as saccades and

pursuits. In Section 4.2, we describe how to determine the point

of sight at which the character is looking. In Section 4.3, we dis-

cuss how to estimate the state of a moving object with our vision

system.

4.1 Eye Model

As shown in Figure 2, we adopt a spherical coordinate system

to define the eye frame. In this frame, we use three param-

eters to specify an eye pose e = [θ ψ ζ ]T. Here θ and ψ are

respectively the azimuthal and polar angles, which together

Fig. 2. Eye coordinate frame.

represent a gaze direction, and ζ is the focal length. We bound

each parameter with a normal range of eye movement that

can be obtained from medical research [Serway et al. 2018;

Shin et al. 2016]: That is, −44.2◦ ≤ θ ≤ 44.2◦ for adduction and

abduction, −47.1◦ ≤ ψ ≤ 27.7◦ for depression and elevation, and

0.0 ≤ ζ ≤ 17.0 (mm) for focal length. The focal length approaches

17.0mm when human looks at a point at infinity.

We also bound eye movement to generate realistic gaze behav-

iors, saccades and pursuits, which are important characteristics of

human eyes. Saccades and pursuits refer to rapid movements of

eyeballs to find new objects and slow eyeball movements to track

objects, respectively. As in Yeo et al. [2012], we adopt a simplified

profile of saccades and pursuits and impose velocity constraints on

these behaviors based on the results from Robinson et al. [1965],

Meyer et al. [1985], Leigh and Zee [2015], and Itti et al. [2006].

Note that our system only uses velocity constraints for a natural

gaze behavior and does not enforce explicit saccades or pursuits in

relation to the object motion.

In particular, we set the maximum saccade speed to 800◦/s and

the maximum pursuit speed to 100◦/s considering only azimuthal

and polar eyeball movements. Saccades repeat in every 200ms in-

terval, each followed by a 200ms pause for recharge. Pursuits oc-

cur simultaneously even during the recharge times for saccades.

We incorporate all of these in our vision system as follows:���ėθ,ψ
��� ≤ B,

where ėθ,ψ is the eyeball speed for azimuthal and polar move-

ments and B is the upper bound of its magnitude.

4.2 Point of Sight

The point of sight pps plays a key role in integrating the full-body

dynamics with the vision system, because pps is a function of the

full-body joint position q and eye pose e:

pps (q, e) = phead (q) +Whead (q) peye + d (e)ẑ(q, e).

Here phead and Whead are the position and the rotation matrix of

the head with respect to the global frame, respectively. peye is the

midpoint between the two eyes with respect to the head frame, and

d (e) = ζ /(1 − ζ /17.0) is the distance between peye and the point of

sight. ẑ is a unit vector pointing to the gaze direction, that is, the z
-axis extracted from matrix Weye (e)Whead (q). Weye is the rotation

matrix of peye with respect to the head frame.
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4.3 Object State Estimation

In this section, we discuss how to estimate the object state from a

partial observation. To generate realistic gaze behaviors, we imi-

tate the human vision system through estimating the object state

under uncertainty instead of using the true full state of an object.

First, we introduce an observation model that measures the ob-

ject position from a true object state obtained through the physics-

based simulation. Then, we discuss a process model that produces

the predicted object state. Finally, we describe how to estimate the

object state based on the belief update using a Kalman filter [Erez

and Smart 2012].

Under the assumption that the character does not know the true

state, our system makes an observation from the true state of an

object. To construct an observation model that abstracts human vi-

sual sensors, we assume that humans perceive the positional infor-

mation of a moving object to estimate its velocity instantaneously.

Moreover, the positional information is not accurate in general,

particularly when the object is distant from the point of sight. Un-

der these assumptions, we formulate the observation model of our

vision system as follows:

zj = pj + ρ = Hxj + ρ, (1)

where H = [ I O ], ρ ∼ N (0,Rj ),

and Rj = r j ∗ I,

where r j =

(
1 − e

−‖pps−pj ‖
2η

)
.

Let Nobj be the number of objects in the environment that are per-

ceived by the vision system. Our observation model makes par-

tial observation zj on the state of an object from its true state

xj = [pj
T vj

T]T that is composed of positon pj and velocity vj ,

considering observation noise ρ, for j = 0, 1, . . . ,Nobj − 1. H is the

transformation matrix that maps the object state onto a noise-free

partial observation, that is, the position of an object. Observation

noise ρ has a multivariate Gaussian distribution with covariance

Rj . η is the constant for the size of the fovea. Covariance matrix Rj

is a diagonal matrix, where the value of diagonal elements depends

on the Euclidean distance between the point of sight pps and the

object position pj ; specifically, the error of the observed object po-

sition increases as the character’s visual attention becomes farther

from the object [Erez and Smart 2012].

