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Abstract: This study seeks an advanced sensor fault diagnosis algorithm for DC/DC boost converters
governed by nonlinear dynamics with parameter and load uncertainties. The proposed algorithm is
designed with a combination of proportional-type state observer and disturbance observer (DOB)
without integral actions. The convergence, performance recovery and offset-free properties of the
proposed algorithm are derived by analyzing the estimation error dynamics. An optimization process
to assign the optimal feedback gain for the state observer is also provided. Finally, a fault diagnosis
criteria is introduced to identify the location and type of sensor faults online using normalized
residuals. The experimental results verify the effectiveness of the suggested technique under variable
operating conditions and three types of sensor faults using a prototype 3 kW DC/DC boost converter.

Keywords: DC/DC boost converter; nonlinear dynamics; parameter variation; fault diagnosis;
convergence analysis

1. Introduction

DC/DC boost converters play important roles in various industrial applications such as
solar/wind power systems, electric vehicles and various home appliances [1–7], where the input
DC power needs to be converted to a desired high-quality output DC power in the presence of several
practical uncertainties caused by parameter and load variations.

To control the output voltage of DC/DC boost converters, several control schemes have been
proposed, including conventional proportional-integral (PI) controllers [8–10] using the cascade control
strategy, having an inner-loop current controller and an outer-loop voltage controller, and advanced
techniques such as adaptive [11], robust [12] and model predictive [13] controllers. These control
schemes are based on feedback from the inductor current and output voltage sensors. However,
unexpected faults can occur in the sensors due to equipment aging or environmental interference,
including electromagnetic noise, vibration, shock and abrupt temperature changes, which affect
the normal operation of the control system. Even if open-loop controls without sensors can be
implemented, degradation in the dynamic performance and robustness from parameter uncertainties
and load variations cannot be avoided. Accordingly, sensor fault diagnosis and fault-tolerant control
algorithms are of paramount importance in the industrial application of DC/DC boost converters.

Fault diagnosis techniques are generally divided into signal-based and model-based
approaches [14]. Signal-based methods [15,16] utilize the features of measured signals in which
the fault information is reflected. A diagnostic decision on the features is made based on the
symptom analysis. Signal-based fault detection methods are widely used for real-time monitoring of
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electrical or mechanical components in a system, but they are rarely used for sensor fault diagnosis.
By contrast, model-based methods, widely adopted for sensor fault diagnosis of power converters,
monitor the consistency between the measured sensor outputs of a system and the model-predicted
outputs. The model-predicted outputs are generally obtained from state observers such as the adaptive
observer [17,18], Luenberger observer [19,20] and extended Kalman filter [21,22].

One of the main considerations in the design of the state observer for sensor fault diagnosis of
power converters is that the state observer needs to be insensitive to parameter and load variations
to avoid misdiagnosis in normal operations [23]. In this respect, the sliding mode observer [24–26]
and proportional-integral observer [27–29], offering the desirable feature of robustness to bounded
uncertainties, showed good performances in fault diagnosis of modular multilevel converters and
pulse-width modulation (PWM) rectifiers that contain parameter uncertainties and load variations.
Among the few studies on fault diagnosis for DC/DC boost converters [19,20], however, the robustness
of the fault diagnosis algorithm was not considered by assuming that the parameters were exactly
known or the operating conditions were fixed.

On the other hand, fault isolation, which determines the location of faulty sensors, and fault
identification, which determines the type of sensor faults, are also important issues [14]. It was shown
that fault isolation can be realized by using a well-designed state observer, even for the case where the
three types of faults (i.e., open-circuit fault, gain deviation and abnormal noise) occurred in the current
and voltage sensors of the DC/DC boost converter [20] and PWM rectifier [25]. However, to the best
of my knowledge, criteria for fault identification for the three types of sensor faults have not been
presented yet.

This study proposes a proportional-type state-observer-based sensor fault diagnosis algorithm for
DC/DC boost converters, considering the system nonlinear behavior, parameter and load variations.
The proposed algorithm comprises two parts: One full-state observer and one disturbance observer
(DOB) for removing state estimation offset errors even in the presence of uncertainties from the
parameter and load variations. There are three main contributions in this paper. The first is to present
an optimization process determining the optimal full-state observer gain under the bilinear matrix
inequality (BMI) constraints. The second is to ensure the estimation offset-free and performance
recovery properties through analysis of the estimation error dynamics. The third is to devise fault
diagnosis criteria to identify the location and type of sensor faults online using normalized residuals.
The validity of the proposed algorithm is confirmed with experimental data using a prototype 3 kW
DC/DC boost converter.

