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Abstract

RNA-binding proteins (RBPs) are important in gene expression regulations by post-tran-

scriptional control of RNAs and immune system development and its function. Due to the

help of sequencing technology, numerous RNA sequences are newly discovered without

knowing their binding partner RBPs. Therefore, demands for accurate prediction method for

RBP binding sites are increasing. There are many attempts for RBP binding site predictions

using various machine-learning techniques combined with various RNA features. In this

work, we present a new deep convolution neural network model trained on CLIP-seq data-

sets using multi-sized filters and multi-modal features to predict the binding property of

RBPs. With this model, we integrated sequence and structure information to extract

sequence motifs, structure motifs, and combined motifs at the same time. The RBP binding

site prediction on RBP-24 dataset was compared with two multi-modal methods, GraphProt

and Deepnet-rbp, using area under curve (AUC) of receiver-operating characteristics

(ROC). Our method (average AUC = 0.920) outperformed 20 RBPs with GraphProt (aver-

age AUC = 0.888) and 15 RBP with Deepnet-rbp (average AUC = 0.902). The improvement

was achieved by using multi-sized convolution filters, where average relative error reduction

was 17%. By introducing new RNA structure representation, structure probability matrix,

average relative error was reduced by 3% when compared to one-hot encoded secondary

structure representation. Interestingly, structure probability matrix was more effective on

ALKBH5, where relative error reduction was 30%. We developed new sequence motif

enrichment method, which we stated as response enrichment method. We successfully

enriched sequence motif for 12 RBPs, which had high resemblance with other literature evi-

dences, RBPgroup and CISBP-RNA. Finally by analyzing these results altogether, we

found intricate interplay between sequence motif and structure motif, which agreed with

other researches.

Introduction

RNA-binding proteins (RBPs) are important in many biological activities by post-transcrip-

tional control of RNAs. The roles of RBPs are diverse; mRNA expression controlling
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(translation initiation, elongation, 5‘-capping, methylation, and polyadenylation), protein

translation controlling (transcription, splicing, and decaying), mRNA exportation from vari-

ous compartments inside cell and intracellular localization of RNA, gene silencing by forming

RNA-induced silencing complex (RISC), and ribosome assembly [1]. RBPs even participate in

immune systems by binding to specific sequence or structural motif of RNA. For example,

RBPs maintain poised cytokine mRNAs for rapid translation in response to T cell receptor

(TCR) signaling in memory T cells [2]. Various researches on RNA-protein interaction

reported its growing complexity. A recent study on ribonucleoprotein (RNP) complexes

revealed the existence of complex protein-RNA interaction which does not require canonical

RNA binding domains (RBDs) such as the RNA recognition motif (RRM), hnRNP K homol-

ogy domain (KH), or DEAD box helicase domain [3].

As the number of protein-binding RNAs are rapidly increasing with the help of new high

throughput experimental methods such as ultraviolet-mediated cross-linking of RNA to pro-

tein in vivo coupled with quantitative mass spectroscopy [4–6], need for accurate computa-

tional methods which can predict RBPs with complex binding modes is also increasing.

Numerous methods have been developed using combination of various information with dif-

ferent machine learning techniques to predict RBP binding property. GraphProt used

sequence information with hypergraph representation of secondary structure information

combined with support vector machine (SVM), to predict the binding sites in 24 CLIP-seq

dataset [7]. DeepBind only used sequence information combined with a deep learning tech-

nique based on convolution neural network (CNN) to predict the binding sites of DNA bind-

ing proteins (DBP) and RBPs [8]. Deepnet-rbp was the first method to utilize tertiary structure

information of RNA combined with sequence and structure information using flexible deep

learning framework of deep belief network to predict RBP binding sites [9].

There are various issues to consider when designing prediction model. To train a prediction

model, deep learning-based computational models use predefined hyper-parameters deter-

mined by numerous optimization attempts. In particular, convolution filter size used in Deep-

Bind [8] for DBP and RBP binding prediction was fixed to 16, and the word size was fixed to

6-letters length in Deepnet-rbp [9]. However, CLIP-seq dataset curated by GraphProt contains

RBP binding sites of various size ranging from 25~75 base pairs, suggesting that the protein

binding sites on RNAs can differ even in a single CLIP-seq dataset. Therefore, by limiting

hyper-parameters for one dataset might affect prediction capability on the other datasets. In

addition, even though RNA secondary structure can have multiple forms [10], but most of the

methods do not consider using multiple secondary information on a single position nor the

positional information of nucleic acids forming pairwise interaction. Finally, although RBP-

binding RNAs can have complex combination of sequence and structure motifs, previous

researches utilized sequence and structure information separately and neglected a presence of

combined motifs [7,9]. RBPs can simply bind to a specific sequence motif or a structure motif

such as well-defined stem structure or hairpin loop structure [11], but they can also have com-

plex binding modes such as RNA binding to disordered protein region by co-folding [12],

interaction mediated by complex shape complementarity [13], or binding to multiple proteins

with multiple RBP binding sites [3,14]. To fulfill these criteria, we decided to build a deep

learning framework, which can process various sizes of RBP binding sites, use of multiple sec-

ondary structure information, and detect complex RBP binding motif.

