
Kim and Choi EURASIP Journal onWireless Communications and
Networking        (2019) 2019:267 
https://doi.org/10.1186/s13638-019-1587-x

Research Open Access

Channel estimation for
spatially/temporally correlated massive
MIMO systems with one-bit ADCs
Hwanjin Kim and Junil Choi*

Abstract

This paper considers the channel estimation problem for massive multiple-input multiple-output (MIMO) systems
that use one-bit analog-to-digital converters (ADCs). Previous channel estimation techniques for massive MIMO using
one-bit ADCs are all based on single-shot estimation without exploiting the inherent temporal correlation in wireless
channels. In this paper, we propose an adaptive channel estimation technique taking the spatial and temporal
correlations into account for massive MIMO with one-bit ADCs. We first use the Bussgang decomposition to linearize
the one-bit quantized received signals. Then, we adopt the Kalman filter to estimate the spatially and temporally
correlated channels. Since the quantization noise is not Gaussian, we assume the effective noise as a Gaussian noise
with the same statistics to apply the Kalman filtering. We also implement the truncated polynomial expansion-based
low-complexity channel estimator with negligible performance loss. Numerical results reveal that the proposed
channel estimators can improve the estimation accuracy significantly by using the spatial and temporal correlations of
channels.

Keywords: Massive MIMO, Channel estimation, One-bit ADC, Kalman filter, Spatial and temporal correlations,
Truncated polynomial expansion

1 Introduction
Massive multiple-input multiple-output (MIMO) systems
are one of the promising techniques for next-generation
wireless communication systems [2–5]. By using a large
number of antennas at base stations (BSs), it is possible
to support multiple users simultaneously to boost net-
work throughput and improve the energy-efficiency by
beamforming techniques [4]. Due to the large number of
antennas at the BS, high implementation cost and power
consumption could be major problems for implementing
massive MIMO in practice.
Using low-resolution analog-to-digital converters

(ADCs) is an effective way of mitigating the power con-
sumption problem in massive MIMO systems because
the ADC power consumption exponentially decreases
as its resolution level [6]. However, symbol detection
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and channel estimation in massive MIMO systems with
low-resolution ADCs become difficult tasks because
the quantization process using low-resolution ADCs
becomes highly non-linear. Recent works have revealed
that it is possible to implement practical symbol detec-
tors and channel estimators for massive MIMO even
with low-resolution ADCs. For the symbol detection, a
massive spatial modulation MIMO approach based on
sum-product-algorithm was developed in [7], a convex
optimization-based multiuser detection for massive
MIMO with low-resolution ADC was considered in [8], a
mixed-ADCmassiveMIMO detector was proposed in [9],
and a blind detection technique was developed by exploit-
ing supervised learning [10]. Also, an iterative detection
and decoding scheme based on the message-passing algo-
rithm and low-resolution aware (LRA) minimum mean
square error (MMSE) receive filter was presented in [11],
a low-complexity maximum likelihood detection (MLD)
algorithm called one-bit-sphere-decoding was developed
in [12], and a successive cancelation soft-output detector
by exploiting a previous decoded message was proposed
in [13].
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For the channel estimation, a near-maximum likeli-
hood channel estimator based on the convex optimization
was developed in [14], and a Bayes-optimal joint chan-
nel and data estimator was proposed in [15]. To reduce
the complexity, the generalized approximate message-
passing algorithm was applied in [16], and the hybrid
architectures were considered in [17]. Moreover, an
oversampling based LRA-MMSE channel estimator that
exploits the correlation of filtered noise for a given chan-
nel was proposed in [18]. However, up to the authors’
knowledge, the previous channel estimators with low-
resolution ADCs have not considered the temporal cor-
relation in channels, which is inherent in communication
channels.
In this paper, we develop a channel estimator taking

both spatial and temporal correlations into considera-
tion for massive MIMO systems with one-bit ADCs.
We first discuss how to estimate the spatial correlation
matrix for the channel estimation. Then, we reformulate
the non-linear one-bit quantizer to the linear operator
based on the Bussgang decomposition[19]. To exploit
both the spatial and temporal correlations, we implement
the Kalman filter-based (KFB) estimator [20] assuming
the statistically equivalent quantization noise after the
Bussgang decomposition follows a Gaussian distribution
with the same mean and covariance matrix. The numeri-
cal results demonstrate that the normalized mean square
error (NMSE) of the proposed KFB estimator decreases
as the time slot increases. Moreover, as channels are more
correlated with space and time, it is possible to track
the channels more accurately. To reduce the complex-
ity of KFB estimator, which comes from the large size
matrix inversion, we also exploit a truncated polynomial
expansion (TPE) approximation for the matrix inversion
in the Kalman gain matrix. We analytically show that,
with some moderate assumptions, the NMSE of the TPE-
based estimator also keeps decreasing with the time slots.
The numerical results show that the low-complexity TPE-
based estimator gives approximately the same perfor-
mance as the KFB estimator even with low approximation
orders.
The rest of the paper is organized as follows. In

Section 2, we explain a system model with one-bit ADCs.
In Section 3, we first discuss how to estimate the spatial
correlation matrix. Then, we review the single-shot chan-
nel estimator based on the Bussgang decomposition [21].
After, we explain our proposed successive channel estima-
tor based on the Bussgang decomposition and the Kalman
filter. We also propose the low-complexity TPE-based
channel estimator and analyze the complexities of com-
peting estimators. After explaining the data transmission
with one-bit ADCs in Section 4, we evaluate numerical
results in Section 5. Finally, we conclude the paper in
Section 6.

