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Abstract

Finite element model updating is a procedure to minimise the differences between analytical and
experimental results and is usually posed as an optimisation problem. In model updating process, one
requires not only satisfactory correlations between analytical and experimental results, but also maintaining
physical significance of updated parameters. For this purpose, setting up of an objective function and
selecting updating parameters are crucial steps in model updating. These require considerable physical
insight and usually trial-and-error approaches are common to use. In conventional model updating
procedures, an objective function is set as the weighted sum of the differences between analytical and
experimental results. But the selection of the weighting factors is not clear since the relative importance
among them is not obvious but specific for each problem. In this work, multiobjective optimisation
technique is introduced to extremise several objective terms simultaneously. Also the success of finite
element model updating depends heavily on the selection of updating parameters. In order to avoid an ill-
conditioned numerical problem, the number of updating parameters should be kept as small as possible.
Such parameters should be selected with the aim of correcting modelling errors and modal properties of
interest should be sensitive to them. When the selected parameters are inadequate, then the updated model
becomes unsatisfactory or unrealistic. An improved method to guide the parameter selection is suggested.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Finite element (FE) model is very useful for design, development, and application phase of
mechanical structures in target. However, results obtained from FE model often differ with test
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results. There have been many attempts to correct FE model. FE model updating aims at the
correction of an initial FE model that predicts accurate and reliable dynamic behaviour of a
mechanical structure. The model updating problem has been investigated thoroughly and many
techniques have been proposed [1,2]. However, it still remains a difficult problem [3,4]. That is
because model updating is an inverse process and often contains highly non-linear characteristics.
The updating methods may be divided into two groups: whether they adjust the mass and stiffness
matrices directly (direct methods) or make parametric changes to the model (parametric or iterative
methods). It has been shown that direct methods are not appropriate to model updating since
updated results are seldom physically meaningful although these methods are capable of
replicating experimental natural frequencies and mode shapes. The updating technique considered
in this paper is an iterative method. One common approach of iterative methods is to consider an
objective function that quantifies the differences between analytical and experimental results [5]. It
is common to adjust the selected parameters to minimise the objective function, then it becomes a
typical optimisation problem.
In model updating process, one requires not only satisfactory correlations between analytical

and experimental results but also maintaining physical significance of updated parameters. Thus,
setting up of an objective function and selecting updating parameters are crucial steps in model
updating. They require deep physical insight and trial-and-error approaches are common. Fig. 1
explains their importance.

* Space S1 contains all the possible FE models of a structure.
* Space S2 contains all the FE models that correlate well with experimental results. One of these

models, FEopt gives the best possible description of dynamic behaviour of the structure.
* Space S3 is a set of models that can be derived from the initial FE model, FEinit; by varying the

selected updating parameters. Both the initial FE model, FEinit; and the updated model, FEu;
are the members of S3:

The dimension of S3 is determined from the initial model, which is deeply related with the
selection of updating parameters. A bad selection of updating parameters will result if S3 does not
have a common space with S2 (Fig. 1(a)). As a consequence, the updated model having good
correlation with experimental results cannot be obtained even if an objective function is properly
set up. Conversely, a very good selection of updating parameters will give FEopt within the
common space of S2 and S3 (Fig. 1(b)). Then, whether FEu will converge to FEopt depends mainly
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Fig. 1. Schematics of two difficulties in FE model updating: (a) poor selection of updating parameters; (b) poor set-up

of an objective function.
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on used optimisation procedures. But, a poor set-up of an objective function will not guarantee
FEu moves to FEopt:
Since model updating is an inverse process, one can hardly classify the causes of poor updated

results. These may come from a poor selection of updating parameters or an inappropriate
objective function or both. Thus, when updated results are not satisfactory, the model updating
optimisation process should be solved repeatedly with a modified objective function and with a
different set of updating parameters until appropriate results are derived. Unfortunately, there are
many alternatives for a complicated FE model. So model updating process often ends with
unsatisfactory results.
In this paper, two systematic approaches are suggested to relieve the difficulties in model

updating. The first part of this paper describes multiobjective optimisation technique; some
important concepts related to multiobjective optimisation, the benefits of multiobjective
optimisation in comparison with single-objective optimisation in model updating. The second
part addresses the problem of updating parameter selection. Its importance is demonstrated
through case studies and a procedure for selecting a proper updating parameter set is presented.
The two approaches are seamlessly incorporated into a model updating procedure and the
procedure is tested for FE model updating of a real complex structure.