2. DC/DC Boost Converter Nonlinear Dynamics

By applying the averaging technique to the DC/DC boost converter depicted in Figure 1, nonlinear
differential equations are obtained as [30]

Li̇L(t) = −(1− u(t))vdc(t) + vin(t), (1)

Cv̇dc(t) = (1− u(t))iL(t)− iLoad(t), ∀t ≥ 0, (2)

where the averaged inductor current of iL(t) and output voltage of vdc(t) are treated as the state
variables, which are available for feedback. The duty ratio constrained in the interval of [0, 1] is
denoted as u(t), i.e., u(t) ∈ [0, 1], which acts as the control action to be used as a degree of freedom.
The capacitance and inductance values are denoted as C and L, respectively, and can be significantly
changed according to the operating conditions. It is assumed that only the initial value of vin(t) is
known (vin,0). The load current of iLoad(t) can be also abruptly varied by the passive and active loading
conditions, also assumed to be unknown.
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Figure 1. DC/DC boost converter topology.

Considering the full-state estimator for this application ensuring the offset-free property, the state
estimation error is maintained at zero in the steady state. The fault occurrence in the current or
voltage sensor would result in a certain level of magnification of the state estimation error. Thus,
a proper offset-free full-state estimation algorithm can be used as a fault detector. This study describes
a simple full-state observer-based fault diagnosis algorithm, guaranteeing the performance recovery
and offset-free properties, without any use of estimation error integral actions.

3. Fault Diagnosis Algorithm

3.1. Full-State Observer Design

To consider the practical constraints on the converter parameter and load, the original converter
dynamics of (1) and (2) are rewritten as

i̇L(t) = − 1
L0

(1− u(t))vdc(t) +
1
L0

vin,0 + dL(t), (3)

v̇dc(t) =
1

C0
(1− u(t))iL(t) + dv(t), ∀t ≥ 0, (4)

with the nominal parameter values of L0 and C0, where dL(t) and dv(t) denote the lumped disturbances

from the parametric and load uncertainties. The state vector of x(t) :=
[

iL(t) vdc(t)
]T

leads to the
linear time-varying system for the dynamical Equations of (3) and (4) as

ẋ(t) = A(u(t))x(t) + c + d(t), (5)

y(t) = x(t), ∀t ≥ 0, (6)

with the time-varying system matrix of A(u(t)) :=

[
0 − 1

L0
(1− u(t))

1
C0
(1− u(t)) 0

]
, known constant

vector of c :=
[

1
L0

vin,0 0
]T

, and unknown time-varying vector of d(t) :=
[

dL(t) dv(t)
]T

to be
estimated by a DOB.

The proposed full-state observer for dynamics of (5) and (6) is given by

˙̂x(t) = A(u(t))x̂(t) + c + d̂(t) + L(y(t)− ŷ(t)), (7)

ŷ(t) = x̂(t), ∀t ≥ 0, (8)

with the estimation gain matrix of L ∈ R2×2 and the estimated disturbance of d̂(t) coming
from the DOB:

d̂(t) = z(t) + lx(t), (9)

ż(t) = −lz(t)− l2x(t)− l(A(u(t))x(t) + c), l > 0, ∀t ≥ 0. (10)
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Remark 1. Consider the following optimization problem:

max
α>0,Q=QT>0,Y

α (11)

subject to bilinear matrix inequality (BMI) constraints:

QAT(ui)− YT + A(ui)Q− Y + 2αQ ≤ 0, i = 1, 2, (12)

where u1 := mint≥0{u(t)} = 0 and u2 := maxt≥0{u(t)} = 1, which yields that

A(u1) = A(u(t))
∣∣∣∣
u(t)=u1

=

[
0 − 1

L0
1

C0
0

]
and A(u2) = A(u(t))

∣∣∣∣
u(t)=u2

=

[
0 0
0 0

]
.

The BMI constraints of (12) correspond to the linear matrix inequality (LMI) constraints for any fixed
α > 0. Therefore, the optimizer of (Q∗, Y∗, α∗) to the optimization problem of (11) can be achieved by
using the semidefinite programming solver iteratively, and it constitutes the optimal state estimation gain of
L∗ = Y∗(Q∗)−1. The implication of the optimal solution of L∗ can be seen by analyzing the state estimation
error dynamics. For details, see Section 3.2.