Notation: Lower and upper boldface letters represent
column vectors and matrices. AT, A∗, AH, and A† denote
the transpose, conjugate, conjugate transpose, and pseudo
inverse of the matrix A. E{·} represents the expectation,
and �{·}, �{·} denote the real part and imaginary part of
the variable. 0m is used for the m × 1 all zero vector, and
Im denotes them×m identity matrix. ⊗ denotes the Kro-
necker product. diag(·) returns the diagonal matrix. vec(·)
denotes the column-wise vectorization. Cm×n and R

m×n

represent the set of all m × n complex and real matrices.
|·| denotes the amplitude of the scalar, and ‖·‖ represents
the �2-norm of the vector. CN (m, σ 2) denotes the com-
plex normal distribution with mean m and variance σ 2.
tr(·) represents the trace operator. O denotes the Big-O
notation.

2 Systemmodel
As in Fig. 1, we assume a single-cell massive MIMO sys-
tem withM BS antennas and K single-antenna users with
M � K . Each BS antenna is connected to two one-bit
ADCs, one for the in-phase component and the other for
the quadrature component of received signals. We con-
sider the block-fading channel with the coherence time of
T . The received signal at the i-th fading block is given by

yi = √
ρHisi + ni, (1)

where ρ is the signal-to-noise ratio (SNR), Hi =
[hi,1,hi,2, ...,hi,K ]∈ C

M×K is the channel matrix, hi,k is the
channel between the BS and the k-th user in the i-th fad-
ing block, si is the transmit signal, and ni ∼ CN (0M, IM) is
the complex Gaussian noise.We consider the spatially and
temporally correlated channels by assuming hi,k follows
the first-order Gauss-Markov process,

h0,k = R
1
2
k g0,k ,

hi,k = ηkhi−1,k +
√
1 − η2kR

1
2
k gi,k , i ≥ 1, (2)

where ηk is the temporal correlation coefficient, Rk =
E

{
hi,khHi,k

}
is the spatial correlation matrix, and gi,k ∼

CN (0M, IM) is the innovation process of the k-th user in
the i-th fading block. Note that ηk and Rk do not have the
time index i since both are long-term statistics that are
static for multiple coherence blocks.
Although other models are also possible, to have con-

crete analyses, we adopt the exponential model for the
spatial correlation matrix Rk ,

Rk =

⎡
⎢⎢⎢⎢⎢⎣

1 rk · · · rM−1
k

r∗k 1 · · · ...
...

...
. . .

...
r∗(M−1)
k · · · · · · 1

⎤
⎥⎥⎥⎥⎥⎦
, (3)
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Fig. 1Massive MIMO systems withM BS antennas and K single-antenna users. Each RF chain is equipped with two one-bit ADCs for the in-phase
and quadrature component, respectively

where rk = rejθk satisfying 0 ≤ r < 1 and 0 ≤ θk < 2π .
We assume all users experience the same spatial correla-
tion coefficient r since it is dominated by the BS antenna
spacing while each user has an indifferent phase θk since
it is more related to the user position [22].
The quantized signal by the one-bit ADCs is

ri = Q(yi) = Q(
√

ρHisi + ni), (4)

whereQ(·) is the element-wise one-bit quantization oper-
ator, i.e.,Q(·) = 1√

2 (sign(�{·}) + j sign(�{·})).

3 Channel estimation with one-bit ADCs
In this section, we first discuss how to estimate the spatial
correlation matrix. Then, we explain the Bussgang linear
minimummean square error (BLMMSE) estimator, which
is the baseline of the proposed estimator. The BLMMSE
estimator is a single-shot channel estimator based on the
Bussgang decomposition without exploiting any tempo-
ral correlation [21]. Then, we propose the KFB estima-
tor, which is a successive channel estimator, for massive
MIMO with one-bit ADCs exploiting the temporal cor-
relation. Also, we propose the low-complexity TPE-based
estimator to reduce the complexity of the proposed KFB
estimator.

3.1 Spatial correlation matrix estimation
In this subsection, we discuss how to estimate the spa-
tial correlation matrix since all the channel estimators in
this paper exploit the spatial correlation of channel. We
omit the user index k since the BS can estimate the spatial
correlation of each user separately.
When the BS does not have any prior channel infor-

mation, it can use the least square (LS) estimate of the
quantized signal ri, which is given by

hLSi = �
†
i ri, (5)

where �i is the pilot matrix. The LS estimator for one-bit
quantized signal performswell when the number of anten-
nas at the BS is large, as shown in [23]. The BS then can
obtain a sampled spatial correlation matrix as

R̂ = 1
Ns

Ns∑
n=1

hLSn
(
hLSn
)H

, (6)

where Ns is the number of samples. We evaluate the per-
formance loss by using the sampled correlation matrix in
Fig. 3 in Section 5. After this subsection, we assume that
the true spatial correlation matrices and the temporal cor-
relation coefficients of all users are known to the BS to
derive analytical results.