Under the assumption that the brain has prior knowledge on the

dynamics of the object [McIntyre et al. 2001], we now formulate

the process model that deals with the evolution of the object state

as follows:

x′j = Fxj + y + δ , (2)

where F =

[
I hI

O I

]
, y =

[
O

ha

]
,

and δ ∼ N (0,Q).

x′j is the next state of object j, F is the state transition matrix, y is

the control vector, h is the time difference between two consecu-

tive observations, and a is the gravitational acceleration. δ is the

process noise with covariance Q = α I, where α is a nonnegative

constant. Q represents the brain’s own uncertainty of the process

model. A large value of α makes the uncertainty of the estimated

state of an object tend to grow quickly as the point of sight be-

comes farther from the object. This makes the character move the

point of sight back to the object whenever the uncertainty grows

sufficiently large. Varying this coefficient, we can adjust the abil-

ity of our vision system; how long the character would look at an

object or when it would switch its attention from one object to

another in the presence of multiple objects.

The vision system estimates the state of the object, relying on

a partial observation of a true object state. Thus, the optimal con-

trol problem for this model naturally leads to a POMDP [Sondik

1971], where the underlying state of an object is partially known.

We convert the POMDP into a belief MDP by introducing a proba-

bility distribution over underlying object states, known as a belief

state, together with a transition function from one belief state to

another, which is described as a belief update. The resulting belief

MDP is a variant of the standard MDP, which takes into account

belief states instead of underlying object states. In general, it is

intractable to perform the belief update exactly to solve the be-

lief MDP with an infinite-dimensional belief space [Thrun 2000].

We employ a Kalman filter [Erez and Smart 2012; Sardag and Akin

2006; Van Den Berg et al. 2012] to approximate the belief update

as a Gaussian update [Stengel 1994] based on a partial observation

on the external objects in the environment.

We start with defining a belief state b over underlying

states of an external object as a Gaussian distribution, that is,

b (xj ) = N (μ j , Σj ), where mean μ j and covariance Σj can be re-

garded as the estimated state and the uncertainty of estimation,

respectively. Given the current belief stateb and the current obser-

vation zj , the vision system estimates the next belief state b ′(xj )
through belief update n(b, zj ) based on the Kalman filter given in

Equations (1) and (2) (see Appendix A for the full derivation), that

is,

b ′(xj ) = n(b, zj ) = N (μ ′j , Σ
′
j ),

where μ ′j and Σ′j are the new mean and covariance at the next time

step:

μ ′j = Fμ j + y + Kj

(
zj − H(Fμ j + y)

)
, (3)

Σ′j =
(
I − Kj H

) (
FΣj F

T + Q
)
. (4)

Here Kj = (FΣj F
T + Q)HT (H(FΣj F

T + Q)HT + Rj )−1 is the

Kalman gain for object j, which determines how much the current

observation affects the next belief state. The belief state b will

be used for the trajectory optimization later in Section 6. For

compact representation, we express Σj = [
σ

p
j I σ

pv
j I

σ
pv
j I σ v

j I
] as 3D vector

σj = [σ
p
j σv

j σ
pv
j ]T.

5 VISUOMOTOR SYSTEM

In this section, we present the full dynamics of our visuomotor

system that governs the evolution of the character state with an

estimated object state and a character control vector. We adopt the

stable articulated-body dynamics proposed by Kumar et al. [2014]

and Todorov [2014]:

M(q̇′ − q̇) = h

( [
0

τ

]
− ϕ − Bq̇

)
+ JT f̂ ,

where M = M0 +Ma + hB.
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Here, M is the total mass matrix, q̇ and q̇′ are respectively the joint

velocities at the current and next steps, h is the integration step

size, τ is the actuated joint torques, and ϕ is the bias force result-

ing from the gravity, Coriolis forces, and external forces if there is

any. B = kd I is the damping gain matrix with constant kd , and J is

the kinematic Jacobian matrix at a contact point on which contact

impulse f̂ is exerted. M0 is the plain mass matrix, and Ma = ρa I is

the armature inertia matrix with coefficient ρa . For detail in build-

ing M0, we refer the readers to the composite rigid body algorithm

described in Featherstone [2008].