Remark 2. A necessity for ensuring the existence of a solution to the matrix inequality of (12) corresponds to the
observability of the pair (I2×2, A(ui)), i = 1, 2. The observability can be investigated by simply checking the full

rankness of the observability matrix defined as Oi :=

[
I2×2

A(ui)

]
∈ R4×2. It is easily seen that rank(Oi) = 2,

i = 1, 2. Thus, the observability of the pair (I2×2, A(ui)), i = 1, 2, is always ensured.

3.2. Closed-Loop Properties

The state estimation error of x̃(t) := x(t)− x̂(t) satisfies the dynamics given as

˙̃x(t) = ẋ(t)− ˙̂x(t)

= AL(u(t))x̃(t) + d̃(t), ∀t ≥ 0, (13)

which is obtained using the dynamics of (5) and (7), where AL(u(t)) := A(u(t)) − L and
d̃(t) := d(t)− d̂(t), ∀t ≥ 0. It is not trivial to analyze the closed-loop stability of the time-varying
nonhomogeneous system of (13) that acts as the basis of following lemmas and theorems. First,
Theorem 1 presents the state estimation error convergence property.

Theorem 1. Suppose that there exists Q = QT > 0 satisfying the BMI constraints of (12) for some α > 0
and Y ∈ R2×2. Then, the state estimation gain of L = YP with P := Q−1(> 0) guarantees the exponential
convergence property, i.e.,

lim
t→∞

x̂(t) = x(t),

as ḋ(t)→ 0 exponentially.

Proof. First, for obtaining the dynamics of the DOB output of (9), substitute the DOB output of (9) to
the DOB dynamics of (10) as

˙̂d− lẋ = −l(d̂− lx)− l2x− l(A(u)x + c), ∀t ≥ 0,
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which shows that the estimated disturbance of d̂ is governed by the simple first-order dynamics:

˙̂d = l(ẋ−A(u)x− c− d̂) = l(d− d̂), l > 0, ∀t ≥ 0, (14)

where the relationship of (5) is applied. Second, rewrite the BMI of (12) using the state estimation gain
of L = YP as [

AT
L(u(t))P + PAL(u(t))

]
u(t)=ui

≤ −2αP, i = 1, 2,

which results in

AT
L(u)P + PAL(u) ≤ −2αP, ∀u ∈ [0, 1], ∀t ≥ 0, (15)

thanks to the result of [31]. Now, consider the positive definite function defined as

V :=
1
2

x̃TPx̃ +
γ

2
‖d̃‖2, γ > 0, ∀t ≥ 0, (16)

with d̃ := d − d̂, whose time-derivative can be obtained along the closed-loop trajectories
of (13) and (14) with the resultant matrix inequality of (15) as

V̇ = x̃TP ˙̃x + γd̃T ˙̃d

= x̃TP(AL(u)x̃ + d̃) + γd̃T
(−ld̃ + ḋ)

=
1
2

x̃T(AT
L(u)P + PAL(u))x̃ + x̃TPd̃− γl‖d̃‖2 + γḋTd̃

≤ −αx̃TPx̃ +
α

2
x̃TPx̃ +

1
2α

d̃TPd̃− γl‖d̃‖2 + γḋTd̃

≤ −α

2
x̃TPx̃− (γl − λmax(P)

2α
)‖d̃‖2 + γḋTd̃, ∀t ≥ 0,

where Young’s inequality [32] verifies the first inequality:

x̃TPd̃ = x̃T
√

P
√

Pd̃ ≤ ε

2
‖x̃T
√

P‖2 +
1
2ε
‖
√

Pd̃‖2, ∀ε > 0, P =
√

P
√

P,

and the second inequality comes from the spectral inequality [33]:

λmin(P)‖d̃‖2 ≤ d̃TPd̃ ≤ λmax(P)‖d̃‖2,

with λmin(P) and λmax(P) being the minimum and maximum eigenvalues of positive-definite matrix
of P. The constant of γ := 1

l (
λmax(P)

2α + 1
2 ) achieves an upper bound of V̇ as

V̇ ≤ −α

2
x̃TPx̃− 1

2
‖d̃‖2 + γḋTd̃

≤ −βV + γḋTd̃, ∀t ≥ 0, (17)

with β := min{α, 1
γ}. The resulting inequality of (17) implies the strict passivity for the input-output

mapping of
[

0 γḋ
]
7→

[
x̃ d̃

]
, which implies the L2-stability for the same input-output

mapping [34]. Therefore, x̂→ x as ḋ→ 0, exponentially.

