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Cosmological relaxation of the electroweak scale is improved by using particle production to trap the
relaxion. We combine leptogenesis with such a relaxion model that has no extremely small parameters or
large e-foldings. Scanning happens after inflation—now allowed to be at a high scale—over a sub-
Planckian relaxion field range for a cutoff scale of new physics up to Oð100Þ TeV. Particle production by
the relaxion also reheats the universe and generates the baryonic matter-antimatter asymmetry. We propose
a realization in which out-of-equilibrium leptons, produced by the relaxion, scatter with the thermal bath
through interactions that violate CP and lepton number via higher-dimensional operators. Such a minimal
effective field theory setup, with no new physics below the cutoff, naturally decouples new physics while
linking leptogenesis to relaxion particle production; the baryon asymmetry of the universe can thus be
intrinsically tied to a weak scale hierarchy.
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I. INTRODUCTION

Cosmological relaxation of the electroweak scale [1] has
gained much interest in recent years as an alternative
approach to the hierarchy problem that allows decoupled
new physics without fine-tuning the Higgs mass. In the
absence of new physics at the LHC, this is an increasingly
motivated scenario, but the difficulty of including baryo-
genesis in a realistic relaxation model has been one of the
main hindrances to further developments. We address this
here by combining leptogenesis with recent progress
toward a more viable relaxation mechanism.
The general relaxation idea is as follows. Consider an

axion (the so-called relaxion), ϕ, whose shift symmetry is
softly broken by some dimensionful parameter g; this can
arise, for example, in axion monodromy [2] and clockwork
constructions [3]. Below the Standard Model effective field
theory (SM EFT) cutoff Λ, including all interactions not
forbidden by symmetries, the most general Lagrangian
contains the terms,

LSMEFTþϕ ⊃ ðΛ2 − gϕÞjhj2 þ gΛ2ϕþ…; ð1Þ

where h is the Higgs doublet with mass μ2 ∼ Λ2, and the
ellipses denote higher-order terms in the soft-breaking
potential VðgϕÞ. This potential causes a slope along which
ϕ rolls during the early universe. As it rolls, it scans an
effective Higgs mass μ2jeff ≡ Λ2 − gϕ. At negative values
of μ2jeff , the Higgs’ vacuum expectation value v is nonzero.
All that is then needed to explain why v ≪ Λ is for a
backreaction to switch on and trap the relaxion when μ2jeff
is small and negative.
In the original GKR mechanism [1], the trapping back-

reaction acted on the relaxion’s periodic potential,

VðϕÞ ⊃ Λ4
c cosðϕ=fpÞ; ð2Þ

whose barriers Λ4
c ≃ Λ3

QCDv will grow with a linear
dependence on v until they are sufficiently large to
compensate for the slope. Unfortunately this creates several
problems: if ϕ is the QCD axion, it no longer solves the
strong CP problem without some additional mechanism,
and if the periodic potential is due to the condensate of
another gauge group, then it reintroduces new physics near
the weak scale. Moreover, for the barrier to trap the relaxion
at the weak scale requires g ∼ 10−31 GeV. Despite being
technically natural (the shift symmetry is restored as g goes
to zero) such a tiny value leads to conflict with the weak
gravity conjecture [4] and exponentially long e-foldings of
super-Planckian scanning during inflation.
An improvement comes from trapping using particle

production [5,6]. The relaxion’s shift symmetry permits an
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anomalous coupling to gauge bosons and a derivative
coupling to fermions,

Lϕ ⊃ −
1

4

αV
fV

ϕFμνF̃μν þ ∂μϕ

fL
J5μ; ð3Þ

where Fμν is a gauge field strength and J5μ a fermionic
current. In a minimal setup which is our baseline
assumption, such a fermion coupling can arise at low
energies through renormalization, involving the coupling to
the gauge boson fV , despite its absence at high energies.
The exponential production of gauge bosons is an efficient
source of friction [5–11]. In the models of Refs. [5,6,9] it is
an intrinsic part of the backreaction mechanism, since the
periodic potential barriers no longer depend on v. In this
case the relaxion initially has sufficient kinetic energy to
roll over them. We follow the approach of Hook and
Marques-Tavares (HMT) [5], where the v-dependence of
the backreaction mechanism resides in electroweak gauge
boson production. After describing the essential features of
the HMT model in the next section, we then show how it
can be combined in a natural way with leptogenesis during
reheating.