Let xfb = [qT q̇T]T and ufb = τ be the state and control vectors

for a full-body character, respectively, where q is the full-body joint

position. Specifically, being composed of hinge joints for elbow

and knee joints and ball joints for the others, our full-body model

xfb has 40 degrees of freedom, excluding the eyeball parameters,

and ufb has 34 degrees of freedom. We derive the full-body system

dynamics for the character by employing the semi-implicit Euler

integration as follows:

x′fb = l (xfb, ufb) =

[
q + hq̇′

q̇′

]
,

where q̇′ = q̇ + hM−1

( [
0

τ

]
− ϕ − Bq̇

)
+M−1JT f̂ .

Here we compute contact impulse f̂ based on a state-of-the-art

smoothed contact dynamics [Todorov 2014].

By combining the full-body dynamics and the belief update in

Section 4.3, we obtain the system dynamics for our visuomotor

system:

x′ = д (x, u, z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
l (xfb, ufb)

e + hė

μ ′

σ ′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Here x = [xfb
T eT μT σT]T and u = [ufb

T ėT]T are the state and

control vectors, respectively. ė is the time derivative of the eye

pose e. For the other symbols in the system dynamics equation,

we refer the readers to Equations (3) and (4). The first two rows

of the system dynamics are responsible for the update of full-body

and eye states while the last two rows are responsible for the up-

date of the current belief state, which models the process of visual

perception for external objects based on partial observation zj . In

our framework, we use the mean μ j of the current belief states as

the estimation of a perceived object state.

6 TRAJECTORY OPTIMIZATION

It is intractable to solve an optimal control problem formulated

with a POMDP in general [Madani et al. 2003; Papadimitriou and

Tsitsiklis 1987]. Instead of trying to find the globally optimal policy

for an infinite time horizon, we adopt DDP [Jacobson and Mayne

1970] to search for a locally optimal control policy for our visuo-

motor system using a short time window.

DDP is, however, mainly used for deterministic systems with

nonlinear system dynamics. Therefore, we further simplify our

visuomotor system dynamics to handle the update function for

mean μ j , which is stochastic due to noisy observation zj . To obtain

deterministic mean update μ̂ ′j , we approximate μ ′j by taking the

expectation utilizing the fact that Equation (3) is linear in zj as

follows, inspired by Erez et al. [2012]:

μ ′j � μ̂ ′j = E
{
Fμ̂ j + y + Kj

(
zj − H

(
Fμ̂ j + y

))}
= Fμ̂ j + y.

Note that the approximation μ̂ ′j is equivalently obtained through

marginalizing belief update n(b̂ (xj ), zj ) over observations zj :∫
zj

n(b̂ (xj ), zj )dzj = N (μ̂ ′j , Σ
′
j ) where b̂ (xj ) = N (μ̂ j , Σj ).

This approximation is applied only for the trajectory optimization.

In the actual simulation of the visuomotor system with an optimal

policy, the estimated state is updated using Equation (3). As

observed in Equation (4), Σ′j is independent of observations zj and

thus is simply updated according to the equation.

The approximation of μ ′j results in a system of deterministic dy-

namics for DDP:

x̂′ = ĝ (x̂, u) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
l (xfb, ufb)

e + hė

μ̂ ′

σ ′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Accordingly, full-body state vector xfb is also extended to x̂ = [xfb
T

eT μ̂T σT]T, where μ̂ ′ is the matrix obtained by juxtaposing all μ̂ ′j .
Note that the state estimation update is reduced to its deterministic

version by taking the most-likely observation for μ (the third row),

but uncertainty σ ′ (the fourth row) for the object state estimation

remains unchanged. The resulting system dynamics is regarded as

the brain’s internal model for our visuomotor system that is used to

predict future full-body motions, eye movements, and belief states

for external objects.

Given current state x̂ and reference skeletal trajectory X̄ =

{x̄i
fb
|i = 0, 1, . . . ,N − 1}, we solve the following finite-horizon op-

timal control problem for control policy, (u0, u1, . . . , uN−2) over a

discrete window of size N :

min
u0,u1, ...,uN−2

N−2∑
i=0

c (x̂i , ui ) + cf (x̂N−1),

subject to x̂0 = x̂, x̂i+1 = ĝ(x̂i , ui ) for i = 0, 1, . . . ,N − 2,

where c (x̂i , ui ) and cf (x̂N−1) are the cost functions at the ith time

step and the last time step, respectively. The cost function at each
time step is formulated as follows:

c (x̂i , ui )=wt r k ct r k+wenдcenд+wuct cuct+wbnd cbnd+wt sk ct sk .