Theorem 2 derives the state estimation performance recovery property using the result of Theorem 1.
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Theorem 2. Suppose that the assumptions of Theorem 1 hold true and consider the desired state estimation
error trajectory of x̃∗ coming from:

˙̃x∗(t) = AL(u(t))x̃∗(t), ∀t ≥ 0, (18)

with a feasible state estimation gain of L satisfying BMI constraints of (12). Then, it holds that

lim
t→∞

x̃(t) = x̃∗(t) (19)

as ḋ(t)→ 0, exponentially.

Proof. It follows from the definition of e := x̃∗ − x̃ that

ė = ˙̃x∗ − ˙̃x

= AL(u)e− d̃, ∀t ≥ 0. (20)

Consider the composite-type positive-definite function defined as

V∗ :=
1
2

eTPe + κV, κ > 0, ∀t ≥ 0, (21)

with the positive-definite function of V defined in (16), which yields its time-derivative using the
dynamics of (20) and the inequality of (17) as

V̇∗ = eTPė + κV̇

≤ 1
2

eT(AT
L(u)P + PAL(u))e− eTPd̃− κβV + κγḋTd̃

≤ −βeTPe +
β

2
eTPe +

1
2β

d̃TPd̃− κβV + κγḋTd̃

≤ − β

2
eTPe− (κβ− λmax(P)

βγ
)V + κγḋTd̃, ∀t ≥ 0,

with the applications of Young’s and spectral inequalities to the second and third inequalities,
respectively. The constant of κ := 1

β (
λmax(P)

βγ + 1) gives an upper bound of V̇ as

V̇∗ ≤ − β

2
eTPe−V + κγḋTd̃

≤ −ζV∗ + κγḋTd̃, ∀t ≥ 0, (22)

with ζ := min{β, 1
κ }. Therefore, x̃ → x̃∗ as ḋ → 0 by the same reasoning of the proof of Theorem 1,

which completes the proof.

The proposed algorithm does not involve any integral action of the state estimation error.
Therefore, it is necessary to clarify whether the offset-errors are rejected by the proposed algorithm in
actual implementations, as described in Theorem 3.

Theorem 3. Suppose that the assumptions of Theorem 1 hold true and that a feasible state estimation gain of L
makes the matrix of AL(u(t)) invertible. Then, the proposed algorithm ensures the offset-free property, i.e.,

x̂(∞) = x(∞),

where limt→∞ f(t) = f(∞).
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Proof. Consider the whole error dynamics of (13) and (14) as

˙̃x = AL(u)x̃ + d̃,
˙̃d = −ld̃ + ḋ, ∀t ≥ 0,

which satisfies the equations in the steady state given by:

0 = AL(u(∞))x̃(∞) + d̃(∞), (23)

0 = −ld̃(∞). (24)

It can be easily verified that the substitution of (24) to (23) leads to x̃(∞) = 0 due to the invertability
of matrix AL(u), which completes the proof.

Remark 3. Theorem 3 requires the invertibility of the matrix of AL(u(t)). This condition actually holds true

for sufficiently small off-diagonal values of L =

[
L11 L12

L21 L22

]
. To see this, consider:

det(AL(u(t))) = det(

[
−L11 −( 1

L0
(1− u(t)) + L12)

1
C0
(1− u(t)) + L21 −L22

]
)

= L11L22 + (
1
L0

(1− u(t)) + L12)(
1

C0
(1− u(t)) + L21)

≈ L11L22 +
1

L0C0
(1− u(t))2 6= 0, ∀t ≥ 0,

for sufficiently small values of L12 and L21.
3.3. Normalized Residual and Fault Diagnosis Criteria

The main fault types of sensors include open-circuit fault, gain deviation, and abnormal noise [25].
An open-circuit fault occurs when the sensors are disconnected or damaged, leading to measured
values remaining at zero. Gain deviation leads the measured values to be k (k > 0) times of real values
when the internal signal amplifiers of the sensors break down. Abnormal noise may be introduced
into the measured values by external disturbance, even covering the real values.