3.2 BLMMSE estimator
In this subsection, we omit the time slot index i since the
single-shot channel estimator does not use any temporal
correlation. To estimate the channel at the BS, K users
transmit the length τ pilot sequences to the BS,

Y = √
ρH�T + N, (7)

where Y ∈ C
M×τ is the received signal, � ∈ C

τ×K is the
pilot matrix, and N =[n1,n2, ...,nτ ]∈ C

M×τ is the com-
plex Gaussian noise. We assume that the pilot sequences
are column-wise orthogonal, i.e., �T�∗ = τ IK , and all the
elements of the pilot matrix have the samemagnitude. For
the sake of simplicity, the receive signal is vectorized as

vec(Y) = y = �̄h + n, (8)

where �̄ = (� ⊗ √
ρIM), h = vec(H), and n = vec(N).

The quantized signal by one-bit ADCs is

r = Q(y). (9)

Assuming independent spatial correlations across the
users, the aggregated spatial correlation matrix R =
E{hhH} is given by



Kim and Choi EURASIP Journal onWireless Communications and Networking        (2019) 2019:267 Page 4 of 15

R =

⎡
⎢⎢⎢⎢⎣

R1 · · · 0 0
... R2 · · · 0

0
...

. . .
...

0 0 · · · RK

⎤
⎥⎥⎥⎥⎦
. (10)

The Bussgang decomposition of quantized signal is
given by

r = Q(y) = Ay + q, (11)

where A denotes the linear operator and q represents
the statistically equivalent quantization noise. The linear
operator A is obtained from [21],

A =
√

2
π
diag(Cy)

− 1
2

=
√

2
π
diag

(
�̄R�̄

H + IMτ

)− 1
2

(a)=
√

2
π

√
1

Kρ + 1
IMτ , (12)

whereCy is the auto-covariancematrix of the received sig-
nal. In (12), (a) is derived in Appendix 1. Substituting (8)
into (11), r is represented as

r = Q(y) = �̃h + ñ, (13)

where �̃ = A�̄ ∈ C
Mτ×MK and ñ = An + q ∈ C

Mτ×1.
After adopting the Bussgang decomposition, a linear

MMSE estimator, which is denoted as the BLMMSE chan-
nel estimator [21], is given as

ĥ
BLM = Ch�̃

HC−1
r r, (14)

where Ch is the auto-covariance matrix of the channel
h, and Cr is the auto-covariance matrix of the quantized
signal r. In (14), Cr is obtained by the arcsin law [24],

Cr = 2
π

(
arcsin

(
	−1/2

y �{Cy}	−1/2
y

)

+ j arcsin
(
	−1/2

y �{Cy}	−1/2
y

))
, (15)

where 	y = diag(Cy).

3.3 Proposed KFB estimator
Although effective, the BLMMSE estimator does not
exploit any inherent temporal correlation in wireless
channels. We now propose a simple, yet effective, chan-
nel estimator based on the Bussgang decomposition and
the Kalman filtering. We recover the time slot index i to
explicitly use the temporal correlation. We first reformu-
late the channel model in (2) by vectorization,

h0 = R
1
2 g0,

hi = ηhi−1 + ζR
1
2 gi, i ≥ 1, (16)

where gi is the vectorized innovation process, which is
expressed as

gi =
[
gTi,1, g

T
i,2, ..., g

T
i,K

]T
, i ≥ 0. (17)

The temporal correlation matrices η and ζ in (16) are
given by the Kronecker product,

η = diag(η1, η2, ..., ηK ) ⊗ IM,
ζ = diag(ζ1, ζ2, ..., ζK ) ⊗ IM, (18)

where ηk denotes the k-th user temporal correlation coef-
ficient and ζk =

√
1 − η2k .

Following the same steps as in Section 3.2, the one-bit
quantized signal can be represented using the Bussgang
decomposition as

ri = Q(yi), (19)

= Aiyi + qi, (20)

= �̃ihi + ñi, (21)

whereAi is the linear operator, qi is the statistically equiv-
alent quantization noise, �̃i = Ai�̄i ∈ C

Mτ×MK , and
ñi = Aini + qi ∈ C

Mτ×1.

Algorithm 1 Kalman Filter-Based Channel Estimator
1: Initialization:

ĥ0|0 = 0MK , M0|0 = R = E
{
h0h

H
0
}

2: Prediction:

ĥi|i−1 = ηĥi−1|i−1

3: Minimum prediction MSE matrix (MK × MK):

Mi|i−1 = ηMi−1|i−1η
H + ζRζH

4: Kalman gain matrix (MK × Mτ ):

Ki = Mi|i−1�̃
H
i

(
Cñi + �̃iMi|i−1�̃

H
i

)−1

5: Correction:

ĥi|i = ĥi|i−1 + Ki
(
ri − �̃iĥi|i−1

)

6: MinimumMSE matrix (MK × MK):

Mi|i =
(
IMK − Ki�̃i

)
Mi|i−1

The Kalman filter guarantees the optimality when
the noise is Gaussian distributed [20]; however, the
effective noise ñi in (21) is not Gaussian because
of the one-bit quantization noise qi. Although the
noise is not Gaussian, it is still possible to apply the
Kalman filter using the same covariance matrix Cñi .
The proposed KFB channel estimator is summarized in
Algorithm 1.
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Remark 1 Assuming the effective noise is Gaussian dis-
tributed may result in inaccurate channel estimation. This
effect becomes more dominant as SNR increases, which is
shown in Fig. 4 in Section 5. In the high SNR regime, the
noise ni in (1) becomes negligible, and the effective noise ñi
in (21) is dominated by the quantization noise qi, which
would severely violate the Gaussian assumption of ñi. In
the low SNR regime, however, the effective noise ñi is more
like Gaussian, and the proposed KFB estimator is nearly
optimal.