Recently, machine-learning algorithms based on deep learning technique have demon-

strated significant prediction power improvement in many different areas. For example, multi-

ple layers of deep convolution neural network (CNN) combined with residual network

showed extraordinary performance when dealing with hierarchical structural information

such as image recognition [15]. Multi-modal learning by combinations of different data types

RBP binding site prediction using multi-sized filters and multi-modal deep convolutional neural network
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using deep learning framework improved performance in the field of audio and video signal

reconstructions [16]. Also, multi-modal framework was applied in various RBP binding site

prediction methods. Cross-domain features and sequence information were integrated using

DBN and CNN in iDeep [17]. DLPRB used CNN to transform sequence and structure infor-

mation into shared representation and used recurrent neural network (RNN) to combined

these features [18]. In addition, deep CNN showed good performance in many bioinformatics

areas. For example, by using multiple filters combined with bidirectional long short term

memory (BLSTM) layer, improvements was observed when predicting subcellular location of

proteins only using sequence information [19] and even in RBP binding site prediction using

sequence and structure information, iDeepS [20].

In this article, we designed a complex deep CNN, which can process two different types of

data, sequence and structure information, to extract both simple and complex motifs of RBP

binding sites. For deep learning framework, we implemented multiple convolution layers

since higher-level RNA structures such as secondary and tertiary structures are the result of

combination of lower-level structure and sequence information. For example, a hairpin loop is

constructed by combination of stem and loop structure. In addition, multi-sized filters were

used to extract various sized low-level motifs and applied extra convolution layers on com-

bined motif representation for complex motif extraction. The novelties of our work are: (1)

designing a deep CNN architecture by integrating sequence and structure information to

achieve the state of the art prediction accuracy (2) detection of short, medium, and long motifs

using multi-sized filter (3) using combined representation of sequence and structure informa-

tion to extract higher-level motifs (4) introducing of filter response enrichment analysis to

extract sequence, structure, and combined motifs.

Results

To study the complex motif formation by sequence and structure motifs, we developed a new

multi-modal, multi-filter deep convolution neural network (mmCNN) model. The overall pro-

cedure of our research is summarized in (Fig 1). In order to train mmCNN, we first prepared a

dataset for binary classification problem using CLIP-seq dataset from GraphProt [7], RBP-24

dataset. This dataset contains 24 RBPs each of which contains 1,200 ~ 125,000 sequences of

positive and negative data. Preprocessed CLIP-seq data were converted into appropriate repre-

sentations. RNA sequence information was transformed into one-hot encoded representation.

Structure probability matrices were calculated using multiple secondary structures calculated

by using RNAshapes [21]. Then, this information was used to train and optimize mmCNN

using the ten-fold cross validation procedure. Performance of our models was tested on exter-

nal test sets. Finally, RBP binding motifs were extracted by our newly developed motif search-

ing method (“Methods” section). Briefly, architecture of mmCNN consists of following layers.

We used two separate convolution layers to consider bi-modality of sequence and structure

information (Fig 2B and 2C). Outputs of these convolution layers were stacked into a single

output, and fed into three convolution layers for combined feature extraction (Fig 2D). Each

convolution layer contains three filters of different size for multi-length sequence feature

detection followed by rectifier linear unit (ReLU), max pooling, and dropout layers (Fig 2A).

Fully-connected network with 64-nodes were used and binary cross entropy layer was added

for classification. Whole network is constructed using Keras library

General performance of mmCNN

General performance of our deep learning architecture was tested on RBP-24, which contains

ICLIP, PARCLIP, and CLIP-SEQ data. For benchmarking, we compared our method with

RBP binding site prediction using multi-sized filters and multi-modal deep convolutional neural network
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three other methods, GraphProt, Deepnet-rbp, and iDeepE. Note that GraphProt and Deepnet-

rbp used both sequence and structure information, while iDeepE only used sequence informa-

tion. In this article, Deepnet-rbp model using tertiary structure is denoted as DBN+, while the

model not using tertiary structure as DBN-. Ten-fold cross validation procedures were per-

formed on RBP-24, and area under curve (AUC) of receiver-operating characteristics (ROC)

was used to compare overall predication power of our method with those of other methods.

Overall performance is summarized in (Table 1). When mmCNN was compared with

multi-modal method only, our method was better in 20 RBPs with GraphProt and 15 RBPs

with DBN+, even though we have not used tertiary structure of RNA. Notable performance

improvement, greater than 10% increase when using the relative error reduction (c’–c)/(1 –c)
where c’ is the accuracy of new method and c is that of the other method [7], observed in

ALKBH5, C22ORF28, AGO2, ELAVL1 (CLIPSEQ-ELAVL1), SFRS1, HNRNPC, TDP43,

TIA1, TIAL1, ELAVL1(A), and IGF2BP123, which is indicated with bold case in (Table 1).

Especially, prediction power of our method was notable in MOV10 and PTB, which were

RBPs reported to have tertiary structure motif. Our method outperformed MOV10 with DBN

+, but was less accurate when predicting PTB. RBPs with relatively small datasets such as

ALKBH5, C17ORF85, and CAPRIN1 showed poor prediction results, but improvements were

observed when initial weights of convolution layers were set to uniform random ranging from

(0.0001, 0.01).