Here wi is the weight for the cost term ci , where i ∈ {trk, enд, uct,

bnd, tsk }. In what follows, we discuss each of the cost terms.

Cost for tracking: ctrk is the cost for tracking the reference

skeletal motion and upper-body orientation, which is similar to

that in Han et al. [2016]:

ctrk =
���x̄i

fb
− xi

fb
���2
+
���ōi

ub
− oi

ub
���2
.

Here oi
ub

is the displacement vector from the root to the head,

and ōi
ub

is the corresponding reference vector. The first term is for

tracking the reference skeletal motion and the second term is for

maintaining the torso up-vector as close to that of the reference

motion as possible.
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Cost for energy consumption: cenд is the cost for preventing

a character from generating overly powerful actuation:

cenд = ‖ui ‖2.
Note that this term is not included in the cost function for the last

step cf (x̂N−1).

Cost for uncertainty: To reduce the uncertainties of the es-

timated object states, we penalize the sum of the magnitudes of

covariance for the belief state of each perceived object as follows:

cuct =

Nobj−1∑
j=0

���σ ′j ���2
.

This term plays an important role in tracking the states of the

objects and generating convincing secondary behaviors including

head and eye movements. Specifically, this term optimizes the sum

of the squared diagonal elements of each observation covariance

matrix Rj defined in Equation (1), which leads to the minimization

of Euclidean distance r j between point of sight pps and each ob-

ject position pj . Thus, pps tends to move toward pj in an effort to

minimize r j when there is only a single object in the environment,

whether the object is moving or not. In this case, the observation

of an object state by the character is guaranteed to converge to its

true state as it keeps looking at the object. For detailed explanation,

we refer the readers to Appendix B. Although we use a single ob-

ject case to keep the explanation brief, this term itself is designed

to deal with multiple objects simultaneously to move the point of

sight from object to object, if necessary, guided by cuct .

Constraints for eye model: Spherical coordinates θ andψ rep-

resenting the eyeball position and focal length ζ have their respec-

tive upper and lower bounds as explained in Section 4.1. Similarly,

the eyeball speeds for the azimuthal and polar movements have

their corresponding upper bounds.

We enforce these bounds with soft constraints as shown below:

cbnd =
∑

x ∈{θ,ψ ,ζ }

(
smax (xhi − x ;γ ) + smax (x − x lo ;γ )

)

+ smax

(���ėθ,ψ
��� − B;γ

)
.

Here xhi and x lo are the upper and lower bounds for each eye-

ball coordinates and smax (x ;γ ) = (
√
x2 + γ 2 − x )/2 is a smoothed

version of max (x , 0), which returns x if x > 0 and zero otherwise

[Tassa et al. 2012]. Coefficient γ is used to adjust how much the

function should be softened around x = 0.

Cost for task: ctsk is a task-dependent cost term. We will ex-

plain this term in detail in Section 7.

Minimizing the objective function that consists of the above-

mentioned cost terms, our system produces an optimal control

policy that deals with not only full-body motions but also time-

varying gaze behaviors. In particular, cost term ctsk guides the

full-body character to do an intended task, and cost term cuct in-

duces secondary behaviors driven by the time-varying uncertainty

of each object state. Thus, our system can synthesize full-body mo-

tions with gaze behaviors to do intended tasks. As a result, full-

body motions synthesized by our system would be different from

those explicitly directed by the task-only cost term.

7 RESULTS

We performed four experiments to demonstrate the effectiveness

our system: ball catching, walking on stepping stones, balancing

after a push, and moving obstacle avoidance as shown in Figure 3.

After presenting common aspects of the experiments, we discuss

each of the experiments in detail. For animation results, see the

supplementary video.

Implementation details

In all of the experiments, once an external object is within the

character’s field of view (−60◦∼60◦: human’s field of view for

binocular vision [Henson et al. 2000]) the vision system keeps track

of the belief state of each object in sight as long as its uncertainty

is below a certain threshold. Specifically, the system performs the

trajectory optimization for the most important Nobj objects at ev-

ery time step, which are chosen according to their own importance

values depending on the task to be performed. We set the value of

Nobj from one to four, according to an observation in cognitive

science, which states that at most four objects can be tracked si-

multaneously in general by the human vision system [Alvarez and

Franconeri 2007; Scholl and Xu 2001]. For example, in the case of

obstacle avoidance, the character selects four closest obstacles at

each simulation time step. Even if they are in the field of view, our

system excludes unselected objects from the full-body trajectory

optimization although their estimated states and uncertainties are

still updated.