3.4 Low-complexity TPE-based estimator
The BLMMSE estimator is a single-shot estimator, which
returns a new channel estimate while the KFB estimator
is a successive channel estimator, which tracks the chan-
nel based on a previous channel estimate at each time slot.
Thus, the complexity of both channel estimators is the
same at each time slot.
The matrix inversion has the most dominant computa-

tion complexity amongmatrix operations. The large chan-
nel dimensions in massive MIMO systems even exacer-
bate the complexity of matrix inversion. Therefore, when
comparing the complexity of algorithms, we only con-
sider the complexity of the matrix inversion. To reduce
the complexity of KFB estimator, the truncated polyno-
mial expansion [25] can be used to approximate thematrix
inversion at the Kalman gain matrix Ki in Step 4 of
Algorithm 1.
The Lth-order TPE approximation of the inversion of

N × N matrix X is expressed as

X−1 ≈ α

L∑
l=0

(I − αX)l. (22)

In (22), α is the convergence coefficient, which can be set
as 0 < α < 2

maxn λn(X)
where λn(X) is the n-th eigenvalue

of the matrix X[25].
The complexity of TPE approximation in (22) isO(LN2)

since it has only the matrix multiplication with the Lth-
order. This is a large complexity reduction as compared
to O(N3) for the complexity of the N × N matrix inver-
sion when L is much smaller than N . In Table 1, we
summarize the complexity of three competing estimators.
The TPE-based estimator has much lower computational
complexity than the other estimators because L � Mτ in
practice.
To verify the effectiveness of TPE approximation, we

evaluate theminimumNMSE of TPE-based estimator. For
a tractable analysis, we assume R = IMK and τ = K as
in [21], which results in Cr = IMK in (15) since Cy =
(Kρ + 1)IMK . Then the NMSE of BLMMSE estimator
in [21], which is a performance baseline of the proposed
estimators, is represented as

Table 1 Computational complexity of BLMMSE estimator, KFB
estimator, and TPE-based estimator

Channel estimator Computational complexity

BLMMSE estimator O(M3τ 3)

KFB estimator O(M3τ 3)

TPE-based estimator O(LM2τ 2)

M number of antennas, τ pilot symbol length, L approximation order

NMSEBLM = 1
MK

E

{∥∥∥ĥBLM − h
∥∥∥
2

2

}

= 1 − 2
π

Kρ

Kρ + 1
= 1 − β , (23)

where β = 2
π

Kρ
Kρ+1 .

To derive the NMSE of TPE-based estimator, we first
expand the covariance matrix of qi as

Cqi = Cri − AiCyi
AH
i

(a)= Cri − 2
π

(IMK )

(b)= 2
π

(arcsin(Xi) + jarcsin(Yi)) − 2
π

(IMK )

(c)=
(
1 − 2

π

)
IMK , (24)

where we define

Xi = 	−1/2
yi

�{Cyi
}	−1/2

yi
,

Yi = 	−1/2
yi

�{Cyi
}	−1/2

yi
. (25)

In (24), (a) comes from Ai =
√

2
π

√
1

Kρ+1 IMK and Cyi
=

(Kρ + 1)IMK , (b) is from the arcsin law in [24], and (c) is
derived by substituting Cyi

= (Kρ + 1)IMK into (25).
The first-order TPE approximation of matrix inversion

in Kalman gain matrix is given by

X−1 ≈ α(I + (I − αX)). (26)

Thus, the Kalman gain matrix is approximated as

Ki = Mi|i−1�̃
H
i

(
Cñi + �̃iMi|i−1�̃

H
i

)−1

≈ Mi|i−1�̃
H
i

(
2αIMK − α2

(
Cñi + �̃iMi|i−1�̃

H
i

))
.

(27)

We define the normalized trace ofMi|i−1 andMi|i as

mi|i−1 �
1

MK
tr(Mi|i−1),

mi|i �
1

MK
tr(Mi|i), (28)
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where we denote mi|i−1 as the prediction NMSE and mi|i
as the minimum NMSE.
We assume that the temporal correlation coefficient is

identical for all users, i.e., ηk = η for all k. With this
assumption, we can further expandmi|i−1 andmi|i as

mi|i−1 = 1
MK

tr(Mi|i−1)

= 1
MK

tr
(
ηMi−1|i−1η

H + ζRζH)

= η2mi−1|i−1 + (1 − η2), (29)

and

mi|i

= 1
MK

tr(Mi|i)

= 1
MK

tr
((

IMK − Ki�̃i
)
Mi|i−1

)

(a)≈ 1
MK

tr
((

IMK − Mi|i−1�̃
H
i

(
2αIMK

−α2
(
Cñi + �̃iMi|i−1�̃

H
i

))
�̃i
)
Mi|i−1

)

(b)= 1
MK

tr
((

IMK − Mi|i−1
(
(2α − α2(1 − β))�̃

H
i �̃i

−α2�̃
H
i �̃iMi|i−1�̃

H
i �̃i

))
Mi|i−1

)

(c)= 1
MK

tr
((

IMK − Mi|i−1
(
(2α − α2(1 − β))β

−α2βMi|i−1β
))