Fig 1. Overall summary of training procedure and performance measurement of mmCNN. Sequence data was

transformed into one-hot encoded information and structure probability matrix using RNAshapes program. Bimodal

information was integrated into combined representation and trained by mmCNN framework. During performance

measurement, prediction of RBP binding site and its motif was predicted using external test dataset.

https://doi.org/10.1371/journal.pone.0216257.g001

RBP binding site prediction using multi-sized filters and multi-modal deep convolutional neural network
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Performance increase using multi-sized filter and structure probability

matrix

The prediction performance improvement was subject to using multi-sized filters and/or

structural probability matrix. In order to test these, we designed two separate experiments

using several variations of the original mmCNN architecture. To test the effect of multi-sized

filters, we compared performance between two models, one with the same architecture as

Fig 2. Full schematics of mmCNN architecture. (A) Multi-sized convolution module (MCM) was constructed using three different filter sizes, which were 8, 16, and 32.

For convolution and max pooling operation height x and max pooling dimension y were used to indicate variations of values in different stages of the network. For

sequence convolution x = 4 was used since sequence information was expressed in (200, 4) one-hot encoded representation. For structure convolution x = {8,16,32} were

used, to capture 2-dimensional information of structure probability matrix with dimension of (200, 200). For combined convolution x is the size of number of stacked

data. For max pooling operation, y was either 1 or 2. For max pooling in sequence and combined path y = 1, since convolution padding used in these paths was “valid”

which shrinks height dimension into 1. Finally for max pooling in structure path, y = 2. (B, C) One-hot encoded sequence information and structure probability matrix

passed through 1 layer of MCM. (D) Since three different sized filters were used as in (A) three stacked convolution outputs were generated for each sequence and

structure input. These outputs were stacked into combined representation and went through three additional MCM layers, which were followed by max pooling, flatten

and classification layer.

https://doi.org/10.1371/journal.pone.0216257.g002

RBP binding site prediction using multi-sized filters and multi-modal deep convolutional neural network
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mmCNN and the other with only using 48 filters with the size of 16 instead of 16 filters with

three different sizes. By measuring relative error reduction, accuracy of multi-sized filter

method was improved by 17% compared to single filter used method, (Fig 3A). To prove the

advantage of using structure probability, two separate structure representations were created,

structure probability matrix and one-hot encoded secondary structure which was expressed

with 6-letter codes S, M, H, I, B, and E (which stands for stem, multi loop, hairpin loop, inter-

nal loop, bulge and external region) [9]. The compared results can be seen in (Fig 3B), the

overall relative error reduction was improved by 4% when structure probability matrices were

used. Interestingly, 30% improvement was observed in ALKBH5 whether other RBPs showed

slight improvements. Additionally, we found that structure information used in mmCNN

diminishes as the more convolution layers were used. This phenomenon might be natural

behavior, since multiple convolution layers can capture hierarchical structures of various data.

For detailed contributions of structure information, see (S1–S3 Figs).

Sequence motif found by mmCNN

In previous works, sequence motif enrichments were performed by aligning and scoring posi-

tive sample data by using the trained models. For example, in DeepBind, RBP binding

sequences were fed into the trained model to calculate the scores, and then the maximum

Table 1. AUROC comparison with other methods.

GraphProt DBN- DBN+ mmCNN

ALKBH5 0.686 0.686 0.714 0.766

C17ORF85 0.817 0.817 0.820 0.829

C22ORF28 0.751 0.783 0.792 0.865

CAPRIN1 0.855 0.825 0.834 0.808

AGO2 0.765 0.805 0.809 0.895

ELAVL1 0.955 0.946 0.966 0.980

SFRS1 0.898 0.927 0.931 0.942

HNRNPC 0.952 0.961 0.962 0.979

TDP43 0.874 0.874 0.876 0.927

TIA1 0.861 0.888 0.891 0.934

TIAL1 0.833 0.867 0.870 0.941

AGO1234 0.895 0.872 0.881 0.892

ELAVL1(B) 0.935 0.956 0.961 0.960

ELAVL1(A) 0.959 0.965 0.966 0.982

EWSR1 0.935 0.964 0.966 0.953

FUS 0.968 0.979 0.980 0.977

ELAVL1(C) 0.991 0.994 0.994 0.991

IGF2BP123 0.889 0.872 0.879 0.924

MOV10 0.863 0.831 0.854 0.867

PUM2 0.954 0.965 0.971 0.967

QKI 0.957 0.981 0.983 0.974

TAF15 0.970 0.980 0.983 0.984

PTB 0.937 0.879 0.983 0.955

ZC3H7B 0.820 0.786 0.796 0.792

average 0.888 0.892 0.903 0.920

DBN-: Deepnet-rbp without tertiary structure, DBN+: Deepnet-rbp with tertiary structure, mmCNN: multi-sized filter multi-modal deep CNN. Averaged AUC of

models from 10-fold cross validation was used. Performances with AUC improvement greater than 2% comparing to DBN+ were indicated in bold.

https://doi.org/10.1371/journal.pone.0216257.t001

RBP binding site prediction using multi-sized filters and multi-modal deep convolutional neural network
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scoring positions were chosen and used to align input sequences. After sequence alignments,

position weighted matrices (PWM) were calculated for each target and then converted into

logo representations [8] using WebLogo [22]. In this work, we developed a new filter response

enrichment method to extract and locate sequence, structure, and combined motifs. We name

this method filter response enrichment since the procedure is similar to motif enrichment

method proposed by DeepBind. The main difference is data being enriched; in our method

weighted filter responses were enriched rather than aligned sequences. From this point and

Fig 3. Contributions of various information in mmCNN by comparing AUC of RBP-24. (A) Comparison between

single filter mmCNN and multi-sized filter mmCNN using RBP-24 dataset. (B) Better structure representation

selection by comparison between one-hot encoded RNA and structure probability matrix.

https://doi.org/10.1371/journal.pone.0216257.g003

RBP binding site prediction using multi-sized filters and multi-modal deep convolutional neural network
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throughout this article, we will state this method as response enrichment for simplicity pur-

pose. One of the advantages using deep CNN is that convolution filters are trained to mimic

prevalent patterns of target data, in our case, RBP binding sequence and structural motifs of

RNA. Therefore, by applying appropriate scoring schemes on trained filters, sequence and

structural motifs can be extracted by enrichment analyses of selected filters. Our new motif

extraction method for RBP PUM2 as an example is summarized in (Fig 4).

