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Mirrored entanglement witnesses
Joonwoo Bae1*, Dariusz Chruściński2* and Beatrix C. Hiesmayr3*

Entanglement detection, which signifies the task of distinguishing entangled states from separable states, can be generally
performed by realizing entanglement witnesses via local measurements on a single-copy level and classical communication, and
are known to be experimenter friendly. We introduce a framework of constructing mirrored entanglement witnesses by showing
that an experimental observable is twice as effective since it generally provides bounds from above and below for separable states.
Differently stated, a pair of witnesses, mirrored witnesses, exists for the characterization of the bounds, which are two faces of one
observable. We show how to generally construct those witnesses and provide examples for bipartite and multipartite systems. We
also show that both mirrored witnesses can be improved by introducing nonlinearities, by which a larger set of entangled states
can be certified.
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INTRODUCTION
Revealing properties of an unknown quantum state of a physical
system is of fundamental importance in quantum information
theory and its application. By quantum state tomography, the full
knowledge of a given physical system can be determined after a
series of quantum measurements, which is, however, generally an
expensive and cost-inefficient procedure demanding experimen-
tal resources. Moreover, one is often only interested in the
question of whether a multipartite state is entangled or not and
what type of entanglement is present, for instance bipartite or
genuinely multipartite entanglement. Entanglement witnesses
(EWs), particular observables, offer the solution with currently
feasible technologies. EWs typically require less experimental
setups to unambiguously verify the existence of entanglement
and even additional information on the type of entanglement may
be revealed. This concept relies on the fact that the set of
separable states is convex, i.e. EWs correspond to hyperplanes
separating some entangled states from the set of separable states
in the Hilbert−Schmidt space.1 In high-dimensional and multi-
partite systems also the entanglement structure itself becomes of
interest which has a nested convex structure.2–4 In the recent
years, there has been much progress in the theory and
experimental realization of EWs for multipartite entangled states
(see e.g. refs. 5–7).
EWs exhibit numerous advantages. They are observables on a

single-copy level and are factored into local observables, namely
no entanglement resources are needed to realize EWs. These
properties make them suited for experimental investigations. A
major drawback is that a priori information about entangled states
to be detected is needed to be at hand in advance. This can be
explained in Fig. 1 as follows. Suppose that an entangled state τ is
detected by a witness W, which however does not detect states ρ
and w. The witness W can be optimized to construct a finer one
W(−), that can detect a state ρ but not yet a state w at the other
side. Therefore, in order to detect a state w, a priori information
about the state is needed such that a relevant witness W(+) can be

constructed. Or, to detect a state ρ, one may also need a proper
optimization technique to lift W to W(−).8

In this work, we establish the framework of mirrored EWs that
can construct a pair of EWs from an EW, and show that both of the
EWs can perform detecting entangled states by realizing a single
observable. In other words, an EW W(+) has its “twin” one denoted
byW(−), called a mirrored witness, such that the pair of EWs can be
realized by a single observable. In Fig. 1, this can be illustrated that
EWs W(+) and W(−) serve the characterization of lower and upper
bounds of an observable A for separable states. Then, once an
observable A is realized, entangled states are detected from
violations of the lower or the upper bounds, which are equivalent
to entanglement detection by W(+) or W(−), respectively. Note that
both a state ρ, which is not detected by W(+), and a state w, not by
W(−), can be detected by realizing a single observable A. Hence,
introducing mirrored EWs, one can double the capability of
detecting entangled states. We show that mirrored EWs can be
constructed from upper and lower bounds of an observable for
separable states and also present how mirrored EWs are related to
the structural physical approximation. Examples are presented for
the illustration of mirrored EWs. Finally, we investigate the
construction of nonlinear EWs from mirrored witnesses and show
that mirrored EWs can be improved by both subtraction and
addition of nonlinear polynomials.
Let us review the basic properties of entanglement witnesses.