Mi|i−1
)

(d)=
(
1 − mi|i−1

(
(2α − α2(1 − β))β

−α2βmi|i−1β
))

mi|i−1

= (1 − (2α − α2(1 − β) − α2βmi|i−1)βmi|i−1)mi|i−1,
(30)

where (a) is derived by the Kalman gain matrix approxi-
mation in (27), (b) is from

Cñi = AiAH
i + Cqi

=
(
2
π

1
Kρ + 1

+
(
1 − 2

π

))
IMK

= (1 − β)IMK , (31)

(c) comes from

�̃
H
i �̃i = �̄

H
i AH

i Ai�̄i

= 2
π

1
Kρ + 1

�̄
H
i �̄i

= 2
π

Kρ

Kρ + 1
IMK

= βIMK , (32)

and (d) is derived by the fact thatMi|i−1 andMi|i are diag-
onal matrix based on the mathematical induction with
M0|0 = R = IMK .
Now, we will show that mi|i < mi−1|i−1, i.e., the mini-

mum NMSE decreases as the time slot index i increases.
It is enough to show thatmi|i−1 is a monotonic decreasing
sequence since mi|i and mi|i−1 has a linear relationship in
(29),

mi+1|i < mi|i−1 ⇔ mi|i < mi−1|i−1. (33)

First, we can reformulate (29)

mi+1|i
= η2mi|i + (1 − η2)

= η2(1 − (2α − α2(1 − β) − α2βmi|i−1)βmi|i−1)mi|i−1

+(1 − η2). (34)

We define f (x) as

f (x) � η2(1 − (2α − α2(1 − β) − α2βx)βx)x + (1 − η2).
(35)

Then, in Appendix 2, we prove

f (x) < x, 0 < γ < x < 1, (36)

where γ is the root of f (x) = x. In (36), we exploited the
condition 0 < α < 2 that is proved in Appendix 3. Thus,
we conclude

mi+1|i = f (mi|i−1) < mi|i−1, (37)

which is equivalent to mi|i < mi−1|i−1. Furthermore, we
prove

lim
i→∞mi|i−1 = γ , (38)

in Appendix 4. Therefore, the prediction NMSE mi|i−1
decreases as the time slot index i increases and converges
to γ . Also, we can easily check that m1|1 = 1 − (2α −
α2)β = 1 − β = NMSEBLM with m1|0 = 1 and α = 1.
After many time instances, we will have

NMSEBLM = m1|1 � mi|i, (39)

and the TPE-based estimator would outperform the
BLMMSE estimator.
So far, we assume that R = IMK , i.e., spatially uncor-

related channels, to derive the NMSE of the TPE estima-
tor. Even for spatially correlated channels, the numerical
results in Section 5 show that the TPE-based estimator
outperforms the BLMMSE estimator.

4 Uplink data transmission
In this section, we derive the achievable sum-rate of mas-
sive MIMO with one-bit ADCs following similar steps as
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in [21] for the sake of completeness. The K users transmit
data symbols to the BS. Based on the Bussgang decom-
position, the quantized signal in the i-th time slot can be
represented as

rd,i = Q(
√

ρd,iHisi + nd,i)
= √

ρd,iAd,iHisi + Ad,ind,i + qd,i, (40)

where si is the transmit signal satisfying E{|si,k|2} = 1, and
the subscript d denotes the data transmission. The linear
operator in (40) can be approximated as

Ad,i =
√

2
π
diag(Cyd,i)

− 1
2

=
√

2
π
diag

(
ρd,iHiHH

i + IM
)− 1

2

(a)≈
√

2
π

√
1

Kρd,i + 1
IM. (41)

In (41), (a) is from the channel hardening effect in mas-
sive MIMO systems as in [21]. After applying the receive
combiner for the quantized signal, we have

ŝi = WT
i rd,i

= √
ρd,iWT

i Ad,i(Ĥisi + E isi)

+ WT
i Ad,ind,i + WT

i qd,i, (42)

where Wi is the receive combining matrix, Ĥi =
unvec(ĥi) is the unvectorized channel estimation matrix,
and E i = Hi − Ĥi is the estimation error matrix. The k-th
element of ŝi can be represented as

ŝi,k

= √
ρd,iwT

i,kAd,iĥi,ksi,k + √
ρd,iwT

i,k

K∑
j �=k

Ad,iĥi,jsi,j

+ √
ρd,iwT

i,k

K∑
j=1

Ad,iεi,jsi,j + wT
i,kAd,ind,i + wT

i,kqd,i,

(43)

where wi,k , ĥi,k and εi,k represent the k-th columns of
Wi, Ĥi, and E i, respectively.
We can obtain a lower bound on the achievable rate of

the k-th user by treating the uncorrelated inter-user inter-
ference (IUI) and the quantization noise (QN) qd,i as a
Gaussian noise [26], and assuming the Gaussian channel
input as in [21],

Ri,k = E

{
log2

(
1 + Si,k

IUIi,k + QNi,k

)}
, (44)

where

Si,k = ρd,i

∣∣∣wT
i,kAd,iĥi,k

∣∣∣
2
,

IUIi,k = ρd,i

K∑
j �=k

∣∣∣wT
i,kAd,iĥi,j

∣∣∣
2
,

QNi,k = ρd,i

K∑
j=1

∣∣∣wT
i,kAd,iεi,j

∣∣∣
2 + ‖wT

i,kAd,i‖2

+ wT
i,kCqd,iw

∗
i,k . (45)