Using newly developed motif-finding method, we extracted sequence and structure motifs

discovered by mmCNN. In order to compare and verify our findings, we compared our motifs

with those of two prediction methods (DBN+ [9] and GraphProt [7]) and two literature evi-

dences (RBPgroup [23] and CISBP-RNA [24]). RBPgroup collected 84 CLIP-seq of 48 human

RBPs and applied non-negative matrix factorization on occupancy profile matrix to cluster

RBPs. RBP binding motifs calculated for each RBP group were statistically more significant

than individual RBP binding motif. CISBP-RNA database was created by experimental method

RNAcompete, where 240,000 short (30~41 nucleotides) were generated and binding affinity

with 207 different RBPs were measured.

We found that sequence motifs found by our method were more consistent with the evi-

dences than other predictive methods (Fig 5), for sequence motif extraction using previous

researches see (S4 Fig). The statistical significance of motifs was calculated using AME

MEME-suite version 5.0.5 [25]. (i) ALKBH5 is known to be involved in polyadenylation

[26,27] and AAUAAA consensus motif is known as a polyadenylation signal (P = 6.11e-2).

While other two methods failed to find any meaningful motif, our method succeeded in find-

ing sequence motif that well matched with this result. In addition, GU-repeat motif suggest by

RBPgroup could be also observed. (ii) Since ELAVL1 family have 4 different CLIP-seq data-

sets, we searched for the sequence motifs for all 4 datasets separately. Previously, ELAVL fam-

ily was found to have AU-rich binding motif by various researchers [7,9,28], but de novo motif

found by RBPgroup was UGUGUG motif. Interestingly, ELAVL1 sequence motif found by

our method have UG-rich motif or U-rich motif, which agrees with both RBPgroup and

CISBP-RNA (where P-value of ELAVL1, ELAVL1(A), ELAVL1(B), and ELAVL1(C) were

P = 2.15e-34, P = 6.64e-36, P = 2.48e-40, and P = 9.90e-1 respectively). The difference between

sequence motifs of ELAVL1 is due to the different response enrichment positions, which will

be discussed in the next section. (iii) Sequence motif for PUM2 was specified as UGUAAAUA

according to CISBP-RNA, and RBPgroup suggested UG-rich motif. Enriched sequence was

very similar to CISBP-RNA, but when enrichment window was wider, UG-rich regions were

also observed (P = 2.29e-1). (iv) While FUS is known to have AU-rich loop structure [29], GU-

repeat motif and GGUG motifs were newly found by RBPgroup CISBP-RNA, respectively. In

agreement with these results, we could locate GU-rich regions of FUS. Interestingly, FUS,

TAF15, and EWSR1 were known to have similar binding sequence motif by various literatures,

our method predicted similar sequence motif for these RBPs, which was GU-rich region

(where P-value of FUS, TAF15, and EWSR1 were P = 3.11E-1, P = 8.72E-1, and P = 3.62E-1

respectively). (v) For HNRNPC, AUUUUU motif by CISBP-RNA was more consistent with

our motif than U-rich motif found by GraphProt (P = 1.23e-36). (vi) PTB is known to have

CUUUUC binding motif [30], which was also found by CISBP-RNA. We found similar bind-

ing motif for PTB, which was CUUUU/C (P = 2.38e-48). (vii) Many previous researches sug-

gested GA-repeat as sequence motif for SFRS1. Similar to this sequence, we found GAGGAC

motif for SFRS1 (P = 8.73e-17), which had close resemblance with CISBP-RNA motif. (viii) For

TDP43, which has TARDBP as alias, various researches suggested different binding motifs.

For example, UG-repeat was suggested as sequence motif for TDP43 [29,31], and CISBP-RNA

found UGAAUGAG. Interestingly, our model detected combinations of these two RBP bind-

ing motifs for TDP43 (P = 2.79e-52). (ix) It is well known TIA1/TIAL1 family prefers U-rich

RBP binding site prediction using multi-sized filters and multi-modal deep convolutional neural network
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Fig 4. Motif extraction using response enrichment. For this example, we show motif extraction of PUM2. (A)

Combined response of positive sample N was analyzed to retrieve maximum response resulting xn and kn, where x is

sequence position and k is filter index number. (B) Combined response enrichment was performed by element-wise

product between weight W of selected filter k and sampled combined representation C. By calculating response score

of this enrichment, important filter types for PUM2 was selected. In this example shape8 and squence32 was selected.

(C) By using information from previous steps, sequence response enrichment was performed for sequence32. Similar

to combined response enrichment, sampled sequence information and selected sequence filter weight w was enriched.