II. COSMOLOGICAL RELAXATION
WITH PARTICLE PRODUCTION

In this section we briefly review the cosmological
relaxation with particle production proposed by HMT
[5]. The HMT model can work either before, during, or
after inflation. Relaxation during inflation requires a very
low Hubble scale, H < v; we therefore focus on the
variation in which scanning happens after inflation ends,
which has the added benefit of allowing high-scale infla-
tion. After inflation ends, the inflaton decays to a hidden
sector;1 this ensures the relaxion will be scanning the zero-
temperature Higgs potential. The relaxion is initially
displaced with an initial field value ϕ0 > Λ2=g where
the effective Higgs mass is negative and v is large. As it
scans down to smaller values, over a typical field range
Δϕ ∼ Λ2=g, the value of v decreases until the electroweak
gauge bosons are light enough to be produced.2 This
happens when v ∼ _ϕv=fV , where _ϕv ≳ _ϕ0, and determines
the weak scale hierarchy v ≪ Λ in a technically natural
way. Through particle production, the kinetic energy of the
relaxion is converted into the temperature of the visible
sector’s thermal bath, T4 ≲ _ϕ2

v, thus reheating the universe
in the process.

Note that, unlike in the original GKR model, the
condensate Λc of the periodic potential is due to a hidden
sector and does not depend on the Higgs’ vacuum expect-
ation value v. The relaxion must initially have enough
kinetic energy to overcome the barriers, _ϕ2

0 > Λ4
c. The

initial condition for a nonzero relaxion velocity can be set
in several ways after exiting high scale inflation: the
inflaton preheating into hidden sector gauge bosons or
fermions to which the relaxion couples could temporarily
act as a background source in its equation of motion;
alternatively, an inflaton-relaxion coupling κσϕ can act as a
faster effective slow-roll slope during inflation so that it
exits with a velocity _ϕ ∼ κσ=HI. If the inflationary scale is
low enough, HI ≲ gΛ2=Λ2

c, then the shift-symmetry break-
ing slope alone gives sufficient slow-roll velocity.
The tachyonic condition for exponential gauge boson

production is set by the equation of motion for the trans-
verse polarization modes of gauge boson Aμ ≡ fZμ;W�

μ g
as

Ä� þ ω2
�A� ¼ 0; ð4Þ

where

ω2
� ¼ k2 þm2

A � k
_ϕ

fV
: ð5Þ

We therefore see that only the solutions A�ðkÞ ∝
expðiω�tÞ with low momentum modes k < mA experience
exponential growth once the gauge boson mass mA ∝ v
drops below the dissipation threshold ∼ _ϕv=fV . We
neglected Hubble here, since the dissipation and trapping
will happen on a shorter timescale, and assumed zero
temperature. In a plasma at finite temperature T, Eq. (5) can
be shown to be approximately given by [5]

ω2 − k2 ∓ k
_ϕ

fV
≃
T2jωj
k

: ð6Þ

In this case there can always be exponential production for

k ∼ _ϕ=fV with −iω ∼ ð _ϕ=fV Þ3
T2 .3 We emphasize here that

although the particle production starts to occur in a zero-
temperature background, the produced gauge bosons
quickly create a thermal bath via electroweak interactions.
Note that the amount of energy density transferred from the
relaxion to the tachyonic gauge bosons after Oð1Þ field
excursion is ΔV ∼ Λ4. Those gauge bosons, whose center
of mass energy is at OðΛÞ, thermalize with the Standard
Model particles with interaction rates Γ ∼ α2EWΛ much1The hidden sector energy density must eventually become

subdominant to the visible sector through a faster energy density
scaling.

2A coupling to photons must be sufficiently suppressed from
the start, for example in an ultraviolet completion with SUð2ÞL ×
SUð2ÞR left-right symmetry [5].

3For non-Abelian gauge bosons the plasma induces a magnetic
mass that restricts the possibility of a tachyonic solution, so only
theUð1ÞY Abelian gauge boson will be exponentially produced at
finite temperature.
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greater than Hubble. Since the end of relaxation will occur
in a thermal bath, the inverse of the tachyonic plasma
frequency gives the relevant timescale τ for particle
production to lose enough energy to reach the trapping
threshold at _ϕc ∼ Λ2

c,

τ ∼
T2 _ϕ3

v

Λ6
cv3

; ð7Þ

where we substituted fV ∼ _ϕv=v. This timescale is taken to
be faster than Hubble, τ ≲ 1=H (note that this is not Hubble
during inflation but when the relaxion is able to scan the
entire field range Δϕ ∼ Λ2=g at H ∼ g). Moreover, the
relaxion must not roll past the Higgs mass scale before
being trapped,