The auto-covariance matrix of qd,i is given by

Cqd,i = Crd,i − Ad,iCyd,iA
H
d,i

= 2
π

(arcsin(Xd,i) + jarcsin(Yd,i))

− 2
π

(Xd,i + jYd,i)

(a)≈ (1 − 2/π)IM, (46)

where we define

Xd,i = 	−1/2
yd,i �{Cyd,i}	−1/2

yd,i ,

Yd,i = 	−1/2
yd,i �{Cyd,i}	−1/2

yd,i . (47)

In (46), Crd,i can be obtained by the arcsin law in (15),
and (a) comes from the approximation of the low SNR
as in [21]. This approximation holds even in correlated
channels, which is different from (24) that is based on the
assumption R = IMK . We define the achievable sum-rate
as

Ri =
K∑

k=1
Ri,k . (48)

To reduce the interference, we adopt the zero-forcing (ZF)
combiner,

WT
i,ZF =

(
ĤH

i Ĥi
)−1

ĤH
i , (49)

for numerical studies.

5 Results and discussion
In this section, we verify the proposed channel estimator
by Monte-Carlo simulation. We define the NMSE as the
performance metric,

NMSE = 1
MK

E

{∥∥∥ĥ − h
∥∥∥
2

2

}
, (50)

where ĥ is the channel estimate and h is the true chan-
nel. We adopt the pilot matrix � by the discrete Fourier
transform (DFT) matrix, which satisfies the assumptions
in Section 3.2, and select K columns of τ × τ DFT matrix
with τ ≥ K to obtain the pilot sequences. We adopt
the Jakes’ model for the temporal correlation, which is
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given as ηk = J0(2π fD,kt) where J0(·) denotes the 0-
th order Bessel function, fD,k is the Doppler frequency,
and t is the channel instantiation interval. For simula-
tions, we set fD,k = vkfc/c with the user speed vk , the
carrier frequency fc = 2.5 GHz, and the speed of light
c = 3 × 108 m · s−1. We also set t = 5 ms [27]. We
denote NMSE(hi) as the NMSE of KFB estimator at the
i-th time slot and NMSE(M) = 1

MK tr(Mi|i) as the theo-
retical NMSE of Kalman filtering with the Gaussian noise,
not the quantization noise. Therefore, NMSE(M) gives the
performance limit of Kalman filtering with the Gaussian
noise. We depict the “BLMMSE” as the NMSE perfor-
mance of the single-shot channel estimator discussed in
Section 3.2.
In Fig. 2, we compare the NMSEs of BLMMSE estima-

tor and KFB estimator with the time slot i for r = 0.5 or
r = 0.8 with SNR = −5 dB. We assume the BS antennas
M = 128, the users K = 8, and the symbols τ = 8. We
set the temporal correlation coefficient ηk = 0.988, which
corresponds to v = 3 km/h. As the time slot increases, the
proposed KFB estimator outperforms the BLMMSE esti-
mator. By comparing NMSE(hi) and NMSE(M), the loss
from using one-bit ADCs is around 1.5 dB. As the amount
of spatial correlation increases from 0.5 to 0.8, all esti-
mators perform better since it becomes easier to estimate
channels as the channels becomemore correlated in space
[28–30].
In Fig. 3, we compare the NMSEs of the channel esti-

mators with and without the perfect spatial correlation
knowledge. All the parameters are the same as in Fig. 2

with r = 0.8. Without the spatial correlation knowledge,
we use Ns samples to estimate the spatial channel corre-
lation by the LS estimates; then, we estimate the channel.
When we use Ns = 500, 1000, the performance loss is
about 4, 2 dB compared to the case of perfect correla-
tion knowledge. Although the performance degradation
due to the imperfect knowledge of spatial correlation is
non-negligible, the loss is inevitable for the channel esti-
mators, including the BLMMSE estimator, that exploit
the spatial correlation. The KFB estimator outperforms
the BLMMSE estimator even with the sample correlation
matrix, and as time slot increases, the KFB estimator using
the sample correlation matrix achieves lower NMSE than
the BLMMSE estimator using the true spatial correlation
matrix.
Figure 4 depicts the NMSEs of the KFB estimator when

each user experiences different temporal fading. We set
r = 0.8 and the temporal correlation coefficient of user
1 to 4 as ηk = 0.872, 0.936, 0.967, and 0.988, which cor-
respond to vk = 10 km/h, 7 km/h, 5 km/h, and 3 km/h.
All other settings are the same as in Fig. 2. As expected,
the users with high temporal correlations benefit more
from the KFB estimator. Even the user with the moderate
velocity of 10 km/h also has the gain more than 1 dB.
In Figs. 5 and 6, we compare the NMSEs of the KFB esti-

mator according to SNR with different time slots when
M = 128, K = 8, τ = 8, ηk = 0.988, 0.724 (correspond to
vk = 5, 15 km/h), and r = 0.5. When the temporal corre-
lation is high, the NMSEs of the KFB estimator decreased
as the SNR increased in low SNR regime. In the low SNR