Enriched sequence response was transformed into PWM using softmax function and WebLogo was used to draw

LOGO representations. (D) Structure enrichment was calculated in a similar way as sequence enrichment. Since filter

used for structure convolution was 2-dimensional matrix, enriched structure was also 2-dimensional matrix. (E) For

combined analysis, sequence motif and structure motif enriched from previous steps were aligned using relative

enrichment position derived from combined response enrichment in (B). For simplicity, 2-dimensional structure

motif was transformed into 1-dimensional array using max pooling operation.

https://doi.org/10.1371/journal.pone.0216257.g004

RBP binding site prediction using multi-sized filters and multi-modal deep convolutional neural network
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Fig 5. Sequence motif found by mmCNN and comparison with various researches. mmCNN was compared with two predictive method

(DBN+ and GraphProt) and two other literature evidences (RBPgroup and CISBP-RNA). Since RBPgroup clustered different RBP families and

found de novo motifs, individual groups found by RBPgroup was labeled in separate column.

https://doi.org/10.1371/journal.pone.0216257.g005

RBP binding site prediction using multi-sized filters and multi-modal deep convolutional neural network
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motif with various size [32], we found U-rich motif with length 5, which had high resemblance

with CISBP-RNA (for TIA1 P = 1.95e-26 and TIAL1 P = 2.53e-17). Even though some RBP

motifs found had low statistical significance, FET family (FUS, TAF15, and EWSR1) had simi-

lar motifs and newly found PUM2 motif had strong resemblance with CISBP-RNA motif.

Combined response enrichment analysis captures two different RBP

binding sequence motifs of ELAVL1 family

In the previous section, we mentioned that two different motifs (UG-rich motif and U-rich

motif) were found by other researches and both motifs were found by mmCNN in different

ELAVL1 datasets. When analyzing positional relationship of sequence and structure motif for

each ELAVL1 dataset, we found that difference between the two sequence motifs could be dis-

tinguished by the presence of secondary structure around the sequence motif site (Fig 6). For

example, ELAVL1, ELAVL1(A), and ELAVL1(B) have a high structure score around C or A

residue surrounding U-rich region (for ELAVL1 at position -5, 7 and 12~17, for ELAVL1(A)

around position -1~0, 2~3, and 9~12, and for ELAVL1(B) at position 1~4). In these RBPs,

Fig 6. Combined motif analysis of ELAVL1 family. Aligned sequence motifs and structure motifs were shown for four different ELAVL1 family. Since we used

weighted sum score for structure motif, values indicated in color bars are not structure forming probabilities but weighted scores. As the score is higher, a nucleotide is

likely to participate in secondary structure.

https://doi.org/10.1371/journal.pone.0216257.g006
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U-rich regions were present in the hairpin-loop region, which was maintained by the stem

forming positions. By contrast, for ELAVL1(C), secondary structure was indirectly related

with sequence motif region, where strong stem forming position was detected at position 10.

Interestingly, U-rich motif and de novo GU-rich motif seems to have preference for a single

stranded RNA (ssRNA), which agrees with other research [28].

Longer sequence motif detector captures de novo motif for ALKBH5 and

IGF2BP123

It was found that the prediction accuracy was greatly improved for ALKBH5 when structure

information was included. We reasoned that structure probability matrix that we introduced in

this work was suitable for detecting ALKBH5 structural motif. From various researches [33,34],

ALKBH5 is known to have a function of demethylation of N6-Methyladenosine (m6A). According

to these studies, the homology modeling structure of ALKBH5 has binding preference to ssRNA

since it has amino-acid residues that interrupt binding to the double stranded RNA (dsRNA). We

found that sequence motif predicted by mmCNN was U-rich region surrounded by hairpin-loop

structure in the upstream region and de novo motifs AAUAAA and GUGU were found in the

downstream region, see (Figs 5 and 7). These motifs found to have lack of structures, i.e. loop

region or ssRNA. However, hairpin-loop region present upstream of sequence motif was also pre-

dicted to be important. Therefore, we suggest that secondary structure in the upstream region

might guide ALKBH5 to bind de novo sequence motif, which prefers ssRNA. For another exam-

ple, binding regions of IGF2BP123 seems to have similar characteristics. Sequence motif of

IGF2BP123 known to contain distinct tri-ribonucleic acid CAU [35], and motif found by

Fig 7. Combined motif analysis of other RBP families. Full-sized sequence motif enriched by response enrichments were aligned with structure motifs. Sequence

motifs found by other researches were indicated in separate column for comparison and matching sequence motifs were indicated with black or grey boxes.

https://doi.org/10.1371/journal.pone.0216257.g007
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mmCNN was CAUU surrounded by U-rich region (P = 1.23e-4). Interestingly, when full-sized

sequence motif (filter size 16) was aligned with structure motif, de novo motif proposed by

RBPgroup GCACUAU could be observed in the upstream region of CAUU motif. It seems that

de novo motif prefers stem structure (at position -7~3) and CAUU seems to prefer hairpin-loop

structure (at position 3~11), which agrees with structure motif proposed by GraphProt.

Combined effect of Sequence and structural features improves sequence

motif search: PUM2 and TDP43

By using sequence and structure features together, we found better sequence motifs for PUM2

and TDP43 (Fig 7). According to previous research [36], PUM2 has preference for hairpin

structure, which agrees with our result that the probability of having hairpin-loop was higher

at the RBP binding site. In our result, RBP binding sequence motif UGUAAAUAU and hair-

pin-loop structure motif were co-occurring in the same region. For TDP43, which has alterna-

tive name TARDBP, our model predicted sequence motif similar to UGAAUGAG, which

resembles motif found by RNAcompete experiment. Similar to PUM2, sequence motif found

for TDP43 was located in the hairpin-loop region.