Throughout, let W denote an EW such that

8σ 2 Ssep; tr½Wσ� � 0; and 9ρ =2 Ssep; tr½Wρ�< 0; (1)

where Ssep is the set of separable states. Assuming bipartite
systems, an EW can be factorized into local measurements, i.e.,
W ¼Pici M

ðAÞ
i � NðBÞ

i for some constants {ci} and positive

operator-valued measure (POVM) fMðAÞ
i g and fNðBÞ

i g, that give
descriptions of measurement devices. Note that an EW can be
generally factorized into local measurements.9 We can restrict the
consideration to normalized EW without loss of generality, i.e.,
trW ¼ 1, on a Hilbert space H ¼ H1 �H2 where di ¼ dimHi and
D = d1d2.
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Recall, that if W is an EW then geometrically it gives rise to a
hyperplane Σ in D-dimensional real space defined by
Σ ¼ fA ¼ AyjtrðWAÞ ¼ 0g. A convex set of separable states is
located only on one side of Σ (cf. Fig. 1). Denote by D(W) a set of
states detected by W. One calls8 EW W 0

finer than W if
DðWÞ � DðW 0Þ. Finally, W is optimal if there is no witness finer
than W. Clearly, when W is optimal the corresponding hyperplane
Σ touches a set of separable states (in Fig. 1 the EW W(−) is finer
than W since it detects all entangled states of W and more). It is
clear that any EW W can be shifted by subtracting a positive
operator such that the corresponding Σ touches the border of
separable states. An EW W is called decomposable if it has a form
W= A+ BΓ for A, B ≥ 0, where BΓ denotes the partial transposition
on the operator B. An EW that is not of this form is called
nondecomposable and can detect bound entangled states. Bound
entanglement has been detected experimentally for multipartite
systems, such as four-qubit cases with polarization degrees of
freedom.10,11 Bipartite bound entanglement is the strongest form
of bound entanglement and in 2013 it has been experimentally
demonstrated by photons entangled in their orbital angular
momentum degrees of freedom.12

Using the well-known duality between linear maps Φ :
BðH1Þ ! BðH2Þ and operators in H1 �H2 defined by Choi
−Jamiołkowski isomorphism

W ¼ ðid� ΦÞðPþ1 Þ; (2)

where Pþ1 denotes the maximally entangled state in H1 �H1, and
“id” is an identity map in BðH1Þ, one may immediately translate all
properties of EWs into the corresponding properties of maps and
vice versa. In Eq. (2), W is an EW if and only if Φ is a positive but
not completely positive map.

RESULTS
Mirrored entanglement witnesses
Consider a Hermitian operator A ≥ 0 in H1 �H2 such that trA ¼ 1,
that can be interpreted as a state of a composite system. Let
λmaxðAÞ and λminðAÞ denote the maximal and minimal eigenvalues
of A, respectively. Moreover, we introduce the upper (U) and lower
(L) borders

UðAÞ ¼ max
σ2Ssep

tr½Aσ� and LðAÞ ¼ min
σ2Ssep

tr½Aσ� ;

such that for any separable state σ∈ Ssep follows

LðAÞ � tr½Aσ� � UðAÞ: (3)

Now, if λminðAÞ< LðAÞ and λmaxðAÞ>UðAÞ, both lower and upper
bounds may be used to detect entangled states: if one finds that

for a state ρ

tr½Aρ� =2 ½LðAÞ;UðAÞ�; (4)

then the state is entangled. We call the interval [L(A), U(A)] in Eq.
(3) the separability window of an observable A.
A separability window of an observable may be found in terms

of separability eigenvalue equations as follows:13

A1 x1j i ¼ λ x1j i; A2 x2j i ¼ λ x2j i; (5)

where A1 ¼ tr2½I1 � x2j i x2h j � A� 2 BðH1Þ and A2 ¼ tr1½ x1j i x1h j�
I2 � A� 2 BðH2Þ. Let λ1 and λ2 denote minimal and maximal
eigenvalues, respectively, in Eq. (5). Then, the separability window
of an observable A can be found as [L(A), U(A)] = [λ1, λ2].
As the scheme of detecting entangled states with a separability

window in Eq. (4) is linear with respect to quantum states, one
may anticipate that both of the bounds may be identified by EWs.
In fact, we construct a pair of EWs that can equivalently
characterize quantum states within a nontrivial separability
window [L(A), U(A)] for an observable A, as follows

Wð�Þ ¼ 1
n�

½UðAÞ I1 � I2 � A�; (6)