R
g _ϕdt < v2, which leads to the constraint

gT2 _ϕ3
v

Λ4
c

< v5: ð8Þ

For g ∼ Λ2=Mp (the value that saturates the bound of the
sub-Planckian field range requirement Δϕ≲Mp) Eq. (8)
places an upper limit on the cutoff Λ,

Λ≲
�
Mpv5Λ4

c

T2 _ϕ3
v

�1
2

: ð9Þ

This can be maximized for _ϕv ∼ Λ2
c ∼ T2. However, a

stronger bound comes from requiring the relaxion
energy density to be subdominant during scanning,
H2 ≳ VðϕÞ=M2

p ⇒ Λ≲ ffiffiffiffiffiffiffiffiffiffiffi
HMp

p
. A conservative bound

can also be placed assuming _ϕv ∼ T2 ∼ Λ2 in Eq. (9) such
that Λ≲ ðMpv5Þ16 ∼ 105 GeV. To maximize the reheating
temperature for leptogenesis we shall take this as our
typical upper limit for a sub-Planckian field range.
The decay constant fp must also allow for multiple

minima,

Λ4
c

fp
≳ gΛ2; ð10Þ

each separated by less than the weak scale,

gfp < v2: ð11Þ

The couplings in Eq. (3) can induce the irreducible
coupling to photons through loops at low energies [12,13],

1

fγ
¼ 2α

πsin2θwfV
B2

�
4m2

W

m2
ϕ

�
þ
X
F

NF
cQ2

F

2π2fF
B1

�
4m2

F

m2
ϕ

�
: ð12Þ

The fermion couplings fF in Eq. (12) is given by

1

fF
¼ −

3α2

4fV

�
3

4sin4θw
−

1

cos4θw
ðY2

FL
þ Y2

FR
Þ
�
log

Λ2

m2
W
;

ð13Þ

where YFL;R
denote the hypercharges of the left- and

right-handed fermions. The functions B1;2 in Eq. (12) is
defined as

FIG. 1. Theoretical constraints on cosmological relaxation with the particle production in (Λ, g) plane (left) and (Λ, mϕ) plane (right).
The shaded regions in the left panel are excluded. For a chosen g, region below a line is excluded for each type of constraint in the right
panel. We set Λc ∼ Λ in both panels as it is favored according to our numerical simulation. The explanation of the constraints is given in
Appendix A.
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B1ðxÞ ¼ 1 − x½fðxÞ�2; B2ðxÞ ¼ 1 − ðx − 1Þ½fðxÞ�2;
ð14Þ

where

fðxÞ ∼
8<
:

arcsin 1ffiffi
x

p x ≥ 1

π
2
þ i

2
log 1þ ffiffiffiffiffiffi

1−x
p

1−
ffiffiffiffiffiffi
1−x

p x < 1:
ð15Þ

The induced photon coupling results in the tachyonic
production of massless photons which can spoil the
mechanism. It can be suppressed as long as the timescale
for the photon production is larger than the Hubble time [9],

tγ ∼ T2f3γ= _ϕ
3 > H−1: ð16Þ

While the irreducible coupling to photons is also subject to
the astrophysical and phenomenological constraints, those
constraints are weak for the relaxion mass range of interest,
namely mϕ ≳OðGeVÞ.
Throughout this paper we will impose all constraints for

successful relaxation with particle production to take place,
similarly to Ref. [9]. The allowed parameter space for g and
mϕ as a function of Λ are shown in Fig. 1. The constraints
coming from not allowing dissipation via massless photon
production to dominate are displayed in Fig. 2.

III. LEPTOGENESIS

We now turn to the task of implementing leptogenesis
from cosmological relaxation with particle production. The
relatively low temperatures achievable in the HMT model
restrict the possible scenarios if we wish to avoid reintro-
ducing new physics below the SM EFT cutoff. Reheating to
the threshold of some new, heavy particle whose out-of-
equilibrium decay is responsible for generating the baryon
asymmetry requires reheating above the cutoff or adding
new physics below it. Other baryogenesis approaches are
also severely restricted by the particular requirements of the
relaxion mechanism. Here, we instead make use of lepto-
genesis generated by inelastic scattering between leptons
from the relaxion and leptons in the thermal bath [14,15].
All three of Sakharov’s conditions are satisfied—the
leptons produced by the relaxion are out-of-equilibrium,
and scattering proceeds via higher-dimensional operators
that violate lepton number, with CP-violating interactions.
The resulting lepton asymmetry number density nL will
then be converted to a baryon asymmetry nB by the
electroweak sphaleron process,