Conclusion

In this work, we developed a bimodal multi-sized filter deep convolution neural network using

sequence and secondary structure information to detect various sized primary, secondary and

combined motifs. Many previous works have tried to predict RBP binding sites on RNA using

various computational methods with various RNA sequence-derived information [7–9,37]. In

this work, we have focused on developing a new deep CNN architecture that integrates

sequence and structure information to achieve higher prediction accuracy by accurately locat-

ing the RBP binding motif sites by exploiting synergistic effect of sequence and structure of

RNA molecules. We showed that we were able to achieve higher prediction accuracy by using

multiple filters of different sizes, compared to single-sized filter method. We also introduced a

new type of RNA structure feature by gathering multiple secondary structures derived from

RNAshapes to create the structure probability matrix. By using the structure probability

matrix, we achieved roughly 4% improvement. In some cases, performance gain was much

higher. For example, in the case of ALKBH5, relative error reduction rate was improved by

30%.

By introducing response enrichment method, we could extract high quality RBP binding

sequence motifs, which had high resemblance with sequence motifs discovered by RBPgroup

and CISBP-RNA. Among 24 RBPs, sequence motifs for ALKBH5, AGO2, ELAVL1 family,

FUS, HNRNPC, PUM2, PTB, TDP43, TIA1, and TIAL1 could be extracted successfully. Espe-

cially, predicted motifs for ALKBH5, PUM2, and TDP43 had distinct sequence motif where

no other prediction method predicted correctly.

By integrating positional information to a deep learning architecture, we could analyze

positional relationship between sequence and structure motifs. For some RBP families,

sequence motif and structural motif were closely interrelated. For example, sequence motif of

PUM2 and TDP43 had distinct hairpin loop structure at sequence motif region. For ALKBH5

and IGF2BP123 had strong hairpin loop presence in the upstream region of RBP binding site.

There was no reference referring to importance of hairpin loop structure in ALKBH5, but our

result and other prediction methods suggested importance of the structure information for

ALKBH5 binding site prediction.
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Methods

Data preparation

For this work, we used CLIP-SEQ dataset that we downloaded from http://www.bioinf.uni-

freiburg.de/Software/GraphProt/. We used this dataset since it is well-balanced dataset and

constructed for RNA structure calculation. It is known that at least 150 nucleotides are needed

to calculate good RNA secondary structures [38]. Therefore, we trimmed the original RNA

sequences so that the length of all RNA sequences became 200, with RBP binding sites placed

in the middle of the sequences. We converted these sequences into one-hot encoded represen-

tations as in DeepBind [8]. Since the maximum sequence length of our RNA data was set to

200, one-hot encoded sequences had the dimension of (200, 4).

Structure information was calculated from RNA sequences using RNAshapes [21]. For a

given RNA sequence, this program produces multiple secondary structures which are sorted

by their free energies in kcal�mol-1 [21]. From these structures, we used top 100 structures to

convert those energies to probabilities using Boltzmann distribution formula;

pl ¼
e�

εl
kT

PM
m¼1

e�
εm
kT
; ð1Þ

where εl is the energy of the structure l, k is Boltzmann constant (= 0.001987 kcal�mol-1�K-1),

and T is temperature (= 310.15 K). We neglected secondary structures beyond the top 100

structures since probability contributions of those structures were negligible. Additionally, we

compared performance of mmCNN using top 100 and top 1, top 100 performed better, see (S5

Fig). Next, using the top 100 structures and their probabilities, we calculated the probability

for a pair of residues, i and j, forming stem secondary structure, p(i, j), using the following for-

mula,

pði; jÞ ¼
X100

l¼1

plði; jÞ; ð2Þ

where pl(i,j) is either pl if a pair of residues, i and j, is interacting in structure l, or 0 otherwise.

Other secondary structures such as inter-loop, bulge-loop, hairpin-loop, multi-loop, and exter-

nal regions can be expressed using stem structures, for details see (S6 Fig). Since the maximum

sequence length of our RNA data was set to 200, structure input matrices had the dimension of

(200, 200).

Designing of multi-modal multi-sized filter deep convolutional neural

network

Since CLIP-seq dataset contains various length of RBP binding sites ranging from 25 to 75, we

developed a module named “multi-sized convolution module” that was designed to capture

sequence and structure motifs with different sizes. The module consists of three 2-dimensional

convolution filters with dimension of (8, x), (16, x), and (32, x) where x is the size of “height”,

followed by ReLU activation layer and max pooling layer, for sequence convolution height was

4 and for structure convolution height for each filter was 8, 16, and 32. For combined convolu-

tion, height was equal to the number of stacked convolution output from the previous layer.