WðþÞ ¼ 1
nþ

½A� LðAÞ I1 � I2�; (7)

where the normalization factors read

n� ¼ D UðAÞ � 1; nþ ¼ 1� D LðAÞ; (8)

and D= d1 ⋅ d2. One can immediately prove that tr½Wð± Þσ� � 0 for
all σ∈ Ssep by referring to Eq. (3), i.e., for a state ρ,

tr½Aρ� � UðAÞ () tr½Wð�Þρ� � 0; and

tr½Aρ� � LðAÞ () tr½WðþÞρ� � 0:
(9)

We call a pair of EWs (W(−), W(+)) mirrored entanglement
witnesses: they are constructed by an observable that has a
nontrivial separability window. That is, entanglement detection
with both mirrored EWs W(±) can be equivalently performed by
realizing a single observable A, as it is shown in Eq. (4).
Remark. Entangled states detected by a pair of EWs that are

mirrored to each other can be realized by a single observable, that
is non-negative and of unit-trace, i.e., thus can be interpreted as a
quantum state.
It follows that for mirrored EWs, the corresponding hyperplanes

in the Hilbert−Schmidt space, denoted by Σ(±), touch a set of
separable states (cf. Fig. 1); see also Eq. (3). This gives rise to a
universal relation for mirrored EWs

nþWðþÞ þ n�Wð�Þ ¼ ΔðAÞ I1 � I2; (10)

with Δ(A)= U(A)− L(A) from the separability window of an
observable A.
From the relations in Eqs. (6), (7) and (10), mirrored EWs can be

directly constructed from each other, without referring to an
observable. It is clear that an EWW(+) has its lower bound L(W(+))=
0 for separable states. It follows that its mirrored EW W(−) is given
as,

Wð�Þ ¼ 1
m�

½UðWðþÞÞ I1 � I2 �WðþÞ�;

where m− stands for normalization factor. Equivalently, one finds

WðþÞ ¼ 1
mþ

½UðWð�ÞÞ I1 � I2 �Wð�Þ�;

and hence

ðm� þ 1ÞWð�Þ þ ðmþ þ 1ÞWðþÞ ¼ m I1 � I2;

with m= (m++ m− + 2) ∕D= U(W(−)) + U(W(+)).

Fig. 1 The framework of mirrored EWs proves that a single
observable A has both lower and upper bounds for separable
states, where the bounds are characterized by mirrored EWs W(±).
An experimental realization of a single observable A can detect
those entangled states, e.g. ρ, τ, w, etc., which are detected by both
of the mirrored EWs.
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Mirrored structural physical approximations
It turns out that our approach is directly related to the structural
physical approximation (SPA)14,15 of EWs. Recall, that for an EW W
its SPA can be written as a non-negative observable

P ¼ ð1� pÞW þ p
I1 � I2
D

; (11)

where p∈ (0, 1) is a minimal number such that that P ≥ 0. Let us
call a positive operator P a positive SPA (p-SPA) in the sense that
an EW W is admixed with a positive fraction 1− p > 0. In a similar
vein, we introduce the negative SPA (n-SPA) with a negative
fraction of an EW W as follows

Q ¼ ð1� qÞW þ q
I1 � I2
D

(12)

with maximal q > 1 such that Q ≥ 0. Clearly, both P and Q are
density operators in H1 �H2 belonging to the boundary of space
of states. We call a pair (P, Q) mirrored SPAs to an EW W.
Proposition. Let (W(−), W(+)) be mirrored EWs. Then, p-SPA to

W(+) coincides with n-SPA to W(−).
Proof. Let us begin with p-SPA to W(+) and n-SPA to W(−),

eW ¼ ð1� p± ÞWð± Þ þ p±
I1 � I2
D

;

with p+ < 1 < p− and D= d1d2. Then, it holds that for any σ∈ Ssep

pþ=D � tr½ eWσ� � p�=D (13)

which shows Lð eWÞ ¼ pþ=D and Uð eWÞ ¼ p�=D. □
The result in Eq. (13) can be compared to Eq. (3) by replacing an

observable A with the resulting non-negative operator eW after
SPA. Note also that the universal relation (10) reads

ðp� � 1ÞWð�Þ þ ð1� pþÞWðþÞ ¼ ðp� � pþÞ
I1 � I2
D

:

Note also that mirrored EWs can be constructed by replacing A in
Eqs. (6) and (7) with the operator eW after p- (n-) SPA of W(+) (W(−)).
Then, if eW belongs to the boundary of SðHÞ, i.e. λminð eWÞ ¼ 0,

then W(−) detects an entanglement of ρ = n(I1⊗ I2 − Π), where Π

is a projector onto a support of eW and n is a normalization factor.
Indeed, one has trðWð�ÞρÞ ¼ �Lð eWÞn=n� < 0. On the other hand,

for tr eW2
>Uð eWÞ, we have trðWð�Þ eWÞ< 0, and hence W(−) detects

entanglement of eW .
The framework may be equivalently applied to completely

positive (CP) maps. To simplify the discussion let us restrict to
trace preserving maps, that is, a CP map eΦ corresponds to a
quantum channel. Recall that a linear map Φ is positive if
trðPΦðQÞÞ � 0 for any pair of rank-1 projectors P and Q. A bipartite
state ρ is separable if [id⊗Φ](ρ) ≥ 0 for all positive maps Φ (where
“id” stands for the identity map, that is, id(X)= X). Now, using Choi
−Jamiołkowski isomorphism, a map eΦ is CP if the following
bipartite operator eW ¼Pi;j ij i jh j � eΦð ij i jh jÞ is positive. Noting that

trð eW PT � QÞ ¼ tr½PeΦðQÞ�;
let us introduce the following bounds

LðeΦÞ ¼ min tr½PeΦðQÞ�; UðeΦÞ ¼ max tr½PeΦðQÞ�;
where minimization (maximization) runs over rank-1 projectors P
and Q. Then, we construct positive maps as follows

Φð�Þ ¼ 1
m�

½d2UðeΦÞ Φ	 � eΦ�;
ΦðþÞ ¼ 1

mþ
½eΦ� d2LðeΦÞ Φ	�;

with the depolarization channel Φ	ðρÞ ¼ I2trρ=d2, m� ¼
d2UðeΦÞ � 1, and mþ ¼ 1� d2LðeΦÞ. For any separable state σ∈

Ssep, one has

LðeΦÞσ1 � I2 � ðid� eΦÞðσÞ � UðeΦÞσ1 � I2;

where σ1 ¼ tr2σ denotes a reduced state. Similarly

LðeΦÞI1 � σ2 � ðeΦ� idÞðσÞ � UðeΦÞI1 � σ2;

with σ2 ¼ tr1σ.
An example of such construction has been considered in ref. 16.

We recall that a set of product vectors ψj

�� � ¼ αj
�� �� βj

�� � (j = 1, …,
K) defines an unextendible product basis (UPB) inH1 �H2 if there
is no product vector orthogonal to all ψj

�� �.17 Let us choose the
projector onto UPB, ΠUPB ¼ ψ1j i ψ1h j þ � � � þ ψKj i ψKh j. Then, an EW
in the following

W ¼ ðΠUPB � LðΠUPBÞI1 � I2Þ=½K � LðΠUPBÞD� (14)

shares precisely the same structure with W(+). The witness detects
a bound entangled state ρ= (I1⊗ I2− ΠUPB) ∕ (D − K).
The presented framework can be immediately generalized for

the multipartite case. Clearly, multipartite case is much more
subtle since there are several levels of separability.3,4 The simplest
notion is the full separability corresponding to pure product
vectors Ψj i ¼ ψ1j i � � � � � ψNj i 2 H ¼ H1 � � � � � HN . Now for
any eW � 0 in H one defines Uð eWÞ ¼ max Ψj i Ψh j eW Ψj i and Lð eWÞ ¼
minjΨihΨj eWjΨi, where it suffices to consider the optimization over
product states. Finally, one defines a pair of EWs via (6) and (7),
generalized to multipartite systems (see also ref. 18). For example,
the EW in Eq. (14) can be immediately generalized as follows.13,16

Let Ψj

�� � 2 H (j= 1,… , K) denote UPB and ΠUPB ¼ Ψ1j i Ψ1h j þ � � � þ
ΨKj i ΨKh j, from which one can construct a witness W(+)= (ΠUPB − L
(ΠUPB)I) ∕ [K− L(ΠUPB)D], with I = I1 ⊗ …IN and D= d1 … dN.