2. Multiobjective optimisation

In conventional model updating techniques, an objective function to be minimised is usually set
as a penalty function involving the weighted sum of the differences between analytical and
experimental results such as natural frequencies, mode shapes, or FRF data. Although the ability
to weight the different data seems versatile, the selection of the weighting factors is very difficult
since the relative importance among the data is not obvious but specific for each problem. For
example, the fundamental natural frequency difference may be overweighted in the objective
function such that the other updated differences such as the 2nd natural frequency, mode shapes
do not fit satisfactorily or vice versa. It usually takes a very long time to finally obtain satisfactory
weights. The second important disadvantage of the weighting method is ‘‘duality gap’’ for non-
convex problems. So, an analyst might lose the opportunity to find more acceptable solutions. In
this paper, the multiobjective optimisation technique is introduced to overcome the difficulties.

2.1. Basic concepts

Single-objective optimisation algorithms are designed to minimise (or maximise) a single
criterion and work well in many real problems. But frequently, there are cases when several
criteria should be considered simultaneously and it is not proper to combine these into a single
term. When this is the case, the problem is said to be a multiobjective or multicriteria optimisation
problem. In single-criterion optimisation, the notion of optimality scarcely needs any explanation.
The best (highest or lowest) value of an objective function will be the target. In multiobjective
optimisation, the notion of optimality is not at all obvious. This can be explained by the concept
of Pareto optimality [6].
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Suppose minimising both F1 and F2: For example, these can be the differences between
analytical and experimental natural frequencies. Suppose further that we have five possible F1 and
F2 values:

A ¼ ð2; 10Þ; B ¼ ð4; 6Þ; C ¼ ð8; 4Þ; D ¼ ð9; 5Þ; E ¼ ð7; 8Þ: ð1Þ

These data are plotted in Fig. 2. Among the five points, A; B; and C seem good choices even
though none of the three points is the best along both dimensions. There are trade-offs from one
of these three to another; there is some gain along one dimension with some loss along the other.
In optimisation terminology these three points are non-dominated because there are no points
better than these in every criterion. On the other hand D and E seem poor choices. This is so
because both are dominated by another point. Eð7; 8Þ is dominated by Bð4; 6Þ; because 4o7 and
6o8: And Dð9; 5Þ is dominated by Cð8; 4Þ; because 8o9 and 5o9: Thus, in this problem instead
of obtaining a single answer, the Pareto-optimal set, which is a set of answers that are not
dominated by any others, is obtained.
In general, a multiobjective optimisation problem is to determine a vector of design variables

within a feasible region to optimise a vector of objective functions that are usually in conflict with
each other. The problem formulation in a standard form is as follows:

minimise FðxÞ ¼ fF1ðxÞ;F2ðxÞ;y;FnðxÞg

subject to gðxÞp0;

xminpxpxmax;

ð2Þ

where x is a vector of design variables, FiðxÞ is the ith objective function, and gðxÞ is a constraint
vector.
The solution for a multiobjective optimisation problem is always situated on its Pareto-optimal

set. A feasible vector x% is a Pareto optimum (or non-dominated) for Eq. (2) if and only if there
exist no feasible vector x such that for all iAf1; 2;y; ng

FiðxÞpFiðx%Þ; ð3Þ

ARTICLE IN PRESS

A = (2, 10)

B = (4, 6)

C = (8, 4)
D = (9, 5)

E = (7, 8)

Pareto optimal set

Feasible region

1F

2F

A = (2, 10)

B = (4, 6)

C = (8, 4)
D = (9, 5)

E = (7, 8)

l s

Feasible region

Fig. 2. Illustration of multiobjective optimisation, Pareto-optimal solutions.
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and for at least one iAf1; 2;y; ng;

FiðxÞoFiðx%Þ: ð4Þ

A multiobjective optimisation gives a set of non-dominated solutions, i.e. solutions for which
no objective can be improved without worsening at least one other criterion. Fig. 2 shows a
minimisation problem with two objective functions where the solid line indicates the Pareto-
optimal set in the objective space. A typical characteristic of a multiobjective optimisation
problem is the absence of a unique point that would optimise all criteria simultaneously. Any
point in the Pareto-optimal set can become an optimum solution. One can make his choice on the
basis of trade-offs among design objectives.