Fig. 2 The NMSEs of BLMMSE estimator, KFB estimator, and theoretical limit of Kalman filtering according to time slot i for different spatial
correlation coefficient r whenM = 128, K = 8, τ = 8, ηk = 0.988, and SNR = −5 dB
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Fig. 3 The NMSEs of BLMMSE estimator, KFB estimator, and theoretical limit of Kalman filtering according to time slot i with and without the perfect
spatial correlation knowledge whenM = 128, K = 8, τ = 8, ηk = 0.988, r = 0.8, and SNR = −5 dB

regime, NMSE(hi) is almost the same as the theoretical
NMSE of NMSE(M) after 10 successive estimations. In
the high SNR, however, the NMSE of KFB estimator suf-
fers from the saturation effect, which is referred as the
stochastic resonance due to one-bit quantization noise
[31]. In the proposed KFB estimator, the loss also comes
from the Gaussian model mismatch in the one-bit quanti-
zation as explained in Remark 1 in Section 3.3. When the

temporal correlation is low, the NMSEs of the KFB esti-
mator decreased as the SNR increased in all SNR regime.
This is because the channel estimation error comesmostly
from the large temporal channel variation, not from the
one-bit quantization.
In Figs. 7 and 8, we compare the achievable sum-rates of

the BLMMSE estimator and KFB estimator according to
the time slot when M = 128, K = 8, τ = 8, r=0.8, and

Fig. 4 The NMSEs of KFB estimator according to time slot i for different temporal fading users whenM = 128, K = 4, τ = 4, r = 0.8, and SNR =−5 dB
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Fig. 5 The NMSEs of KFB estimator according to SNR with different time slots whenM = 128, K = 8, τ = 8, ηk = 0.988, and r = 0.5

SNR = 0 and 10 dB. We assume all users experience the
same η. In both scenarios, the achievable sum-rate of the
KFB estimator outperforms the BLMMSE estimator as the
time slot increases.
In Figs. 9 and 10, we compare the NMSEs of the KFB

estimator and the low-complexity TPE-based estimator
with the time slot. We setM = 128, K = 8, τ = 8, r = 0.5,

ηk = 0.988, 0.872, and SNR = −5, 10 dB. We numerically
optimize α = 0.5 for the TPE-based estimator. In the high
temporal correlation and low SNR case (Fig. 9), the NMSE
gap between the KFB and TPE-based estimators is neg-
ligible and already quite small even with L = 1. In the
low temporal correlation and high SNR case (Fig. 10), the
performance is degraded but the gap becomes small with

Fig. 6 The NMSEs of KFB estimator according to SNR with different time slots whenM = 128, K = 8, τ = 8, ηk = 0.724, and r = 0.5
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Fig. 7 The achievable sum-rates of BLMMSE estimator and KFB estimator according to time slot i with different temporal correlations when
M = 128, K = 8, τ = 8, r = 0.8, and SNR = 0 dB

L = 2. Therefore, in practice, the low-complexity TPE-
based estimator can be used with negligible performance
loss.

6 Conclusion
In this paper, we proposed the Kalman filter-based (KFB)
channel estimators that exploit both the spatial and tem-
poral correlations of channels for massive MIMO systems

using one-bit ADCs. We adopted the Bussgang decompo-
sition to linearize the non-linear effect from one-bit quan-
tization. Based on the linearized model and assuming the
effective noise as Gaussian, we exploited the Kalman filter
to estimate the channel successively. The proposed KFB
estimator has a remarkable gain compared to the previ-
ous estimator in [21], which does not exploit any temporal
correlation in channels. To resolve the complexity issue of

Fig. 8 The achievable sum-rates of BLMMSE estimator and KFB estimator according to time slot i with different temporal correlations when
M = 128, K = 8, τ = 8, r = 0.8, and SNR = 10 dB
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Fig. 9 The NMSEs of KFB estimator and TPE-based estimator according to time slot i whenM = 128, K = 8, τ = 8, ηk = 0.988, r = 0.5, α = 0.5, and
SNR = −5 dB

the KFB estimator due to the large-scale matrix inversion,
we also implemented the truncated polynomial expansion
(TPE)-based estimator. We analytically derived the mini-
mum NMSE based on the first-order TPE approximation,
and the numerical results showed that the low-complexity
TPE-based estimator gives nearly the same accuracy as the
KFB estimator even with lower approximation orders.

7 Methods
This paper studies the channel estimation problem
for massive MIMO systems using one-bit ADCs. The
performance of proposed algorithm was evaluated by dif-
ferent settings and metrics, which are NMSE and achiev-
able sum-rate. We use MATLAB R2018a to simulate the
algorithm.

Fig. 10 The NMSEs of KFB estimator and TPE-based estimator according to time slot i whenM = 128, K = 8, τ = 8, ηk = 0.872, r = 0.5, α = 0.5,
and SNR = 10 dB
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Appendix 1: Proof of (12)
We first expand �̄R�̄

H as,

�̄R�̄
H

= (� ⊗ √
ρIM)R(� ⊗ √

ρIM)H

= ρ

⎛
⎜⎝

⎡
⎢⎣

φ1,1 · · · φ1,K
...

. . .
...

φτ ,1 · · · φτ ,K

⎤
⎥⎦⊗ IM

⎞
⎟⎠R(� ⊗ IM)H

= ρ

⎡
⎢⎣

φ1,1IM · · · φ1,K IM
...

. . .
...