DISCUSSION
In this section, we illustrate the systematic construction of
mirrored EWs with examples and then give a summary and
outlook.
Example 1 (Two-qubit EWs). Consider the following EWs for

two-qubit states

which are written as block matrices in the computational basis for
qubit states, e.g. Diag½1; 1; 1; 1� ¼Pi;j¼0;1 ij i ih j � jj i jh j. The EW
W(+) can detect entangled states in the one-parameter state family
(isotropic states) ρα ¼ ð1� αÞ ϕþj i ϕþh j þ αI2 � I2=4 with the Bell
state ϕþj i ¼ ð 00j i þ 11j iÞ= ffiffiffi

2
p

for α < 3∕5 (its known that for α< 2
3

the states are entangled). The mirrored one, W(−), detects
entangled states in the class of (isotropic) states ρβ ¼ ð1�
βÞ ϕ�j i ϕ�h j þ βI � I=4 with the Bell state ϕ�j i ¼ ð 00j i � 11j iÞ= ffiffiffi

2
p

for β < 1∕3. Note also that there is no EW that can detect
entangled states ρα and ρβ at the same time. This is visualized in
Fig. 2. The (green) hyperplane corresponds to the witness W(+)

and the (orange) hyperplane to the witness W(−). Both witnesses
cover the full state space in this case. The upper and lower bounds
are computed to be U(W(±))= 1∕2 with p+ = 3∕5 and p− = 7∕5
which give rise to the single observable as follows,

ð15Þ

for which the separability window is given by
½Lð eWÞ;Uð eWÞ� ¼ ½3=20; 7=20�.

J. Bae et al.
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Example 2 (Two-qutrits EWs). The Choi EW W(+) obtained from
the Choi map in d= 3 ref. 19 is given by

WðþÞ ¼ 1
6

X2
i¼0

½2 iij i iih j þ i; i � 1j i i; i � 1h j� � 3Pþ

 !
;

where Pþ ¼ ϕþj i ϕþh j with the Bell state ϕþj i ¼ ð 00j i þ 11j iþ
22j iÞ= ffiffiffi

3
p

. The Choi EW is known to be nondecomposable and can
detect bound entangled states. One can find U(W(+))= 2∕9 with
p+= 3∕5 and p−= 7∕5 so that the other one W(−) is given by

Wð�Þ ¼ 2
9
I � I � eW : (16)

Interestingly, while W(+) has a single negative eigenvalue −1∕6, its
SPA-mirrored EW W(−) has two negative eigenvalues both −1∕9.
Note that both witnessesW(±) have the same upper bound U(W(±))=
2∕9. Finally, the separability window ½Lð eWÞ;Uð eWÞ� of the
observable reads is [3∕45, 7∕45]. The p-SPA of the Choi EW is
given by

eW ¼ 2
5

WðþÞ þ 3
45

I � I (17)

which corresponds to a separable state as shown in ref. 20.
Interestingly, W(+) is nondecomposable, whereas W(−) is
decomposable.
Example 3 (No nontrivial partner). Here we show that not every

EW W(+) has a nontrivial partner W(−). Consider WðþÞ ¼ ψj i ψh jΓ,
where

ψj i ¼
X
i

si eij i � f ij i; (18)

denotes the Schmidt decomposition of ψj i. We assume s1 ≥ s2 ≥
⋯ ≥ sd. One finds UðWðþÞÞ ¼ λmax ¼ s21, and hence

Wð�Þ ¼ 1
Ds21 � 1

ðs21 I1 � I2 � ψj i ψh jΓÞ; (19)

is a positive operator and hence cannot be used as a witness.
Example 4 (Genuine multipartite EWs). In ref. 21 a general

formalism to detect various types of multipartite entanglement

was introduced which works for any number of particles and
dimensions. It turned out to be efficient to guarantee the security
in quantum secret sharing protocols22 or to prove experimentally
the genuine multipartite entanglement of four physical photons
entangled in their orbital angular momentum degrees of free-
dom23 or of two photons entangled in polarization and orbital
angular momentum degrees of freedom.24 Let us here consider
three qubits. For instance, the function

QGHZðρÞ :¼ 2ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ22ρ77

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ33ρ66

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ44ρ55

p � jρ18jÞ
(with ρij being the elements of the density matrix ρ) is ≥0 for all
fully separable as well as for all biseparable states. Thus a violation
of 0 ≤QGHZ(ρ) proves that the state ρ is genuinely multipartite
entangled. Moreover, the function is maximized for the Green-
berger−Horne−Zeilinger state, e.g. GHZj i ¼ 1ffiffi

2
p ð 000j i þ 111j iÞ.