Three separate outputs from max pooling layers are stacked together to produce a single final

output (Fig 2A). Weights of each convolution layer were initialized using Xavier uniform

(Glorot uniform) initializers and biases were initialized to zero. For motif extraction layer, 16

filters were used for single convolution [39].
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Since convolution layer on raw data act as a motif detector, the convolution output of this

layer represents motif matching score on 200 residue positions. In order to extract combined

features from sequence and structure inputs, we processed sequence and structure inputs

with separate convolution layers and concatenated these outputs into combined representa-

tion. We used three different sized filters for sequence and structure, concatenation function

was used to combine 3 outputs from sequence and 3 outputs from structure convolution out-

put. To consider the complexity of RBP binding motif consisting of sequence and structural

motifs, we introduced three additional multi-sized convolutional modules on concatenated

output from the previous layer. We used three filters with the size of 8, 16, and 32. Weights

and bias were initialized as same as motif extraction convolution layer. For combined motif

extraction layer, 32 filters were used for single convolution. Since complex motif can be a

combination of distant simple motifs, we continuously reduced our data size into half to

eliminate non-matching positions by using max pooling layers. To avoid overtraining, we

used dropout layers with keep-probability of 0.75 after sequence convolutional layer and

structure convolutional layer, and a dropout layer with keep-probability of 0.5 right before

fully connected layer. For optimizer, we used Adadelta with default parameters, learning
rate = 1.0, rho = 0.95, epsilon = None, and decay = 0.0, which was recommended not to be

changed according to Keras manual, see for more information about optimizer selection in

(S1 and S2 Tables and S7 Fig).

Tenfold cross validation and ensemble model

There are two separate CLIP-SEQ sequence data in GraphProt, which are labeled as train and

ls. We used train set for training and validation of the model, and ls as an external test set for

final AUC calculation. We divided the training dataset into ten segments of equal size and per-

formed 10-fold cross validation to select the optimal model parameters. The final ensemble

model was derived by averaging the output scores from these ten models, and then the final

performance evaluation was made on the external test dataset.

Motif extraction using response enrichment

In this work, we developed a new response enrichment method to extract and locate sequence,

structure, and combined motifs. Motif extraction method for RBP PUM2 as an example is

illustrated in (Fig 4). The positions of the response extraction points are depicted in (Fig 2).

The new motif extraction methods proceed as following steps.

Combined response analysis. Combined responses were calculated by feeding N positive

samples of a RBP to the trained mmCNN model (Fig 4A). For each positive data n (where n is

an index of positive samples, n 2 {1,. . .,N}), combined response matrix having size of (100, 32)

was analyzed to find a position xn and a combined filter index kn which produces the maxi-

mum combined response (where kn 2 {1,. . .,32} since 32 filters were used, and xn 2 {1,. . .,100}

due to the max pooling in the previous convolution step). Since we used three filters with dif-

ferent sizes for each convolution, combined response analysis was done for each filter size

(where filter size 2 {8,16,32}).

Combined response enrichments. Combined response enrichments were calculated

using xn and kn from the previous step (Fig 4B). Here, we first define a sampled combined

representation, Cn,x,t,k’, where n represents a positive sample index, x is position, t is filter type

of previous convolution (seq8, shape8, seq16, shape16, seq32, shape32), and k’ is filter index of

previous convolution (sequence or structure convolution step, where k’ 2 {1,. . .,16}). We used

xn as a center of extraction point to sample CXn;t;k0
for each positive sample n. Since xn is the
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center of extraction point, sampled combined representation can be defined as

CXn;t;k0
¼

xn �
filter size

2
� Xn < xn þ

filter size
2

0 � t < 6; ðseq8; shape8; seq16; shape16; seq32; shape32Þ

0 � k0 < 16

: ð3Þ

8
>>><

>>>:

Therefore, the dimensionality of CXn;t;k0
is (filter size, 6, 16). By using max kn operation from

previous step and combined convolution filter W, combined response enrichment can be

defined as element-wise product of sampled combined response and the combined convolu-

tion filter. Then, the combined response enrichment of N samples can be defined as

½combined response enrichmentfilter size�X;t ¼ max
k0

XN

n

CXn;t;k0
�WX;t;k0;maxkn

" #

; ð4Þ

where � represents element-wise product of two 2-dimensional matrices. Since response

enrichment represents relative importance of positions of sequence and structure motif detec-

tor, to eliminate noise and extract clear motif we performed maxk0n operation.

Selection of best enrichment using response score. In order to select the best enrich-

ment, response scores for each filter types were calculated (Fig 4B). Since different filter size

may cause different enrichment size, direct comparison between these enrichments were diffi-

cult. In order to compare enrichments with different sizes, we eliminated x by using max oper-

ation along this dimension,

½response score�filter size ¼
X

t

max
X
½½combined reseponse enrichmentfilter size�X;t�: ð5Þ

For an example case (Fig 4B), filter size = 8 was selected by comparing response score of three

enrichments from three different filter sizes. By comparing response scores, sequence filter

with size 32 (t = seq32 or in matrix index number t = 5) and structure filter with size 16

(t = shape16 or in matrix index number t = 3) have maximum enrichment scores among other

convolution types. Considering
filter size

2
as enrichment center (due to padding in convolution

operation), we calculated difference dt between center position and max-enriched position as

shifting constant for sequence and structure enrichment (Fig 4B).