2.2. Pareto genetic algorithm for multiobjective optimisation

Consider the following unconstrained optimisation problem to minimise a single-objective
function:

minimise F ðxÞ

subject to xminpxpxmax:
ð5Þ

Genetic algorithms (GAs) for single-objective optimisation use random processes to produce an
initial finite population within the specified design variable space. For each member of the initial
population, the objective function is calculated and then a fitness value is assigned according to
the calculated value. For a minimisation problem like Eq. (5), the highest fitness value is assigned
to the member that minimises the objective function. And then, three genetic operators
(reproduction, crossover, and mutation) are applied to the initial population to generate
successive populations that improve their fitness values over generations.
GAs search using a population of points, rather than using a point-to-point search. This search

process meets the requirement of seeking Pareto-optimal points. Many multiobjective GAs have
been developed to solve a general multiobjective optimisation problem like Eq. (2). The developed
multiobjective GAs are essentially simple extensions of GAs treating a multiobjective function.
Among them, the Pareto GA developed by Cheng and Li [7] is used in this model updating
recognising its effectiveness in generating Pareto-optimal points. In the Pareto GA, a penalty
function technique is adopted to transform a constrained optimisation problem to an
unconstrained one. As noted, in a GA for single-objective optimisation, the fitness value of a
member is directly related to its objective function value. In the Pareto GA dealing with a vector
function space, the fitness value of a member depends on its rank and the rank of a member
depends on its non-dominated nature. Ranking a population is a continuous labelling process. At
each generation, non-dominated members are identified and assigned rank 1: From the remaining
population, non-dominated points are identified and assigned rank 2: This process continues until
the entire population is ranked. Members of lower rank have higher fitness value. Fig. 3 illustrates
ranking for a two-objective minimisation problem. After a fitness value is assigned for each
member, the three genetic operators are applied to the current population to generate a new
population. Thus, the Pareto GA is essentially the same as a GA except for the fitness assignment
process. In the Pareto GA, a new operator called Pareto-set filter is introduced. At each
generation, the members designated rank 1 are put into the filter. When new members are added
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to the Pareto-set filter, all the members in the filter are subjected to non-dominated checks
(filtering process) and dominated members are discharged. Thus, only non-dominated solutions
are maintained in the filter. As evolution continues, the members in the Pareto-set filter go to its
Pareto-optimal set zone. Fig. 3 schematically illustrates the Pareto GA for a two-objective
minimisation problem.

3. Updating parameter selection

Since a realistic FE model has many FEs, it is impractical to associate an updating parameter
with each FE. This is because the updated parameter values of neighbouring elements can be
oscillatory, which are physically meaningless. And in order to avoid an ill-conditioned numerical
problem, the number of updating parameters should be kept as small as possible. A popular
alternative approach is to assign an updating parameter to a group of FEs, a substructure.
Depending on the combinations of individual FEs, there can appear numerous substructures or
updating parameters. It is a crucial step in model updating to select effective updating parameters
from many combinations [8,9]. Parameters should be selected with the aim of correcting modelling
errors, and the selected parameters should be sensitive to them. In this section, the importance of
updating parameters is illustrated through simulated case studies and a procedure for selecting
appropriate parameters is suggested.

3.1. Case study

A simple plate with a crack is provided to demonstrate the effects of updating parameter
selections on updated results (Fig. 4(a)). To simulate experimental data, a fine FE model, having
466 shell elements with 3126 degrees of freedom (d.o.f.’s), is constructed (Fig. 4(b)). It is assumed
that out-of-plane (z-direction) vibrations are measured at 36 points. The experimental mode
shapes are plotted in Fig. 5. Fig. 6 shows an initial FE model having 114 shell elements with 840
d.o.f.’s. The corresponding mode shapes are plotted in Fig. 7. Due to the crack of the test plate,
the modal properties from the initial FE model show deviations from those of the test model as
summarised in Table 1. The 2nd and 3rd mode pairs are poorly correlated and the initial model
needs to be updated for better correlation.
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Fig. 4. Test plate with a crack: (a) geometric dimensions and vibration measurement points; (b) fine FE model (466

elements, 3126 d.o.f.’s).
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Fig. 5. Experimental mode shapes of test plate.