The factor 2 is chosen to set QGHZð GHZj i GHZh jÞ ¼ ±1. Now let us
apply our procedure to obtain a new bound. Different to what we
considered so far is that this inequality correspond to a nonlinear
witness, but of course this witness can be linearized by using (i)ffiffiffiffiffiffiffiffiffi
ρiiρjj

p � ρiiþρjj
2 and (ii) assuming ρ18 to be purely real or imaginary.

This gives Qlin
GHZ ¼ 1� ρ11 � ρ88 þ 2Refρ18g and obviously still the

same maxima ±1 for GHZj i. But considering the optimization over
all pure fully separable states σsep results in

0 � QGHZðσsepÞ � 1
2
;

0 � Qlin
GHZðσsepÞ � 1:

(20)

Consequently, the upper bound (mirrored witness) loses its
predictive power.
Another physically distinct genuine multipartite entangled state

is the W- state or Dicke state, e.g. in the computational basis given
by Dickej i ¼ 1ffiffi

3
p f 001j i þ 010j i þ 100j ig and the function21

QDickeðρÞ ¼ 2
ρ22 þ ρ33 þ ρ55

2
þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ11ρ44
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ11ρ66
p�

þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ11ρ77

p � jρ23j � jρ25j � jρ35jÞ;

which gives −1 for the Dicke state Dickej i in the computational
basis. However, note that though GHZj i is also a genuine
multipartite entangled state, but the minimum over all local unitaries
leads only to minQDickeð GHZj iÞ ¼ �3

4

�
. Such as an optimization over

all local unitaries of the GHZ-witness function QGHZð Dickej iÞ ¼
�0:628 which does not equal the maximal value −1.
Now optimizing over all pure separable states of QDicke leads to

0 � QDickeðσsepÞ � 1: (21)

Indeed the upper bound is again a nontrivial one since
maxQDickeðρentÞ ¼ 1:5 (actually the ρent equals GHZj i). Thus this
expresses a certain duality between the two possible genuinely
multipartite entangled states. Of course, one can also consider the
optimization over all fully separable and biseparable states, then,
however, both criteria QGHZ∕Dicke provide no longer nontrivial
upper bounds, they are optimal in this sense.

Summary and outlook
We have presented the framework of mirrored EWs. It is shown
that a single observable corresponds to a pair of EWs, called
mirrored EWs, in the sense that entanglement detection with
mirrored EWs can be performed by realizing a single observable in
practice. Then, a single observable has both upper and lower
bounds for separable states, where mirrored EWs give the
characterization of the bounds, respectively. Thus, entangled
states can be detected by violations of either of the bounds. It is
shown that mirrored EWs can be constructed from bounds of an
observable for separable states, as well as via structural physical
approximations. Equivalently, mirrored EWs can be rephrased that

Fig. 2 Visualization of the “two-qubit EW”. This magic simplex35–37

represents the Hilbert space of all bipartite qubit states which partial
traces correspond to the maximally mixed states, so-called locally
maximally mixed states. They can be written in the form ρ ¼
1
4 ðI � I þ ciσi � σiÞ with ci 2 R. All points {c1, c2, c3} inside the (red)
tetrahedron represent states (satisfy the positivity condition). All
states inside the (blue) double pyramid are separable states. The
(pink) dots correspond to the four Bell states and the dotted line
represents one isotropic state ρα (SEP (blue): α � 2

3; ENT (green)
α< 2

3). The (light and dark) green surface represents tr½WðþÞρ� ¼ 0
and the (light and dark) orange surface tr½Wð�Þρ� ¼ 0. In this case,
the single observable that contains mirrored EWs W(±) covers the full
space of all locally maximally mixed states. However, note that these
witnesses are not optimal.
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an EW generally has a nontrivial upper bound for separable states,
such that the upper bound is characterized by its pair, i.e., this
shows that an EW can generate its paired one. Examples are
presented to illustrate how the framework of mirrored EWs works
in detail to detect different types of entangled states.
Finally, nonlinearities are introduced to improve mirrored EWs,

i.e., mirrored nonlinear EWs. It is shown that both subtraction and
addition of nonlinear polynomials can improve mirrored EWs: the
subtraction improves standard EWs that detect entangled states
from violations of the lower bound, and the addition does the
other detection scheme with a nontrivial upper bound. We
emphasize that our findings show, via the effort of mirrored EWs,
the recorded experimental knowledge that has been used to
detect entanglement from Eq. (1) can be utilized once again to see
the violation of an upper bound in Eq. (27), without acquiring
additional experiments. A larger set of entangled states than the
one from the very definition of a witness can be detected.
The structure of SPA behind mirrored EWs can be generalized

by replacing the identity operator with some other separable
operators. That is, the operator I1⊗ I2∕D in a positive and negative
SPAs in Eqs. (11) and (12) can be replaced with a full-rank, non-
negative and unit-trace operator X 2 SsepðHÞ. Note that for a full-
rank, non-negative and unit-trace operator X, there always exist
such pX and qX.