Sequence response enrichments. For sequence response enrichment, the same data posi-

tion xn was used to sample one-hot encoded sequence data in a similar way (Fig 4C). Since xn
is derived from maxpooled output, we considered max pooling effect and shifting constant dt
by selecting position having higher response values at position 2(xn + dt) and 2(xn + dt) + 1 of

sequence responses. Sampled sequence SXn;y can be defined as,

SXn ;y ¼
Pðxn; dtÞ �

filter size
2

� Xn < Pðxn; dtÞ þ
filter size

2

0 � y < 4; ðA;U;G;CÞ
; ð6Þ

8
<

:

where P(xn,dt) is either 2(xn + dt) and 2(xn + dt) + 1, position with higher sequence response

was selected. For example case in (Fig 4C) filter size = 32 and t = 5. Sequence response enrich-

ments were calculated similar as combined response enrichments, which can be calculated by

elementwise product between sampled sequence and selected sequence filter wmaxk0n
. Sequence
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response enrichment can be defined as

½sequence response enrichmentfilter size�X;y ¼
XN

n

Wz;t;maxk0n ;maxkn
SXn;y � wX;y;maxk0n

; ð7Þ

where Wz;t;kn
is weighting factor from combined filter which varies due to positive sample

index, z is maximum enrichment position of selected convolution type t calculated from previ-

ous step,

z ¼ arg max
X
½½combined response enrichmentfilter size�X;t�; ð8Þ

where maxk0n represents sequence convolution filter index which has maximum sequence

response value at position 2(xn + dt), max kn is combined filter index which result maximum

combined response value at same position, and 0� X< filter size. Since sequence or structure

information smaller than filter size might contain noise, for sequence and structure response

enrichments in boundary was neglected.

Structure response enrichments. For structure response enrichment, the same procedure

as sequence response enrichment was performed, for the example filter size = 8 and t = 1 see

(Fig 4D). Since structure information is 2-dimensional information, we sampled pairwise

structure forming probability as similar to sequence response enrichment. Sampled structure

SSXn ;Yn can be defined as

SSXn ;Yn ¼
Pðxn; dtÞ �

filter size
2

� Xn < Pðxn; dtÞ þ
filter size

2

Yn ¼ Xn

: ð9Þ

8
<

:

For example case, filter size = 8 and t = 1, see (Fig 4D). When extracting structure response, see

(Fig 2), max pooling operation decreases structure convolution output into (100, 1) dimen-

sion. To consider this effect and we noticed that structure probability matrix had strong signal

in local regions, we used the same extraction range for Yn as Xn when extracting structure sam-

ples. Therefore, structure response enrichments can be defined as

½structure response enrichmentfilter size�X;Y ¼
XN

n

Wz;t;maxk0n ;maxkn
SSXn ;Yn � wsX;Y;maxk0n

; ð10Þ

where ws is structure filter weight, maxk0n is structure filter index which has maximum struc-

ture response value at position P(xn,dt), 0� X< filter size, and 0� Y< filter size.

Combined analysis

For combined analysis, we used (Equation combined response enrichment) to find positional

relationship between sequence and structure motif, see (Fig 4B). Positional relationship could

be calculated by comparing dt of selected sequence and structure motif. For simplification and

major structure information retrieved by our method was structure forming probability in

local region, we transformed extracted 2-dimensional structure motif into 1-dimensional

array, which can be seen in (Fig 4E). Then extracted sequence motif and structure motif were

aligned using dt and compared with various literature evidences.

Sequence response enrichments to sequence LOGO representations

Since sequence response enrichments were weighted nucleic acid propensities at specific posi-

tion, we applied softmax function on these enrichments to convert weighted propensities into
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probability matrix. For some RBPs, long sequence motif detectors were preferred. For clarity,

we selected maximum scoring 12-sized positions for these RBP families using sum scores

resulted from scanning with 12-sized window, as in (Fig 4). Then, sequence motif was

expressed into sequence logo using WebLogo [22].

Supporting information

S1 Fig. Comparison between structure using mmCNN and non-structure mmCNN. Only

small number of RBP improved when structure information was used. ALKBH5, PUM2, and

QKI showed improved performance (relative error reduction rate improved by ALKBH5

3.4%, PUM2 23%, and QKI 25%)

(PDF)

S2 Fig. Relative error reduction (RER) of RBP-24 between both information using

mmCNN vs sequence information using mmCNN. Various network types with different

number of convolution layers were used (L1, L2, L3, and mmCNN) to see diminishing effect

of structure information due to stacking more convolution layers.

(PDF)

S3 Fig. Boxplot of RBP-24 AUCs and RERs of four different network types, L1, L2, L3, and

mmCNN. Interestingly, mmCNN, which contain 4 layers of multi-sized filter convolution

module, seems to have the best performance AUC. Network type L2 seems to have best struc-

tural feature usage, which is measured by RER see (S4 Fig, and structural feature usage

decreases as the more convolution layers were stacked.

(PDF)

S4 Fig. Sequence motif calculated using max sequence response score as alignment center.

(PDF)

S5 Fig. AUC comparison between secondary structure forming probability using top 100

secondary structure and single best secondary structure. Structure forming probability

using top 100 was better than top 1.

(PDF)

S6 Fig. Example of secondary structure and representation of RNA. (A) Secondary structure

made using RNAfold provided by Vienna package. (B) Secondary structure representation of

mmCNN, in main article only stem information was used since other secondary structures

can be expressed using stem information only.

(PDF)

S7 Fig. mmCNN model optimization using 7 sample RBPs. For optimizer selection 5 sets of

weight initialization range and 5 running rates for Adadelta, Adam, Adagrad, and Rmsprop

optimizers.

(PDF)

S1 Table. Five different sets of convolution and dense weight initialization ranges.

(PDF)

S2 Table. Five different learning rates tested for four optimizers.

(PDF)
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