Fig. 6. Initial FE model for test plate (114 elements, 840 d.o.f.’s).
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Fig. 7. Mode shapes of initial FE model.
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If a single-objective optimisation is used, then an objective function can be set up as

X4
i¼1

wfi
j fxi

� fai
j þ

X4
i¼1

wmi
ð1� MACðfxi

;fai
ÞÞ ð6Þ

where fxi
; fxi

are the ith modal properties of the test plate, fai
; fai

are the ith modal properties of
the FE model, and the coefficients wfi

; wmi
are weighting factors. The selection of the weighting

factors is very difficult since the relative importance among the objective terms is not obvious. The
time-consuming optimisation process may be solved repeatedly until appropriate results are
obtained. But if multiobjective optimisation is used, several objective terms can be minimised
simultaneously and the solution in the non-convex surfaces can be generated. A multiobjective
optimisation problem can be expressed as

minimise
X4
i¼1

j fxi
� fai

j; 1� MAC11; 1� MAC22; 1� MAC33; 1� MAC44

( )
ð7Þ

where MACii is MACðfxi
;fai

Þ:
In the following two model updating cases, it is assumed that the mass matrix of the initial FE

model is correct and only the stiffness matrix needs to be updated. The multiobjective
optimisation problem defined in Eq. (7) is solved using the Pareto GA. Every updating parameter
is arbitrarily bound between �0:5 and 0:5:

3.1.1. Case 1—three substructure parameters

In this case, the FEs of the FE model are grouped into three substructures as in Fig. 8. The
stiffness correction matrix is expressed as

DK ¼
X3
i¼1

pki
K i ð8Þ

where K i is the stiffness matrix of the ith substructure, and the coefficient pki
is the updating

parameter (substructure stiffness parameter). The multiobjective optimisation problem of Eq. (7) is
solved and the statistics of the resulting Pareto-optimal solutions are listed in Table 2. Among the
Pareto optimal, three solutions are selected which satisfy the following criteria and the modal
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Table 1

Comparison of modal properties of cracked plate and initial FE model

Mode Natural frequency (Hz) MAC value

Test model Initial FE model Error (%)

1 3.60 3.77 4.75 1.0000

2 22.72 23.59 3.83 0.3443

3 23.71 24.55 3.53 0.5100

4 65.10 66.36 1.94 0.9501
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properties of the solutions are given in Table 3:

min
i¼1;2;3;4

MACii > 0:48: ð9Þ

Tables 2 and 3 show that the updated FE models do not give acceptable correlation with the test
model. Also the updated parameters fail to have physically any meaning (Table 3). If the updated
parameters are physically meaningful, pk1

should be some negative value since there is a crack in
substructure 1 and the other two parameters, pk2

and pk3
; should be close to zero. Thus, the model

updating performed in case 1 is not successful.
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Table 2

Case 1—statistics of Pareto-optimal solutions

Mode Natural frequency error (%) MAC value

Minimum Maximum Mean Minimum Maximum Mean

1 0.0008 18.3963 4.0433 0.9993 1.0000 1.0000

2 0.0129 21.3692 6.8310 0.3443 0.6547 0.3573

3 0.0016 19.0698 4.9160 0.4849 0.5103 0.5094

4 0.0028 19.3200 5.1409 0.9247 0.9508 0.9500

1 2 31 2 3

Fig. 8. Case 1—division of the plate model into three substructures.

Table 3

Case 1—comparison of modal properties of cracked plate and updated FE models

Mode Alternative 1a Alternative 2b Alternative 3c

Natural freq. MAC Natural freq. MAC Natural freq. MAC

error (%) value error (%) value error (%) value

1 4.5000 0.9998 4.4902 0.9998 4.2901 0.9998

2 4.5097 0.6547 4.5118 0.6547 4.5719 0.6547

3 0.1616 0.4879 0.2363 0.4878 0.2054 0.4877

4 0.7238 0.9479 1.4505 0.9469 1.7371 0.9468

apk1
¼ �0:2282; pk2

¼ 0:1602; pk3
¼ 0:1020:

bpk1
¼ �0:2268; pk2

¼ 0:1462; pk3
¼ 0:1474:

cpk1
¼ �0:2218; pk2

¼ 0:1354; pk3
¼ 0:1621:

G.-H. Kim, Y.-S. Park / Mechanical Systems and Signal Processing 18 (2004) 59–78 67



3.1.2. Case 2—six substructure parameters

In this case, the FEs of the FE model are grouped into six substructures as in Fig. 9. The
stiffness correction matrix is expressed as

DK ¼
X6
i¼1

pki
K i: ð10Þ

Following the same procedure as in case 1; the multiobjective problem is solved and the statistics
of the resulting Pareto-optimal solutions are listed in Table 4. Among the Pareto optimal, three
solutions are selected which satisfy the following criteria and the modal properties of the solutions
are given in Table 5:

min
i¼1;2;3;4

MACii > 0:98: ð11Þ

Unlike case 1; the updated FE models give quite acceptable correlation with the test model.

3.1.3. Discussion
Although both of the above two cases have an updating parameter in the region with the crack,

pk1
for case 1 and pk4

for case 2, the initial FE model in case 1 are slightly improved in contrast
with case 2. As noted, the improvement of a FE model depends heavily on the selection of
parameters. This can be explained by examining the sensitivities of the objective functions with
respect to each updating parameter. The sensitivities of MAC22 and MAC33 for both cases are
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Fig. 9. Case 2—division of the plate model into six substructures.

Table 4

Case 2—statistics of Pareto-optimal solutions

Mode Natural frequency error (%) MAC value

Minimum Maximum Mean Minimum Maximum Mean

1 0.0018 14.4012 3.0504 0.9995 1.0000 0.9999

2 0.0014 13.9952 3.2556 0.5499 0.9992 0.9543

3 0.0042 16.1251 4.1042 0.6555 0.9991 0.9563

4 0.0056 13.7168 2.6669 0.9487 0.9980 0.9920
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plotted in Fig. 10. The sensitivities in case 2 (orders of 10�2) are much larger than those in case 1
(orders of 10�4). A successful FE model updating requires not only satisfactory correlation with
experimental data but also minimum changes of an initial FE model. Thus, FEs of an FE model
should be grouped into substructures such that the objective functions of primary interest are
most sensitive to the updating parameters of the constructed substructures. But depending on the
combinations of individual FEs, there exist numerous substructures or updating parameters. How
can we select such an updating parameter set from many alternatives? A procedure is explained in
the following to guide this selection.

3.2. Updating parameter selection method

Consider a substructure having n individual FEs. Let a be an updating parameter of the
substructure and a1; a2;y; an be updating parameters of the individual FEs that constitute the
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Fig. 10. Sensitivities of MAC22 and MAC33 with respect to the updating parameters (Ni ¼ number of FEs in the ith

substructure): (a) case 1; (b) case 2:

Table 5

Case 2—comparison of modal properties of cracked plate and updated FE models

Mode Alternative 1a Alternative 2b Alternative 3c

Natural freq. MAC Natural freq. MAC Natural freq. MAC

error (%) value error (%) value error (%) value

1 2.0380 0.9999 1.5040 0.9999 1.9387 0.9999

2 1.2413 0.9817 1.2098 0.9843 2.5374 0.9882

3 2.0865 0.9805 2.5083 0.9834 2.5510 0.9876

4 0.9370 0.9922 0.4975 0.9927 1.0288 0.9910

apk1
¼ 0:1681; pk2

¼ �0:1968; pk3
¼ 0:4470; pk4

¼ �0:4707; pk5
¼ 0:3474; pk6

¼ �0:0478:
bpk1

¼ 0:2216; pk2
¼ �0:2290; pk3

¼ 0:4105; pk4
¼ �0:4969; pk5

¼ 0:4176; pk6
¼ �0:0624:

cpk1
¼ 0:1383; pk2

¼ �0:1558; pk3
¼ �0:0111; pk4

¼ �0:4562; pk5
¼ 0:4135; pk6

¼ 0:2802:
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substructure. Further assume that the updating parameters of both the substructure and the
individual FEs have the same physical property: substructure parameter, Young’s modulus, mass
density, thickness, etc. An objective function value depends on the updating parameters and can
be written as