25 In future investigations, it would be interesting
to extend mirrored EWs by generalizing SPAs and to explore
further structures of entangled states (cf. Fig. 3).
EWs are a useful tool not only to investigate theoretical and

experimental aspects of entangled states but also to certify
properties having a convex structure, such as fidelities of states or
quantum operations; see e.g. refs. 26,27 Our results, that the EWs
can be indeed mirrored, pave a new avenue in the certification of
entanglement and other quantum properties. In future investiga-
tions, it would be interesting to find the theoretical characteriza-
tions of mirrored EWs in the view of (non-)decomposability,
extremality of EWs, etc.4,8 Although EWs apply single-copy-level
measurements that are feasible with current technologies, it is
worth to extend the framework of mirrored EWs to multi-copy
scenarios, e.g., with more assumptions on state preparation28 and

with more advanced technologies; see e.g. refs. 29–31 From a
practical point of view it is also worth to consider the statistical
errors in an implementation of nonlinear and mirrored EWs, e.g.,
the implementation should be constructed such that the ranges of
statistical errors of the paired EWs do not overlap each other
within the separability window.

METHODS
EWs can be found as linear hyperplanes that distinguish entangled states
from the set of separable states on the space of Hermitian operators. Since
the set of separable states is convex, one may improve EWs by introducing
nonlinearities such that the convex set is better characterized and a larger
set of entangled states can be detected. For instance, it has been found
that uncertainty relations in terms of variances offer such a possibility.32,33

A systematic method of constructing nonlinear EWs has been
introduced.34 Suppose that some entangled state ρ is detected by a
positive map Λ, that is, [id⊗ Λ](ρ) possesses an eigenvector φj i 2 H1 �H2
corresponding to a negative eigenvalue. Then the following formula

W ¼ ðid� Λ	Þ½ φj i φh j� (22)

where Λ* denotes a dual map, defines an EW detecting ρ, i.e. tr½Wρ�< 0. A
nonlinear functional is then constructed by subtracting polynomials from
an EW. To be specific, let us consider subtracting a single nonlinear
polynomial as follows,34

Fð1ÞðρÞ ¼ tr½Wρ� � 1
s2ðχÞ tr½

eXρ�tr½eXy
ρ�; (23)

where one can choose eX ¼ ðid� Λ	Þð φj i χh jÞ for some state χj i 2 H1 �H2
and s(χ) is the largest Schmidt coefficient of χj i. The parameters are chosen
such that Fð1Þ½σ� � 0 for all σ ∈ Ssep. It is clear that a witness W does not
detect a larger set of entangled states than its nonlinear functional F since
F½ρ� � tr½Wρ�.
In what follows, we revisit mirrored EWs in Example 1 to demonstrate

the improvements and illustrate construction of a nonlinear functional
from an observable A that links mirrored EWs. With respect to an
observable A, the improvement can be made by both adding and
subtracting polynomials.
Example 5 (Nonlinear mirrored EWs). We recall that entangled states

ϕ±j i ¼ ð 00j i± 11j iÞ= ffiffiffi
2

p
are detected by mirrored EWs W(±) in Example 1,

tr½Wð± Þ ϕ±j i ϕ±h j� ¼ �1=4 ∓ 1=8:

From the EWs, positive maps Λ	
ð± Þ are denoted as follows; see also Eq. (22)

Wð± Þ ¼ ½id� Λ	
ð± Þ�ð ϕ±j i ϕ±h jÞ:

According to Eq. (23), a nonlinear polynomial can be constructed aseXð± Þ ¼ ðid� Λ	
ð± ÞÞð ϕ±j i ϕ ∓h jÞ, where we have chosen χj i ¼ ϕ ∓j i,