To solve the optimization problem presented in Section 6, we

employ a state-of-the-art DDP solver equipped with acceleration

techniques, such as data reuse of physical quantities of an articu-

lated body and derivative interpolation [Han et al. 2016]. Even with

the effective optimization techniques, we still need to overcome

the heavy computational load for interactive control due to the

high-dimensionality of our visuomotor system dynamics, where

the dimensionalities of x and u are 43 + 9Nobj and 37, respectively

(see Section 5).

As described in Section 4.3, the update equations for belief states

(Equations (3) and (4)) are in a closed form and thus analytically

differentiable. The update equation for the eye pose is also ex-

pressed in a closed form. Our method accelerates the differenti-

ation of the system dynamics by utilizing closed-form derivatives

of the update equations for eye pose and a belief state using D*

[Guenter 2007] while numerically differentiating full-body dynam-

ics x′
fb
= l (xfb, ufb), which cannot be expressed in a closed form.

The closed-form differentiation accelerates the optimal control

policy generation about four times faster than numerical differ-

entiation. This selective closed-form differentiation becomes more

effective as Nobj increases. All experiments were performed on

a desktop computer with an Intel Core i7 processor (3.5GHz, six

cores) and 32GB memory, and the resulting motions were gener-

ated at a rate of 1 to 6 frames per second without code optimization.

Depending on the task, the integration step size h is set to 0.02s

or 0.03s and the window size is set to a value in a range from 0.6s

to 1.2s. We set the weight for each term of the cost function as fol-

lows: wtrk = 0.1, wenд = 10−5, wuct = 1.0, and wbnd = 0.1. wtsk

was set to a value in a range from 10−3 to 10 depending on the

task to be performed. It is time-consuming to adjust the weight

values for convincing results, usually taking a few hours to a few
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Fig. 3. Full-body motions with eye movements produced by our MPC framework with a visuomotor system: From left to the right, catching a thrown

ball, walking on stepping stones, and balancing by leaning on a wall with a hand after an unexpected push, running motion while avoiding approaching

obstacles.

days. However, we believe that the proposed parameters could be

a reasonable starting point when implementing similar systems.

Ball catching

We performed an experiment on our visuomotor system with a

thrown ball, using a single standing pose as reference motion data.

The task-dependent cost term was designed as follows:

ctsk =
��phand − pball

��2 +
���plat

ball
− plat

sp
���2
,

where phand and pball are respectively the position of the catching

hand and the estimated arrival position of the ball based on the

current character state and the estimated ball state. plat
ball

and plat
sp

respectively are the lateral components of pball and the mid-point

of the both feet approximating the center of the support polygon.

The first term is responsible for moving the hand to the estimated

arrival position of the ball and the second term is for moving the

feet in the lateral direction if the arrival position is laterally far

from the character.

As in Yeo et al. [2012], we divide the ball-catching motion into

two phases: reactive and proactive. The former is the phase to take

preparatory actions for catching the ball, and the latter is for tak-

ing actual actions to catch the ball. For example, a human usually

lifts up the arm and keeps it lifted until the ball approaches near

(the reactive phase) and then adjusts the position of the hand so as

to catch the ball (the proactive phase). To produce these behaviors,

our system uses different values for the weight for ctsk; in partic-

ular, applying a small weight (10−3) for the reactive phase and a

large weight (0.1) for the proactive phase. Unlike Yeo et al. [2012],

we simply divide the phase according to the estimated arrival time

of the ball. The reactive phase starts at random within 1.5–2s be-

fore the arrival time, and continues until the proactive phase starts.

The proactive phase begins 0.5–1s before the arrival time and lasts

until the ball arrives. In our experiment, the character naturally

performed reactive and proactive motions while looking at the fly-

ing ball with convincing gaze behaviors. The character also moved

laterally in an automatic manner when the ball arrival position was

out of reach.

We compared our framework with that proposed by Han et al.

[2016], which has no vision mechanism and thus considered as a

fully observable system [Spaan 2012]. Unlike in our framework,

the character in the previous work had perfect knowledge on the

environment and never failed in catching the flying ball, even

when it is thrown from the back. To show how the uncertainty of

the vision system affects gaze behaviors, we synthesized motions

with different values of α (see Section 4.3): A large value of α re-

sults in a large value of Kalman gain Kj . Thus, estimated state μ ′j in

Equation (3) relies more on the current noisy observation, making

our system unstable and produce an unexpected result. Withα = 0,

the character glanced at the flying ball once to resolve visual uncer-

tainty and never showed more gaze behaviors. With α = 0.4, the

character failed to catch the flying ball even with steady tracking,

since the uncertainty grows too rapidly. With α = 0.2, the charac-

ter exhibited realistic gaze behaviors.