nB
s
≃
28

79

nL
s
∼Oð10−10Þ: ð17Þ

The asymmetry is normalized to the entropy density
s ¼ ð2π2=45Þg�T3, where g� ∼ 102 is the number of
relativistic degrees of freedom. An order of magnitude
estimate of the baryon asymmetry is sufficient for our
purpose, as we typically neglected Oð1Þ factors in our
relaxion estimates.
Remarkably, all of the ingredients for this mechanism are

already present in the relaxion setup. The loop-induced
derivative lepton current coupling in Eq. (3) in our minimal
setup not only respects the shift symmetry, but was
previously necessary to allow the thermal abundance of
the relaxion to decay away below the decoupling temper-
ature. Also, operators of higher mass dimension suppressed
by the scale of new physics are generically expected to be
present in a low energy effective theory. The most general
effective Lagrangian for the SM EFT can be written as

LSMEFT⊃LSMþcð5Þ

Λ5

Oð5Þþ
X
i

cð6Þi

Λ2
6;i

Oð6Þ
i þ

X
i

cð7Þi

Λ3
7;i
Oð7Þ

i þ…;

ð18Þ

where ci’s are Wilson coefficients which we would take to
be order one.
The unique dimension 5 operator is the Weinberg

operator,

Oð5Þ ¼ LhLh; ð19Þ
where we kept SUð2ÞL and flavor indices implicit, h is the
Higgs doublet field and L the left-handed lepton doublet.

FIG. 2. Bounds on Λ as a function of mϕ from requiring
dissipation via photons to be subdominant. The shaded region
below the curves are excluded. The constraint on the legend is
derived from Eq. (16).
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It generates a Majorana mass for neutrinos when the Higgs
field gets a vacuum expectation value. The light neutrino
mass bound mν ∼ 0.1 eV implies that the corresponding
operator scale is Λ5 ∼ 1014 GeV for an Oð1Þ Wilson
coefficient cð5Þ. The contribution of this operator to the
baryon asymmetry is then typically negligible for the low
reheating temperatures of the relaxion, and thus we focus
on dimension-7, lepton-number-violating operators gener-
ated at a scale Λ7. As an illustrative example we shall take
the operator

Oð7Þ ¼ Lhēcūcdc: ð20Þ

In the notation of Ref. [16], the field e is a right-handed
lepton and u, d are up- and down-type right-handed quarks,

respectively, and the corresponding coefficient cð7Þab contains
indices a, b representing the flavors of L and e respectively.
Note that there is a lower bound on the scale Λ7 coming
from the contribution of dimension-7 operators to the
neutrino mass, as studied for example in Refs. [16,17].
For the operator of Eq. (20) this bound is low enough to be
negligible; other operators have stricter bounds, and some
of them will be discussed in below [see discussion
around Eq. (36)].
We also have a four-fermion dimension-6 operator,

Oð6Þ ¼ ðL̄aγ
μLbÞðēcγμedÞ; ð21Þ

with complex coefficients cð6Þabcd and a scale Λ6, whose
contribution to the one-loop diagram is responsible for CP
violation in the interference term with the tree-level
diagram,4 shown in Fig. 3. The labels a, b, c, d are flavor
indices. The efficiency factor ϵ for the asymmetry in the
scattering can be parametrized as the difference between
the interaction rate of the processes L̄e → h̄ud̄ and
Lē → hūd,

ϵa ¼
σðL̄aea → h̄ud̄Þ − σðLaēa → hūdÞ
σðL̄aea → h̄ud̄Þ þ σðLaēa → hūdÞ : ð22Þ

Since the phase space factor cancels in the ratio, we only
need to evaluate σ ∝ jMj2 where the amplitude M can be
written as

MðLaēa → hūdÞ ∝ cð7Þa

Λ7

þ
X
b

cð7Þb

Λ7

2cð6Þab

Λ6

I: ð23Þ

We defined cð7Þaa ≡ cð7Þa and cð6Þabab ≡ cð6Þab , where the lepton
fields are diagonalized in Oð7Þ with real coefficients, while
cð6Þ is complex in general. I is a loop factor that must also
have an imaginary part from on-shell particles running in
the loop for Eq. (22) to be nonzero, since it evaluates to