F ðaÞ or Fða1; a2;y; anÞ: ð12Þ

Note FðaÞ ¼ F ða1; a2;y; anÞ when ai ¼ a for all i ¼ 1; 2;y; n: Using Taylor series expansion, the
objective function can be written as

F ða; a;y; aÞ ¼ Fð0; 0;y; 0Þ þ
qF

qa1
þ

qF

qa2
þ?þ

qF

qan

� �
a þ? : ð13Þ

Manipulating Eq. (13), we can obtain the sensitivity of the objective function with respect to the
updating parameter a as

qF

qa
¼ lim

a-0

F ða; a;y; aÞ � Fð0; 0;y; 0Þ
a

¼
qF

qa1
þ

qF

qa2
þ?þ

qF

qan

¼
Xn

i¼1

qF

qai

: ð14Þ

Eq. (14) tells that the sensitivity of an objective function with respect to an updating parameter of
a substructure is equal to the sum of the sensitivities of the objective function with respect to the
updating parameters of the individual FEs that constitute the substructure. Using this fact, we can
construct substructures such that an objective function is sensitive to the updating parameters of
the substructures as below:

(1) Calculate the sensitivity of the objective function about each individual FE.
(2) Group the individual FEs into substructures according to the calculated sensitivity signs

considering the connectivity of FE mesh.

Fig. 11(a) schematically shows the updating parameter selection procedure for a single-
objective function. Using the suggested parameter selection method, the number of updating
parameters can be kept small. And an objective function which quantifies the differences between
analytical and experimental results can be reduced effectively with small changes of the selected
updating parameters. Fig. 11(b) shows the parameter selection procedure when multiple objective
functions are considered simultaneously. When multiple objective functions are considered
simultaneously, trade-offs can be made in selecting parameters.

4. Overall FE model updating procedure

Using the Pareto GA and the parameter selection procedure, Pareto-optimal solutions with
improved correlations with experimental data can be obtained. But for physically meaningful
results, regions containing modelling errors should be identified and updating parameters should
be selected around those regions. Examples of obvious candidates can be boundaries and joints.
Also using error localisation methods, the parameters which presumably contain modelling errors
can be located among a large candidate set of parameters. An FE model updating procedure
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incorporating error localisation is suggested as [10]:

(1) Set up a multiobjective function considering the correlations between analytical and
experimental results.

(2) Locate modelling errors. This generally requires considerable physical insight. Systematic
approaches such as error localisation methods can be used.

(3) The suggested parameter selection procedure is applied. First, select the most undesirable
objective functions from the mulitobjective function. Then, calculate the sensitivities of the
selected objective functions for each FE in the regions with modelling errors. And group the
FEs into substructures such that the objective functions of primary interest are sensitive to the
updating parameters of the substructures.

(4) Solve the multiobjective optimisation problem using the Pareto GA and select a best
compromise solution from the Pareto-optimal solutions.

The suggested updating procedure is applied to the case study problem of Section 3.1. Using a
force balance method [11], the regions with modelling errors are located as in Fig. 12. The plot
shows dominant errors in the initial FE model around the crack position. For each FE in the
dominant error regions, the sensitivities of MAC22 and MAC33 with respect to the chosen
substructure stiffness parameter are calculated and the resulting signs are plotted in Fig. 13. In
this special case, both sensitivities of each FE have the same sign. Using the sensitivity
information, the elements are grouped into two substructures such that MAC22 and MAC33 are
most sensitive to the updating parameters as in Fig 14. The stiffness correction matrix is written as

DK ¼
X2
i¼1

pki
K i: ð15Þ
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Fig. 11. Schematic of the updating parameter selection procedure: (a) for a single-objective function, (b) for multiple-

objective functions.
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The multiobjective optimisation problem of Eq. (7) is solved using the Pareto GA. The two
updating parameters are arbitrarily bound between �0:7 and 0:7: The statistics of the resulting
Pareto-optimal solutions are listed in Table 6. And among the Pareto optimal, three solutions are
selected which satisfy the following criteria and the modal properties of the selected solutions are
given in Table 7:

min
i¼1;2;3;4

MACii > 0:97: ð16Þ

ARTICLE IN PRESS
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Fig. 13. Signs of MAC22 and MAC33 sensitivities.