To show the advantage of our approach over others in tracking

multiple objects, we compared their respective produced trajec-

tories of the point of sight. Figure 4 shows two black balls in the

environment that are flying to the character. The approach that

minimizes the sum of the distances from the point of sight to the

balls (Σ
Nobj−1

j=0 ‖pps − pj ‖2) unlike our cost term would produce

similar results to ours for a single object. However, the point of

sight must be placed in the middle of the two balls at each time

step when the balls approach to the character, simultaneously

(left), which results in few secondary behaviors. The approach of

Yeo et al. [2012] would sequentially track two balls, one after the

other. After tracking the first ball, it must be successful to catch it.

However, the character looks at the other ball only after catching

the first one, which may result in an unnatural motion because of

short preparation time (middle). Our approach switches the point

of sight back and forth between the two objects while reducing

the total uncertainty (right). As the two balls move closer to the

character, their distance becomes smaller so that the uncertainty

of the ball that is farther from the point of sight does not grow

rapidly any more. Thus, the point of sight stays relatively longer

on the closer ball right before the character catches it. We show

animation results in the supplementary video.

Walking on stepping stones

This experiment of walking on stepping stones was performed

to show how gaze behaviors are produced while walking on an

uneven terrain, where visual attention is important to plan foot

placement accurately. To select a stone on which the stepping

foot would be placed, our system computed which stone was
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Fig. 4. Comparison of trajectories of the point of sight produced with different approaches. Dotted and red lines represent the trajectories of black balls

and the character’s point of sight, respectively. Use of the distance sum instead of the uncertainty sum makes the point of sight to be placed in the middle

of the two balls at each time step (a). The method by Yeo et al. [2012] makes the character track the balls one after the other (b). Our method allows the

character to automatically switch the point of sight between the two different balls (c).

the closest to the contact foot position extracted from the last

optimal state trajectory at every frame of the time window. Task-

dependent cost term ctsk was formulated to make the contact

foot as close as possible to the selected stone while preserving its

global foot orientation to that of the reference motion as follows:

ctsk =
��pfoot − pcs

��2 + ‖Wfoot − W̄foot‖2,

where pfoot is the position of the contact foot, pcs is the position of

the closest stone to the foot, Wfoot is the rotation matrix of the foot

and W̄foot is the corresponding reference matrix. Note that ctsk is

applied only at contact frames. We set the value of wtsk to 10.

In this experiment, the character first looked at the selected

stone before moving the stepping foot to the stone and then looked

at the next target stone once the foot began to move, as shown in

Figure 5. These results are in line with the behavioral studies for

humans in biomechanics [Matthis et al. 2015].

Balancing after a push

This experiment validates looking behaviors of a character

standing near a wall modeled with multiple cube blocks when

pushed with an external force. With the external force applied

to the character for pushing, our system detects the moment, if

there is any, at which the trajectory of the center of pressure (COP)

crosses over the boundary of the supporting polygon for the feet of

the character. At this moment, the character automatically moves

a wall supporting hand toward the nearest estimated cube block

of the wall while keeping the visual attention at the center of the

block on which it places the hand. The character is supposed to

make a transition from a standing pose to the hand support lean-

ing motion that was captured without gaze behaviors and add the

secondary behaviors to the motion on the fly. Finally, the charac-

ter removes the hand from the wall once the character recovers its

balance. Accordingly, it turns the head away from the wall. Indeed,

our system performed this scenario very well as demonstrated in

the supplementary video. Note that we did not use task-dependent

cost term ctsk for balancing.

Fig. 5. Walking on stepping stones. The wireframe mesh represents the

character pose at the last frame of the window, the red line is the root

trajectory, and the yellow line is the line of sight. Once the foot begins to

move, the character looks at the next target stone.

Moving obstacle avoidance

This experiment was performed on running motion to verify

looking behaviors of a character while avoiding moving obsta-

cles, of which the initial position and speed were chosen randomly.