ϵa ≃
4

Λ2
6

ImI
X
b

cð7Þb Imcð6Þab

cð7Þa

; ð24Þ

where ImI ¼ p2=ð8πÞ, and p2 is the square of the four-
momentum sum of the initial state leptons. When a lepton
pair is just produced from the perturbative decay of the
relaxion with mass mϕ through the induced coupling in
Eq. (3), a typical energy of the lepton is∼mϕ. These leptons
then scatter with the thermal bath via electroweak inter-
actions, and eventually become thermal. The thermalization
time tL ∼ Γ−1 ∼ 1=T ∼ 1=Λ is short, compared to the
Hubble time, but would be long enough for the out-of-
equilibrium leptons to generate the observed small lepton
asymmetry through the lepton-number-violating processes.
Before reaching a thermal distribution, the out-of-equilib-
rium leptons will have energies distributed from mϕ=2 to
3T as they are upscattered by the thermal bath, correspond-
ing to 6mϕT ≲ p2 ≲ ð6TÞ2.5 Since the dominant contribu-
tion to the asymmetry will come from the higher energy
nonthermal leptons we mainly use p2

max ≃ ð6TÞ2 as an
upper bound in our estimates, while also examining the
p2
min ≃ 6mϕT points as a conservative lower bound case.
In a standard approximate picture for the perturbative

decays of the relaxion, since mϕ > H at the time of
trapping, we may treat the oscillations of ϕ in its local
minimum as a gas of nonrelativistic particles whose
equation of state is that of matter. Its number density is
given by

nϕðtÞ ∼ ρϕðtÞ=mϕ; ð25Þ

FIG. 3. Tree-level and one-loop Feynman diagrams involving
the lepton-number-violating dimension-7 operator (20) and the
four-fermion operator (21), whose interference violates CP.

4An asymmetry is generated despite being at leading order in
the lepton-number-violating coupling; this does not contradict the
Nanopoulos-Weinberg theorem [18] which assumes all inter-
actions violate lepton or baryon number, as discussed in
Refs. [19–21].

5While the exact evaluation of the interaction rates, here and in
the following, should take into account all the thermal initial
states, we find that extrapolating the zero-temperature results by
replacing p2 with 6mT or ð6TÞ2 serves a good approximation
within a factor of 2.
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with the initial value for the relaxion energy density
ρϕð0Þ ∼ Λ4, and the perturbative decay rate into leptons
is ΓD ∼m3

ϕ=f
2
L. This decay rate is subdominant to the rate

of condensate scatteringwith the thermal bath, which goes as
ΓS ∼ T2mϕ=f2L;V (we included an additionalmϕ=T suppres-
sion in the naive rate to account for Bose-enhancement [5]),
and so the available number density for producing out-of-
equilibrium leptons in perturbative decays is

nmin
ϕ ≃

ΓD

ΓS
nϕ ≃

�
mϕ

T

�
2

nϕ: ð26Þ

However, this approximation does not account for the full
production of fermionic modes [22], similarly to the case of
bosons. Though the occupation number of fermions cannot
be exponentially enhanced due to Pauli blocking, the gen-
eration of fermionicmodes from a rolling scalar field has also
been shown to give large effects [22]. We therefore expect
this to give a large contribution of nonthermal leptons whose
typical energy will be of order _ϕv=fL ≳ v. Since a full
numerical investigation of fermionic preheatinglike process
including backreaction and thermal effects is beyond the
scope of this work, we simply account for this extra
contribution by allowing the effective number density of
the condensate that is available for out-of-equilibrium
leptons, n0ϕ, to vary between the minimum perturbative
contribution of Eq. (26) and the total condensate number
density Eq. (25),

�
mϕ

T

�
2 ≲ n0ϕ

nϕ
≲ 1: ð27Þ

The number densities of the nonthermal lepton species
la, of the net lepton asymmetry and the radiation energy
density evolve following the Boltzmann equations. We
derive them in a similar way as in [15], ignoring terms
involving the Hubble parameter since the thermalization
rate Γth is much greater than the Hubble scale. These
equations can be schematically written as

_nla ¼ ΓDn0ϕBa − nlaΓth; ð28Þ

_ρR ¼ ΓSρϕ þ ρlaΓth; ð29Þ

_nL ¼ 4
X
a

�
nlaΓ1LNVaϵ1a þ

1

2
nlaΓ2LNVaϵ2a

�
− ΓwashnL;