φτ ,1IM · · · φτ ,K IM

⎤
⎥⎦R(� ⊗ IM)H

(a)= ρ

⎡
⎢⎣

φ1,1R1 · · · φ1,KRK
...

. . .
...

φτ ,1R1 · · · φτ ,KRK

⎤
⎥⎦ (� ⊗ IM)H

= ρ

⎡
⎢⎣

φ1,1R1 · · · φ1,KRK
...

. . .
...

φτ ,1R1 · · · φτ ,KRK

⎤
⎥⎦

⎡
⎢⎣

φ∗
1,1IM · · · φ∗

τ ,1IM
...

. . .
...

φ∗
1,K IM · · · φ∗

τ ,K IM

⎤
⎥⎦

(b)= ρ

⎡
⎢⎣

∑K
k=1 Rk · · ·
...

. . .
...

· · · ∑K
k=1 Rk

⎤
⎥⎦ , (51)

where (a) comes from the independent spatial correla-
tion matrix R in (10) and (b) follows by assuming that
the pilot sequences are column-wise orthogonal with the
same magnitude for all elements. Since the diagonal term
of Rk is 1 for all k, we have

diag
(
�̄R�̄

H
)

= KρIMτ , (52)

which finishes the proof.

Appendix 2: Proof of (36)
First, we define g(x) as

g(x) � f (x) − x
= η2(α2β2x3 − (2α − α2 + α2β)βx2 + x)

+ 1 − η2 − x. (53)

Then, we have

g(−∞) < 0,
g(0) = 1 − η2 > 0,
g(1) = η2β(−2α + α2) < 0,

g(∞) > 0, (54)

where the inequality of g(1) is due to 0 < α < 2. The roots
of g(x) are γ0− ∈ (−∞, 0), γ ∈ (0, 1), γ1+ ∈ (1,∞) since
g(x) is the third-order polynomial, and g(−∞)g(0) < 0,

g(0)g(1) < 0, g(1)g(∞) < 0 based on the intermedi-
ate value theorem. Therefore, γ is the unique solution of
g(x) = 0 on x ∈ (0, 1).
Now, we will show g(x) < 0 for 0 < γ < x < 1. The

derivative of g(x) is given by

g′(x) = f ′(x) − 1

= η2
(
3α2β2x2 − 2(2α − α2 + α2β)βx + 1

)
− 1.
(55)

Then, we have

g′(0) = η2 − 1 < 0,
g′(1) = η2(α2β2 − 4αβ + 2α2β + 1) − 1

= η2αβ(α(β + 2) − 4) + η2 − 1
< η2αβ(α(β + 2) − 4)
< η2αβ(2α − 4)
< 0, (56)

since 0 < α < 2. This result implies g′(x) < 0 for 0 <

x < 1 because g′(x) is the second-order polynomial with
the positive leading coefficient 3η2α2β2. Since g′(x) < 0
for 0 < x < 1 and g(γ ) = 0, then g(x) < g(γ ) = 0 for
0 < γ < x < 1, which finishes the proof.

Appendix 3: Proof of 0 < α < 2
We first reformulate maxn λn

(
Cñi + �̃iMi|i−1�̃

H
i

)
as,

max
n

λn
(
Cñi + �̃iMi|i−1�̃

H
i

)
(a)= 1 − β + βmi|i−1

= 1 − β(1 − mi|i−1)

(b)≤ 1, (57)

where (a) comes from the fact that Mi|i−1 is a diagonal
matrix, and (b) is from 0 < γ ≤ mi|i−1 ≤ 1. By plugging
(57) into the bound on α,

0 < α <
2

maxn λn
(
Cñi + �̃iMi|i−1�̃

H
i

) , (58)

we have the tightened bound

0 < α < 2 ≤ 2

maxn λn
(
Cñi + �̃iMi|i−1�̃

H
i

) . (59)

Appendix 4: Proof of (38)
Based on the mathematical induction, we assume

m1|0 = 1 > γ ,
mi|i−1 > γ . (60)
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First, we proof that f (x) is the increasing function on x ∈
(γ , 1). The derivative of f (x) is

f ′(x) = η2
(
3α2β2x2 − 2(2α − α2 + α2β)βx + 1

)
.
(61)

Then, we have

f ′(0) = η2 > 0,
f ′(1) = η2(α2β2 − 4αβ + 2α2β + 1)

= η2((β2 + 2β)α2 − 4βα + 1)

= η2
(

(β2 + 2β)α − 2β
β2 + 2β

)2
+ β(2 − 3β)

β2 + 2β
> 0, (62)

which comes from 0 < β < 2
π

< 2
3 . Thus, f (x) is the

increasing function on x ∈ (γ , 1). Finally, we get f (x) >

f (γ ) = γ , which implies mi+1|i = f (mi|i−1) > f (γ ) = γ .
Thus, mi|i−1 > γ for all i > 0 due to the mathemat-
ical induction. Since mi|i−1 is the monotonic decreasing
and bounded sequence,mi|i−1 converges by themonotone
convergence theorem [32].
Thus, we can define Lm = limi→∞ mi|i−1,

Lm = lim
i→∞mi+1|i

= lim
i→∞ f (mi|i−1)

= f (Lm), (63)

which implies Lm is also a root of f (x) = x. Since mi|i−1
converges Lm, and γ is the unique solution of f (x) = x on
x ∈ (0, 1), Lm = limi→∞ mi|i−1 = γ , which finishes the
proof.
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