1
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2

Fig. 14. Grouping of the regions with the dominant errors into two substructures.

Fig. 12. Error localisation of the initial FE model using force balance method.
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Tables 6 and 7 show that the updated FE models give quite acceptable correlations with the test
model. Also, the updated parameters show consistent results with physical significance (Table 7).
It is interesting that only two updating parameters can update the initial FE model successfully.

5. Application

The suggested model updating procedure is applied to FE model updating for a hard disk drive
(HDD) cover structure as shown in Fig. 15 [12]. The initial FE model is developed on the basis of
design geometries. Approximated thicknesses are used in the initial FE model because the actual
HDD cover structure has tapered thickness and sometimes has abrupt changes in thickness. The
thicknesses are measured only at several chosen points. The model has 1115 elements with 6732
d.o.f.’s. A modal test is conducted to obtain actual modal properties of the cover structure. The
frequency range of interest is set from 0 to 3 kHZ where high vibration and noise levels were
observed during an operational test. The cover structure is excited with an impact hammer and
vibrations are measured at 66 points using a laser doppler vibrometer. CADA-X is used to
measure FRFs and extract mode shapes and natural frequencies.
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Table 7

Comparison of modal properties of cracked plate and updated FE models

Mode Alternative 1a Alternative 2b Alternative 3c

Natural freq. MAC Natural freq. MAC Natural freq. MAC

error (%) value error (%) value error (%) value

1 4.2457 0.9999 4.3283 0.9999 4.4387 0.9999

2 3.2177 0.9700 3.2677 0.9706 3.3290 0.9713

3 0.1638 0.9701 0.1230 0.9706 0.0659 0.9712

4 4.1746 0.9911 4.2189 0.9910 4.2734 0.9909

apk1
¼ 0:1729; pk2

¼ �0:5504:
bpk1

¼ 0:1709; pk2
¼ �0:5518:

cpk1
¼ 0:1678; pk2

¼ �0:5532:

Table 6

Statistics of Pareto-optimal solutions

Mode Natural frequency error (%) MAC value

Minimum Maximum Mean Minimum Maximum Mean

1 0.0000 14.3804 3.8505 0.9996 1.0000 0.9999

2 0.0024 9.9437 2.2159 0.3040 0.9991 0.9373

3 0.0000 6.2138 1.3152 0.4797 0.9987 0.9424

4 0.0000 9.8404 3.0615 0.9469 0.9981 0.9944
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The experimental mode shapes and their corresponding analytical mode shapes are shown in
Figs. 16 and 17, respectively. And the modal properties are compared in Table 8. Table 8 shows
that the natural frequency errors of the 6th, 7th, 8th, and 9th mode pairs are larger than 3%: Also
the MAC values of 3rd, 4th, 5th and 10th mode pairs are below 0:9: To improve these
unsatisfactory correlations, the suggested model updating procedure is applied. A multiobjective
function to be minimised is set as

fa6 � fx6

fx6

����
����; fa7 � fx7

fx7

����
����; fa8 � fx8

fx8

����
����; fa9 � fx9

fx9

����
���� 1� MAC33; 1� MAC44; 1� MAC55; 1� MAC1010

� �
ð17Þ

where fxi
and fai

denote the ith experimental and analytical natural frequencies, respectively, and
MACii is the MAC value of the ith mode pair. To prevent the other correlations from giving
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Fig. 15. Initial FE model of a HDD cover structure.

1st mode 2nd mode 3rd mode 4th mode 5th mode

6th mode 7th mode 8th mode 9th mode 10th mode

Fig. 16. Experimental mode shapes of HDD cover.