ð30Þ

where Ba is the branching fraction of the relaxion pertur-
batively decaying into lepton species a, nla denotes the

number density of out-of-equilibrium leptons, ρR ¼ π2

30
g⋆T4

is the radiation energy density, and nL is the net
lepton number density. We have used the effective

number density n0ϕ to capture all the sources that produce
out-of-equilibrium leptons. Then the first term on the right-
hand side (r.h.s.) of Eq. (28) represents all these contri-
butions, normalized by the factor ΓDBa, while the second
term comes from the fact that by scattering with the plasma
the out-of-equilibrium leptons eventually approach ther-
mal equilibrium. The first term on the r.h.s. of Eq. (29)
denotes the contribution to the radiation energy density
from relaxion condensate scattering with the plasma, and
the second term corresponds to the energy added to
radiation by out-of-equilibrium leptons interacting with
the bath. The first and the second terms on the r.h.s. of
Eq. (30) correspond to the lepton-number-violating inter-
actions between a thermal and an out-of-equilibrium
lepton, between two out-of-equilibrium leptons, respec-
tively. The subscript 1, 2 in Γ1;2LNVa and ϵa represents the
number of out-of-equilibrium leptons in an interaction, and
we will drop it unless it is necessary. The last term of
Eq. (30) accounts for possible washout effects that could
erase the produced lepton asymmetry.
The exact solution to the Boltzmann equations is quite

complicated and beyond the scope of this work. In this
work, we provide an approximate solution to the
Boltzmann equations near the end of leptogenesis which
is sufficient for our purpose to show how the generated
lepton asymmetry evolves and how the washout inter-
actions affect the asymmetry. The detailed procedure can be
found in Appendix B, and we simply take the final result
here. The number density of the net lepton asymmetry can
now be estimated as the fraction of the number density n0ϕ
converted into pairs of out-of-equilibrium leptons with a
branching ratio B that undergo lepton-number-violating
inelastic scattering at a rate ΓLNV , relative to the thermal
elastic scattering rate Γth, with an efficiency ϵ:

nL
s
≃
n0ϕ
s

X
a

4ϵaBa
ΓLNVa

Γth
; ð31Þ

where we take into account only the scattering between an
out-of-equilibrium lepton and a thermal lepton. The lepton-
number-violating and thermal scattering rates in Eq. (31)
are given by

ΓLNVa ≃
1

128π5
p4

�
cð7Þa

Λ3
7

�2

T3; Γth ≃ α2T; ð32Þ

where α2ð
ffiffiffiffiffi
p2

p
¼ 105 GeVÞ ∼ 0.03 is the SUð2ÞL structure

constant, and we assumed thermal particles follow the
Boltzmann distribution. The expression in Eq. (31) approx-
imates within an order of magnitude the numerical results
of solving the Boltzmann equations, provided that washout
effects are negligible

Γwash < H; ð33Þ
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where the rates of the washout processes such as h̄ud̄ → l̄e
and ud̄ → l̄eh etc. are estimated to be

Γwash ¼
9

π5
T7

�
cð7Þ

Λ3
7

�
2

: ð34Þ

It is obvious to see that once Eq. (33) is satisfied at the onset
of washout, it continues to be satisfied during the cooling
period, since Γwash decreases faster than the Hubble
parameter. A larger Λ7 than the cutoff Λ is favored to
suppress the washout rates for T ∼ Λ, and at the same time,
it becomes challenging to generate enough lepton asym-
metry. As a result, only the benchmark scenario for p2

max
and the maximum number density n0ϕ ¼ nϕ successfully
generates sufficient lepton asymmetry. There could be a
similar-sized contribution from the scattering between two
out-of-equilibrium leptons for this benchmark scenario.
However, our main result would remain the same.
We set Λ ∼ Λc;6 ∼ T for simplicity, though one should

bear in mind that they only appear to be equal within an
order of magnitude and can be varied independently. We
also have chosen g ∼ 10−8 GeV to push the cutoff scale up
to Λ ∼ 105 GeV while satisfying all the constraints in order
for the relaxation mechanism with particle production to
work [9], as discussed in Sec. II. We learn through our
numerical simulation that the scale Λ7 takes values of order
Oð107Þ GeV for Λ ∼ 105 GeV, and two benchmark points
are selectively shown in Table I for the purpose of
illustration. For instance, for B ¼ 1, we can obtain the
following baryon asymmetry,

nB
s
∼ 1. × 10−10

�
B
1

��
T

1. × 105 GeV

�
8
�

nϕ=s

7.2 × 102

�

×

�
1.34 × 107 GeV

Λ7

�
6
�
1. × 105 GeV

Λ6

�
2

: ð35Þ

Anumerical scan ofmore allowed parameter space points for
g ¼ 10−8 GeV, in the above scenario, is plotted inFig. 4. The
red, blue, and black color coding represents three different
branching ratios, B ¼ 10−2; 10−1; 1, respectively.
We may also consider other lepton-number-violating

dimension-7 operators; qualitatively, the mechanism is not
much affected by the details of the specific operator, though
the parameter space will be quantitatively different depend-
ing on the phase space factor. Phenomenological con-
straints also vary for each operator, as studied, e.g., in