The differences between the measured and observed values are compared with thresholds in real
time to detect and identify the types of the fault. Since the inductor current and output voltage vary
with operating conditions, the state estimation errors normalized to the state references are selected as
normalized residuals that are determined by

riL(t) =
iL(t)− îL(t)

i∗L(t)
, (25)

rvdc(t) =
vdc(t)− v̂dc(t)

v∗dc(t)
, (26)

where i∗L and v∗dc are the state references of the inductor current and output voltage. Using the
normalized residuals, the three types of sensor faults can be diagnosed on the same criteria with the
threshold rth for various operating conditions as Table 1. From the criteria, it is assumed that one of
the three types of sensor faults has occurred when the measured and observed values differ by more
than 100 rth% of the state reference. At the moment when a sensor fault is detected, the control system
reconfiguration is realized by substituting the observed values for the faulty sensor information until
the fault recovers.
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Table 1. Sensor Fault Diagnosis Criteria (x = iL, vdc).

Fault Flag, fx Fault Event Diagnosis Criteria

0 No fault −rth ≤ |rx(t)| ≤ rth

1 Open-circuit fault (rx(t) > 0.9 and x∗(t) < 0) or (rx(t) < −0.9 and x∗(t) > 0)

2 Gain deviation rth ≤ |rx(t)| ≤ 0.9

3 Abnormal noise fx > 0 and
∣∣∣∣∫ T

T−1 rx(t)dt−
√∫ T

T−1 r2
x(t)dt

∣∣∣∣ ≥ rth

Figure 2 depicts the proposed sensor fault diagnosis system.

State Observer
(7),(8)

u

DOB
(9),(10)

d̂

ŷ


 
T

L dci vy =

 y

Proposed Algorithm

Fault diagnosis
(Table 1)

,
L dci vf f,

L dci vr rResidual 
Generation 

(25),(26)

Figure 2. Proposed sensor fault diagnosis system.

4. Experimental Results

Experimental verification was conducted to evaluate the efficacy of the proposed fault diagnosis
algorithm in comparison with the proportional-integral (PI) observer, using a 3 kW prototype DC/DC
boost converter, where a MOSFET (IXFN210N30P3, IXYS) was used, the inductor and capacitor
values were given by L = 500 µH, C = 700 µF, and it was assumed for their nominal values to be
L0 = 0.7L mH, C0 = 1.2C µF to consider parameter variation. The input DC source voltage was initially
set to vin,0 = 50 V. A Texas Instruments (TI) DSP28377 was used to implement the fault diagnosis and
an output voltage tracking control algorithm. The period of the fault diagnosis algorithm was set to
be 1 ms, and the periods of the voltage tracking control and switching operations were chosen to be
synchronized as 0.1 ms. The experimental data (e.g., the output voltage, normalized residuals and
fault flags) were collected using a Raspberry Pi3 Model B with 1 kHz sampling rate. Figure 3 shows
the experimental setup.

Control 
Board

Input

Inductor

Output

Capacitor

Power 
Board

Figure 3. Experimental setup.
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The PI observer employed with the nominal parameters for the comparison is given by

˙̂x(t) = A(u(t))x(t) + c + L1(y(t)− ŷ(t)) + σ(t), (27)

σ̇(t) = L2(y(t)− ŷ(t)), (28)

ŷ(t) = x̂(t), ∀t ≥ 0, (29)

with the estimation gain matrices of L1, L2 ∈ R2×2, which were tuned as

L1 =

[
600 0

0 1100

]
, L2 =

[
50000 0

0 100000

]
(30)

to locate the closed-loop eigenvalues of the observer at −100, −100, −500 and −1000. The estimation
gain matrix of the proposed observer was obtained by solving the optimization problem (11) as

L =

[
100.7697 0.0029
−0.0068 100.3207

]
(31)

and it gives the closed-loop eigenvalues of the matrix AL(u) as −100 ± 922i for u = u1+u2
2 .

(The dominant closed-loop eigenvalues of both observers were set to −100 equally for fairness of the
comparison.) The design parameter for the DOBs was selected as l = 1750.

The threshold rth was selected as 0.2, which was a value larger than the maximum of the
normalized residuals for all operating conditions under normal operations of the sensors with a
sufficient margin.