Among the perceived obstacles, the four closest ones to the char-

acter were selected for trajectory optimization at every time step

to generate an optimal control policy based on their future be-

lief states. Similar to Treuille et al. [2007], we formulated a task-

dependent cost term ctsk , which rapidly increased when the char-

acter moved close to any of the four obstacles as follows:

ctsk =

Nobj−1∑
j=0

exp 
�
−‖proot − p̂j ‖

s2
j

�� ,
where proot is the global root position, p̂j is the estimated position

of the jth object, which is the first three components of μ̂ j of each

object’s belief state, and sj is the radius of jth object.
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In general, the time window should be large enough to avoid

moving obstacles while running (for example, more than 1s). In

this experiment, we set the window size to 1.6s, which incurs

heavy computational load. To achieve interactive performance, we

divide the window into two sub-windows of size 1.0s and 0.6s, re-

spectively. For the former sub-window, the system evaluates ctsk

following the root trajectory. For the latter sub-window, the sys-

tem linearly extrapolates the root trajectory to evaluate ctsk with

the root velocity fixed at the value from the last frame of the former

sub-window. We set the value of wtsk to 1.0.

8 CONCLUSIONS

In this article, we presented an MPC framework with a visuomo-

tor system that generates realistic gaze behaviors coupled with

physics-based full-body motions. Based on human visual percep-

tion and full-body contact dynamics, we formulated an optimal

motion control problem with a POMDP, which is known to be ex-

tremely difficult to solve. To address this issue, we approximated

the POMDP as a deterministic belief MDP and solved it with DDP

over a finite-horizon window while shifting the window along the

time-axis. Guided by a reference skeletal motion without any a pri-

ori gaze information, our system produced realistic eye and head

movements on top of full-body motions for various tasks, such as

catching a thrown ball, walking on stepping stones, balancing after

a push, and avoiding moving obstacles.

For interactive performance, we adopted deterministic DDP by

taking the expectation of mean update μ ′j based on recent results

[Erez and Smart 2012; Van Den Berg et al. 2012, 2017]. However,

employing stochastic DDP [Theodorou et al. 2010] can be a viable

alternative to maintain stochastic characteristics of POMDP. This

choice would lead to a much complex and heavy system, since full-

body dynamics is highly non-linear [Theodorou et al. 2010]. It can

be a challenging and interesting future work to faithfully repro-

duce stochastic nature of POMDP in the trajectory optimization

while maintaining its interactive performance and robustness.

Here are some limitations of our current visuomotor system:

Due to the use of smoothed contact dynamics, an unexpected

strong impact may cause slight penetration of a foot into the

ground. Although being robust against external forces or envi-

ronmental changes, our system inherits the limitation of an MPC

framework in terms of generality. Based on the example-based ap-

proach, our system shows an unnatural result when the current

state of a character is too different from that of the reference mo-

tion. Objects that move very quickly may induce instantaneous

and quick head movements, which may also result in unnatural

full-body motions. The complex non-linear equations for updating

the covariance of a belief state incur a computational load that is

too heavy to achieve truly real-time physics-based motion control.

Our work deals with simple external objects such as spheres

and boxes. It would be an interesting research direction to

consider complex objects such as living creatures. It would also be

an interesting future direction to improve MPC for the complex

visuomotor dynamics using deep reinforcement learning, which

attracts ever-growing attention from the research community.

Peripheral vision and eye blinking are the essential features of a

human vision system, and their incorporation into the synthetic

vision system would improve the naturalness of resulting gaze

behaviors. We have modeled our vision system based on 3D object

states composed of positions and velocities. To better mimic

the human vision system, it would be a good future research

direction to exploit visual observations such as binocular images

for tracking moving objects near the character in the synthetic

environment with a deeper understanding of the visual processing

mechanism of human brains. We also note that the current version

of our system does not take into account the uncertainty of the

character’s own uncertainty.

APPENDIX A

Based on Equations (1) and (2), our system performs the belief up-

date through the prediction and update steps of a Kalman filter.

Given current belief state b (xj ) = N (μ j , Σj ) for object j, the pre-

diction step produces a priori belief estimate b̄ (xj ) = N (μ̄ j , Σ̄j ),
where

μ̄ j = Fμ j + y and

Σ̄j = FΣj F
T + Q

=

⎡⎢⎢⎢⎢⎣
(σ

p
j + hσ

pv
j + h(σ

pv
j + hσ

v
j ) + α )I (σ

pv
j + hσ

v
j )I

(σ
pv
j + hσ

v
j )I (σv

j + α )I

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
σ̄

p
j I σ̄

pv
j I

σ̄
pv
j I σ̄v

j I

⎤⎥⎥⎥⎥⎦
Combining observation zj at the current time step with a priori

belief estimate predicted above, the update step leads to a posteriori

belief estimate, that is, belief update b ′(xj ) = N (μ ′j , Σ
′
j ), where

μ ′j = μ̄ j + Kj mj and Σ′j = (I − Kj H)Σ̄j .