Refs. [16,17]. The particular choice may also be theoreti-
cally motivated; for example, Ref. [17] showed that for
lepton-number-violating operators with two leptons and no
quarks there is a unique operator corresponding to the
specific chirality of the lepton pair which are of dimension
5, 7, and 9 for LL, Le, and ee, respectively. The dimension-
7 operator in this case is

Oð7Þ ¼ L̄γμechðh†Dμh̃Þ: ð36Þ

The lifetime of the inverse neutrinoless double-beta (0νββ)
decay is T1=2 > 1.9 × 1025 years which sets a lower bound
on the scaleΛ7 ≳ 105 GeV for cð7Þ ∼Oð1Þ [17]. However a
stronger bound comes from the operator’s one-loop con-
tribution to the neutrino mass, mν ∼ v

8
ffiffi
2

p
π2Λ

meλ7;ee, which

requires Λ7 ≳ 107 GeV. Here, the phase space factor in
Eq. (32) also gives a larger suppression as it involves an
additional particle in the final state. We suspect that the
lowest allowed scale Λ7 ∼ 107 GeV might not be compat-
ible with the sufficient lepton asymmetry although it would
more easily be able to suppress the washout effect.

IV. CONCLUSION

We proposed a model of cosmological relaxation of the
weak scale with particle production that generates the
baryonic matter-antimatter asymmetry while reheating
the universe after inflation. For an SM EFT cutoff up to
Oð100Þ TeV, the model has several desirable features: it
allows for high-scale inflation, scanning with a sub-
Planckian field range, has no extremely small parameters,

FIG. 4. Benchmark parameter space points in themϕ vsΛ plane
that pass all constraints, for g ¼ 10−8 GeV in the p2

max, maximum
nϕ scenario described in the text. The red, blue, and black points
are for B ¼ 10−2; 10−1; 1, respectively.

TABLE I. A benchmark point in GeV (except the last column)
for our relaxion leptogenesis mechanism.

Λ;Λc;Λ6; T Λ7 fp mϕ fV g B

105 1.34 × 107 5. × 107 200 5.5 × 107 10−8 1
105 1.03 × 107 1. × 109 10 5.5 × 107 10−8 10−2
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introduces no new physics below the cutoff, and achieves
leptogenesis at low temperatures.
The model makes use of the thermal bath from bosons

produced by the relaxion, and the lepton coupling that was
already included to dilute the relaxion’s thermal abundance.
This necessarily leads to the production of leptons by
relaxion rolling as well as through perturbative decays in
the misalignment mechanism. These leptons are out-of-
equilibrium and scatter with the thermal bath. The scattering
will generally involve higher-dimensional operators that
violate lepton number, whose effect can be large enough
to generate the observed baryon asymmetry of the universe if
the scale of these operators are sufficiently close to the cutoff.
From a conceptual point of view, leptogenesis in

relaxation combines two approaches to understanding
the smallness of the weak scale: a “dynamical selection”
mechanism and a “censorship” approach [23]. The relaxion
mechanism ensures its evolution naturally selects a mini-
mum with v ≪ Λ, whereas tying its particle production
backreaction to reheating and leptogenesis gives a cosmo-
logical censorship criteria for us living in the corner of the
universe where the relaxion happened to have the right
initial conditions for sufficient scanning—if it did not, the
universe would be empty.
The lack of new physics at the weak scale that was

expected to solve the hierarchy problem may mean such a
solution is simply postponed to higher energies. The issue
has certainly not gone away—on the contrary, it is
exacerbated by the experimental null results. It is therefore
worthwhile to explore alternative ways of naturally
obtaining a hierarchy, with much still to be learned from
dynamics in the early universe where scalar fields and
Higgs-dependent phenomena can play a major role.

ACKNOWLEDGMENTS

We thank Mohamed M. Anber, Kohei Kamada, Jose
Miguel No, and Michael Ramsey-Musolf for useful dis-
cussions, and the Hong Kong Institute for Advanced Study,
where part of this work was carried out, for kind hospitality.
T. Y. was supported by a Junior Research Fellowship from
Gonville and Caius College and partially supported by
STFC consolidated Grant No. ST/P000681/1. F. Y. and
M. S. were supported by Samsung Science and Technology
Foundation under Project No. SSTF-BA1602-04.