4.1. Experiments under Healthy Conditions

The output voltage of vdc was shifted from 100 to 150 V at t = 1 s, and three load change conditions
were given at t = 2 s, where the resistive load of RL was shifted from 20 to 15 Ω, 50 to 40 Ω, and 100 to
80 Ω as depicted in Figure 4. The inductor current and output voltage sensors operated under healthy
conditions. The normalized residuals of the inductor current and output voltage are shown in Figure 5.
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: 100 to 80

5

L

L

L

R

R

R




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



(V
)

d
c

v *Change dcv
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Figure 4. Operating conditions for the experiments under healthy conditions.
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Figure 5. The normalized residuals of the proposed (a,b) and proportional-integral (PI) observers
(c,d) under healthy conditions.

From the convergence of the residuals to zero at steady state, it can be seen that both observers
have an offset-free property for the state estimation despite parameter and load uncertainties. When
the operating conditions changed, however, the inductor current residuals of the PI observer exceeded
the threshold to a different degree for different resistive load conditions, leading to misdiagnosis
for the inductor current sensor. On the other hand, the inductor current residuals of the proposed
observer varied slightly to a similar degree for different resistive load conditions remaining under
the threshold, which will not lead to misdiagnosis. These results imply that the proposed observer is
robust to changes in operating conditions with performance-recovery properties, having the ability to
be sensitive only to sensor faults. The PI observer may work better with other estimation gain matrices.
The point is, however, that the optimization process presented in Remark 1 to find the optimal gain for
the proposed observer greatly reduces the trial-and-error process for gain tuning that is required for
the PI observer.

The output voltage residuals of both observers remained sufficiently below the threshold.

4.2. Experiments under Fault Conditions

Open-circuit fault (0 times of gain), gain deviation (1.5 times of gain) and abnormal noise (white
noise within ±5 A or ±50 V) were deliberately applied to the inductor current and output voltage
sensors at t = 1 s. The operating condition was fixed at vdc = 100 V and RL = 50 Ω, and only the
proposed observer was used for fault diagnosis. The experimental results for the three types of sensor
faults (open-circuit fault, gain deviation and abnormal noise) are shown in Figures 6–8, respectively.
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Figure 6. Output voltage, normalized residuals and fault flags of the proposed observer under an
open-circuit fault condition in the current sensor (a–c) and voltage sensor (d–f).
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Figure 7. Output voltage, normalized residuals and fault flags of the proposed observer under a gain
deviation condition in the current sensor (a–c) and voltage sensor (d–f).

From Figure 6, the normalized residual of the inductor current (Figure 6b) and output voltage
(Figure 6f) decreased from 0 to−1 when the open-circuit faults occur in the current and voltage sensors,
respectively, at 1 s. The algorithm immediately diagnosed the issue as open-circuit faults ( fx = 1)
at the next algorithm step (t = 1.001 s) and reconfigured the control system, stabilizing the output
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voltage. The residual of the output voltage (Figure 6c) and inductor current (Figure 6e) did not change
for the faults in the current and voltage sensors, respectively.
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Figure 8. Output voltage, normalized residuals and fault flags of the proposed observer under an
abnormal noise condition in the current sensor (a–c) and voltage sensor (d–f).

From Figures 7 and 8, the experimental results of gain deviation and abnormal noise are similar
to the open-circuit fault case of Figure 6. When sensor faults occurred, the algorithms immediately
diagnosed the fault as gain deviation ( fx = 2) or abnormal noise ( fx = 3) within 1 ms and 16 ms,
respectively, and reconfigured the control system, stabilizing the output voltage.

Thus, the experimental results verified the effectiveness of the proposed fault diagnosis algorithm
in the DC/DC booster converter. Since the proposed algorithm is based on the general state equations
of (5) and (6), it can be extended to other applications such as buck and buck-boost converters
that can be modeled by the same general state equations with difference system matrices [35].
(The only application-specific condition mentioned in Remark 3 also holds true for buck and
buck-boost converters.)

5. Conclusions

This study proposes a proportional-type state estimation algorithm with DOBs for a sensor
fault diagnosis of DC/DC converter applications. The proposed algorithm was devised under
consideration of nonlinear converter behavior and model-plant mismatches, which ensures beneficial
closed-loop properties, performance recovery and offset-free properties. An optimization problem
was also presented to find an optimal state estimation gain. Moreover, fault diagnosis criteria were
proposed to identify the location and type of sensor faults online using normalized residuals. In the
experimental study, an acceptable fault diagnosis performance was confirmed using a 3 kW prototype
DC/DC boost converter.
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