In the above equations, mj and Kj denote the observation resid-

ual and the Kalman gain for each object, respectively, which are

derived as follows:

mj = zj − Hμ̄ j = zj − H(Fμ j + y),

Kj = Σ̄j H
TS−1

j ,

where Sj is the residual covariance:

Sj = HΣ̄j H
T + Rj = H(FΣj F

T + Q)HT + Rj .

Therefore,

μ ′j = μ̄ j + Kj mj = Fμ j + y + Kj (zj − H(Fμ j + y)),

Σ′j = (I − Kj H)Σ̄j = (I − Kj H) (FΣj F
T + Q).

APPENDIX B

Suppose that there is a single object in the environment. Then, the

character would keep looking at the object. According to Equa-

tion (1), as the point of sight approaches to object j, Rj becomes a

zero matrix, since r j tends to a zero. Thus, we can derive the limit
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of Kalman gain Kj as shown below:

lim
r j→0

Kj = lim
r j→0

Σ̄j H
T (HΣ̄j H

T + Rj )−1

= lim
r j→0


��
1

σ̄
p
j + r j

���
⎡⎢⎢⎢⎢⎣
σ̄

p
j I

σ̄
pv
j I

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
I

σ̄
pv
j

σ̄
p
j

I

⎤⎥⎥⎥⎥⎥⎦ .
Using the result above, we can derive the limit of μ ′j in Equation (3)

as follows:

lim
r j→0

μ ′j = lim
r j→0

(μ̄ j + Kj (zj − Hμ̄ j )

= μ̄ j +

⎡⎢⎢⎢⎢⎢⎣
I

σ̄
pv
j

σ̄
p
j

I

⎤⎥⎥⎥⎥⎥⎦ (zj − Hμ̄ j )

=

⎡⎢⎢⎢⎢⎢⎣
pj

μ̄v
j +

σ̄
pv
j

σ̄
p
j

(pj − μ̄p
j )

⎤⎥⎥⎥⎥⎥⎦ .
As r j → 0, the estimated state approaches the true state in terms

of the position but not in terms of the velocity. This means that

we only have a perfect observation on the (true) object position as

r j → 0. This is in line with our assumption made in Section 4.3 that

humans perceive the positional information of a moving object to

estimate its instantaneous velocity.

Σ′j in Equation (4) is also reduced to the following equation,

lim
r j→0

Σ′j = lim
r j→0

(I − Kj H)Σ̄j

= lim
r j→0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
σ̄

p
j r j

σ̄
p
j +r j

)
I

(
σ̄

pv
j r j

σ̄
p
j +r j

)
I

(
σ̄

pv
j r j

σ̄
p
j +r j

)
I 
�σ̄v

j −
σ̄

pv2

j

σ̄
p
j +r j

�� I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣
0 0

0 
�σ̄v
j −

σ̄
pv2

j

σ̄
p
j

�� I

⎤⎥⎥⎥⎥⎥⎥⎦ .
Note that every submatrix tends to a zero as r j → 0 except for the

velocity covariance matrix (the lower right submatrix of the last

matrix). The norm of the velocity covariance matrix also takes on a

minimum value as r j → 0, since σ̄v
j >

σ̄
pv2

j

σ̄
p
j +r j

for a positive constant

α as shown below:

σ̄v
j −

σ̄
pv2

j

σ̄
p
j + r j

= (σv
j + α ) −

(σ
pv
j + hσ

v
j )2

(σ
p
j + hσ

pv
j + h(σ

pv
j + hσ

v
j ) + α ) + r j

= α +
σv

j (α + r j )

(σ
p
j + hσ

pv
j + h(σ

pv
j + hσ

v
j ) + α ) + r j

> 0

Therefore, σ̄v
j >

σ̄
pv2

j

σ̄
p
j + r j

.

In the third step of the above derivation, we make use of the fact

that σ
p
j σ

v
j = σ

pv
j from the Cauchy-Schwarz inequality [Shi et al.

2007], because the object velocity has a linear relationship with

the object position. Note that σ̄v
j −

σ̄
pv2

j

σ̄
p
j

goes to a zero for a per-

fect process model, in which α has a zero value. Hence, when the

character keeps looking at an object, our vision system tends to

make the observed object state coincident with its true position

with a minimal uncertainty.
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