APPENDIX A: THEORETICAL CONSTRAINTS
FOR COSMOLOGICAL RELAXATION

FROM PARTICLE PRODUCTION

Here we list the constraints used in Fig. 1. They are
similar to those in [9] except that our g is a dimensionful
parameter.
(1) Avoid slow-roll:

The relaxion-driven inflation should be short
enough [9],

g≳ 0.2
Λ2

Mp
: ðA1Þ

(2) Efficient dissipation:
The kinetic energy gaining while rolling down the

potential, ΔKrolling, should be smaller than the
amount of energy lost via the particle production,
ΔKpp,

−
dV
dt

Δtpp ∼ ΔKrolling ≲ ΔKpp ∼
_ϕ2

2
; ðA2Þ

where Δtpp ∼ ð9π2=16Þg2EWT2f3= _ϕ3 is the time
duration for the particle production.

(3) Higgs tracking the minimum:
The scanning of the relaxion should be done while

the Higgs field sits on its minimum,

g≲ ðv ffiffiffi
λ

p Þ3
Λ2

: ðA3Þ

(4) Small Higgs mass variation:
The relaxion should not overshoot the correct

Higgs mass during the time it takes to lose all of its
kinetic energy,

Δmh ∼
Δm2

h

mh
∼

g
mh

Δtpp _ϕ≲mh: ðA4Þ

(5) Sub-Planckian:
The field excursion should be sub-Planckian,

Δϕ ∼
Λ2

g
≲Mp: ðA5Þ

(6) Precision of mass scanning:
The Higgs mass must be scanned with the enough

precision,

Δm2
h ∼ gΔϕ ∼ g2πf ≲m2

h: ðA6Þ

(7) Stop relaxion:
The slope of the linear potential should be smaller

than that of cosine potential,

gΛ2 ≲ Λ4
c

f
: ðA7Þ

APPENDIX B: APPROXIMATE SOLUTION
TO BOLTZMAN EQUATIONS

Here we provide the approximate solution to the
Boltzmann equations in Eqs. (28)–(30) near the end of
reheating where we assume that the universe is radiation-
dominated. For the purpose of illustration, we first consider
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out-of-equilibrium leptons purely from the perturbative
decay of relaxions, that is, n0ϕ ¼ nmin

ϕ in Eq. (28), and
we will make a comment about the general case.
Near the end of reheating, the change in the temperature

is small such that the temperature as a function of time may
be taken as a constant. Hence, the rates ΓS, Γ1;2LNVa, and
Γth and the efficiency factor ϵ1;2a are constant as well, and
the evolution equation for the radiation energy density is
decoupled from those for the out-of-equilibrium lepton
number density and for the net lepton number density.
Furthermore, the change with time in the scale factor aðtÞ is
slower than that in the exponential factors such as e−ΓDt and

e−Γtht, since the former is in power law aðtÞ ∼ t
2

3ð1þwÞ, wherew
is the equation of state of the system. We therefore tempo-
rarily ignore the redshift in nmin

ϕ (∝ ρϕðtÞ ∝ e−ΓDtaðtÞ−3)
when solving the Boltzmann equations. From Eq. (28), we
can easily find

nla ≈
ΓD

Γth
Banmin

ϕ ðB1Þ

where we have used Γth ≫ ΓD. Substituting Eq. (B1) to
Eq. (30) we obtain

nL ∼
X
a

Ba

�
4ϵ1a

Γ1LNVa

Γth
þ 2ϵ2a

Γ2LNVa

Γth

�
nmin
ϕ : ðB2Þ

In the conservative casewhere the out-of-equilibrium leptons
are right after being produced by relaxion decay with an
energy of p0 → mϕ=2 ≪ T, the first term that we adopted in
our manuscript would dominates in Eq. (B2). Whereas the
second term in Eq. (B2) would make a similar-sized con-
tribution when the energy of the nonthermal lepton has a
value close to 3T via upscattering by the thermal bath before
reaching a thermal distribution. However, this would not
change our main result.
We see from Eq. (B2) that the evolution of the lepton

asymmetry mainly arises due to ρϕðtÞ in nmin
ϕ :

nLðtÞ ∝ ρϕðtÞ ∝ e−ΓDtaðtÞ−3 ∝ e−ΓDtðΓDtÞ−3=2; ðB3Þ

where we have used that the timescale for this process
roughly is t ∼ Γ−1

D . At the end of leptogenesis, without
entropy injection from the hidden sector, the exponential
factor in the evolution only generates a suppression factor
of Oð1Þ. The redshift in nL and s both scales as a−3 and
thus does not change the ratio nL=s. For the more general
case where the out-of-equilibrium leptons have sources
other than the perturbed decaying relaxion, we expect the
nmin
ϕ factor in Eq. (B2) to be replaced by n0ϕ.
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