Since χj i ¼ ϕ ∓j i, we have s2(χ)= 1∕2. Then, a pair of nonlinear EWs are
obtained from mirrored EWs,

Fð1Þ
ð± ÞðρÞ ¼ tr½Wð± Þρ� � 2tr½eXð± Þρ�tr eXð± Þyρ

h i
; (24)

which is non-negative for all separable states.34

For instance, we consider a state μj i ¼ a 00j i þ b 11j i with a; b 2 R and
a2+ b2= 1:

tr½WðþÞ μj i μh j� ¼ 1
8 ða2 þ b2 � 8abÞ; and

tr½Wð�Þ μj i μh j� ¼ 1
8 ð3a2 þ 3b2 þ 8abÞ:

The state μj i with ab= 1∕8 is entangled but not detected by W(+) since
tr½WðþÞ μj i μh j� ¼ 0. It can be detected by the nonlinear witness in Eq. (24):

we have that Fð1Þ
ðþÞð μj i μh jÞ ¼ �1=64< 0. For ab=−3∕8, we have

tr½Wð�Þ μj i μh j� ¼ 0 but Fð1Þ
ð�Þð μj i μh jÞ ¼ �9=8< 0. Thus, the improvement

by nonlinear polynomials in Eq. (24) is shown.
We recall that the mirrored witnesses W(±) characterize the lower and

upper bounds of an observable A for separable states; see Eqs. (3), (6) and
(7). It is straightforward to find a nonlinear functional with the observable A

Fig. 3 An EW, Eq. (1), corresponds to an observable that can be
estimated in a measurement setup that contains a set of POVM
elements. The box (A) shows a schematic structure of the
entanglement detection with an EW and its nonlinearization. The
present work shows that box (B) exists: the measurement setup
prepared for the EW in box (A) can be used to construct the other
EW in box (B), i.e., its mirrored one. This EW detects other types of
entangled states utilizing the same information from the experi-
ment (center), i.e. no other experimental setup is needed. It remains
open to disclose the gray boxes, i.e., the possibility of constructing
more than two EWs from a single measurement setup (see also
Discussion).
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that links mirrored EWs W(±) from Eq. (24): we write by G a nonlinear
functional from an observable A via nonlinear EWs in Eq. (24)

G± ½ρ� ¼ tr½Aρ�± 2n ∓ tr½eXð ∓ Þ
ρ� tr eXð ∓ Þ�y

ρ

� 	
(25)

where n± are from Eq. (8). Note that both addition and subtraction of
nonlinear polynomials are essential to improve an observable A. It holds
that for σ∈ Ssep,

Fð1Þ
ðþÞ½σ� � 0 () LðAÞ � G�½σ�

F ð1Þ
ð�Þ½σ� � 0 () Gþ½σ� � UðAÞ:

(26)

This shows how to improve an observable A with nonlinear polynomials
(cf. Fig. 4). For the lower bound L(A) for separable states, which is
characterized by an EW W(+), the improvement is made by subtracting a
nonlinear polynomial, i.e., G� in Eq. (25). Note that this is similar to the way
that a standard EW is improved by nonlinear polynomials; see Eq. (24). For
the upper bound U(A), however, the improvement is obtained by adding a
nonlinear polynomial, i.e., Gþ in Eq. (25).
The improvement of an observable A can be rephrased on the level of

standard EWs. The separability window in Eq. (3) can be rewritten for all
σ∈ Ssep by

0 � tr½Wσ� � UðWÞ: (27)

Note that from Eqs. (6) and (9), there exists a witness W
0
that characterizes

the upper bound, i.e., for any state ρ on H1 �H2, it holds that

tr½Wρ� � UðWÞ () 0 � tr½W 0
ρ�:

Let us recall that the detection method by a lower bound tr½Wσ� � 0 for
σ∈ Ssep is improved by subtracting nonlinear polynomials. The improve-
ment in Eq. (26) means the following statements are equivalent:

● the detection method by an upper bound

tr½Wσ� � UðWÞ for σ 2 Ssep

is improved by adding nonlinear polynomials, and
● the detection method by a lower bound

tr½W 0
σ� � 0 for σ 2 Ssep

is improved by subtracting nonlinear polynomials.

Thus, it is shown that nonlinear EWs can be generally constructed by both
subtracting and adding nonlinear polynomials.
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