1st mode 2nd mode 3rd mode 4th mode 5th mode

6th mode 7th mode 8th mode 9th mode 10th mode

Fig. 17. Mode shapes of initial FE model.
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wrong optimisation results, several other constraints are applied as

fai
� fxi

fxi

����
����p3%; i ¼ 1; 2; 3; 4; 5; 10 MACiiX0:9; i ¼ 1; 2; 6; 7; 8; 9: ð18Þ

First, to find dominant error regions in the initial FE model, a force balance method is used [11]
and the results are plotted in Fig. 18. By applying the suggested parameter selection method, 11
thickness parameters are selected around the suspicious regions as shown in Fig. 19. In selecting
these parameters, the 2nd, 5th, 6th, and 7th objective functions, which show relatively large
deviations, are considered altogether. And some trade-offs are made where there are competitions
among them. Thus, the selected objective functions are very sensitive to the selected parameters.
The multiobjective optimisation problem of Eq. (17) is solved using the Pareto GA. The allowed
maximum change of the parameters is set to 5% (about 50 mm) considering only measurement
error. The statistics of the solutions are summarised in Table 9. From the Pareto-optimal
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Fig. 18. Error localisation.

Table 8

Comparison of the experimental and analytical modal properties before updating

Mode Natural frequency (Hz) MAC value

Experiment Initial FE model Error (%)

1 409.68 404.13 �1.3507 0.9847

2 908.15 931.94 2.6206 0.9831

3 1707.65 1669.00 �2.2633 0.8326

4 1748.86 1709.13 �2.2717 0.7754

5 1793.23 1757.94 �1.9681 0.8382

6 2474.99 2399.10 �3.0663 0.9496

7 2843.29 2723.27 �4.2213 0.9469

8 2976.06 2878.29 �3.2853 0.9360

9 3113.84 3016.39 �3.1298 0.9582

10 3268.98 3182.76 �2.6374 0.8905
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solutions, three solutions are selected which satisfy the following criteria and their modal
properties are listed in Table 10:

max
i¼1;y;10

fai
� fxi

fxi

����
����p3%; min

i¼1;y;10
MACiiX0:9: ð19Þ

Table 10 shows the initial FE model considerably improved. For all the mode pairs, the natural
frequency errors are less than 3%; and the MAC values are larger than 0:9: From these
observations, it can be concluded that the FE model updating is successful.

6. Conclusion

Two important issues in model updating were considered in this paper: objective function and
updating parameter selection.

ARTICLE IN PRESS

ª ª

ª

ª

ª

ª

ª

ª ª

ª

ª

t t

t

t

t

t

t

t t

t

t11
9

10

5

6

7
8

4

1 2

3

Fig. 19. Updating parameter selection: 11 thickness parameters.

Table 9

Statistics of Pareto-optimal solutions

Mode Natural frequency error (%) MAC value

Minimum Maximum Mean Minimum Maximum Mean

1 0.0058 3.0095 1.2892 0.9816 0.9864 0.9846

2 1.7950 3.2224 2.8667 0.9823 0.9852 0.9835

3 1.1852 3.0775 1.8666 0.5800 0.9697 0.8950

4 0.9975 3.0837 1.8269 0.3624 0.9835 0.8253

5 0.9276 2.8706 1.9353 0.7706 0.9501 0.9112

6 1.4276 3.9593 2.4784 0.9356 0.9626 0.9510

7 2.5338 5.8786 3.7467 0.9005 0.9677 0.9499

8 2.1765 4.0918 3.0111 0.9265 0.9613 0.9523

9 1.5508 4.1371 2.5976 0.9038 0.9762 0.9666

10 1.3372 3.0923 2.2688 0.8099 0.9414 0.9192

G.-H. Kim, Y.-S. Park / Mechanical Systems and Signal Processing 18 (2004) 59–7876



In conventional model updating using single-objective optimisation techniques, incompatible
physical data are compared with each other using weighting factors. There are no general rules for
selecting the weighting factors since the relative importance among the data is not obvious but
specific for each problem. To avoid the difficulty, multiobjective optimisation was introduced in
this paper. It was shown that multiobjective optimisation can optimise several objective functions
simultaneously. A Pareto GA was especially used in this study. Note that the multiobjective GA is
computationally expensive because it searches on the basis of a population of points, rather than a
point-to-point search, and attempts to generate a large number of Pareto points. For a large
problem where computational cost is important, other multiobjective techniques can be used.
Aware that the sensitivity of an objective function with respect to an updating parameter of a

substructure is equal to the sum of the sensitivities of the objective function with respect to the
updating parameters of the individual FEs, an improved updating parameter selection method
was also suggested.
The two systematic approaches, multiobjective optimisation and parameter selection method,

are seamlessly incorporated into a model updating procedure, which was successfully applied to a
real engineering problem.
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