대역확산 Unslotted ALOHA 시스템의 성능 분석

转置

본 논문은 대역확산 unslotted ALOHA 시스템의 성능을 수학적으로 분석하고 시뮬레이션 결과와 비교한다. 제시지 방식은 포아송 분포로 가정하였고, 발생된 메시지는 채널 단위로 분할되어 전송된다고 가정하였다. 제시지의 길이는 평균 B 개의 패킷을 가지는 기하분포로 가정하였으며 각 패킷 길이는 고정된 L 비트를 갖는다고 가정하여 마코프 체인으로 시스템을 모델링하였다. 메시지가 전송되는 동안 다른 사용자에 의한 간섭물의 변화를 매 비트 시간 단위로 고려하여 배경 소음 확률 을 계산하고 시스템 수용량을 구하였다. 또한 CLSP(Channel Load Sensing Protocol)과 시스템 수용과의 관계를 고찰하였으며, 적은 수의 오류 정정 코드를 사용함으로써 상당한 수용 향상이 있음을 보였다.

1. 서 론

최근 들어 언제, 어디서나, 누구게도 유속, 데이터, 정보 및 통신상 모든 종류의 데이터를 통신할 수 있는 방안으로 다양한 형태에 이용하여 대처할 수 있는 패킷 무선통신망과 대

한 관심이 높아 가지고 있다. 이러한 통신망을 실현하기 위한 대중 접속 방식으로 FDMA, TDMA 및 CDMA 같은 방법들이 각

도되어 있으며 최근에는 TDMA나 CDMA 같은 방법을 중심으로 연구 및 표준화가 진행중이다. 특히 CDMA의 높은 주파수 효율, 소프트 페어오버, 간섭에 대한 높은 저항성 및 시스템 성능 개선 가능성이 장점으로 인하여 CDMA 기술을 이용한 무선 통신 시스템은 2세대 이동통신 시스템으로 주목받고 있다[1].

대역확산 ALOHA 시스템은 이동국의 효율적 전력 이용 및 무선 채널에서의 보안성에 보장되는 CDMA의 장점과 프로토콜 간의 간결성과 효율성의 장점을 갖는 ALOHA 방

식이 결합된 시스템이다. 대역확산 ALOHA 시스템은 채널 액세스 방식에 따라 대역확산 slotted ALOHA 시스템과 대역확산 unslotted ALOHA 시스템으로 구분된다. 대역확산

에 기반한 ALOHA 시스템은 시간위치 오류 위주로 구분되고, 각 송신 시작점에서 모든 이동국이 동기화된 패킷 전송은 송

신의 시작에서부터 이루어져서 다른 사용자에 의한 간섭물

은 송신 동안 일정되어 있다. 반면에 대역확산 unslotted ALOHA 시스템은 각국(이하 Hub)과 이동국간에 동기가 필요없다. 대역확산 unslotted ALOHA 시스템은 pure-

ALOHA와 같이 패킷이 발생하는 시간에 패킷을 전송하며 패

킷이 전송되는 동안 다른 사용자에 의해서 입의의 간섭을 겪

게 된다. 따라서 unslotted ALOHA 시스템은 slotted ALOHA 시스템보다 용이한 반면 분석이 어렵다.

현재 국내에서는 대역확산 ALOHA 시스템의 성능 분

L-채널 CDMA 네트워크 시스템 수용량을 구하는데 고정길이의

패킷이 전송되는 동안 신호대음비의 변화는 양을 관측하

여 패킷 흐름을 근거로 시스템을 분석하였다. Tosh[3]는

대역확산 slotted ALOHA 시스템에서 패킷 길이보다 높은

값을 적절 설정함으로서 unslotted 방식에 적용되는

CLSP(Channel Load Sensing Protocol)와 대역확산 slotted

ALOHA 시스템에 적용시켜 시스템 효율을 향상시켰다. Sato[4]

는 고정길이의 패킷을 갖는 대역확산 unslotted ALOHA 시

스템을 마르코프 모델을 이용하여 분석하였는데 패킷이 전송되

는 동안 다른 사용자의 간섭물과 간섭 시간을 고려하여 패킷

성공확률을 계산하였다. 또한 CLSP를 적용하였음에 대역확산

는 가변길이의 패킷이 전송하는 해안에서 Block FBC 코딩을 고

려하여 대역확산 unslotted ALOHA 시스템을 분석하였다.

지금까지 대역확산 unslotted ALOHA 시스템에 관한 연

구는 고정길이 또는 가변길이의 입력 트래픽 환경에서 진행

되었다. 앞으로 이동국의 주요 데이터 서비스는 전자우편

(e-mail), 파일 전송(ftp) 또는 웹 서비스가 될 것이며, 이러

한 데이터 서비스는 가변길이를 가지는 입력 트래픽으로 모델
II. 시스템 모델

대역확산 unslotted ALOHA 시스템의 성능 분석을 위해 다음과 같은 시스템 모델을 고려한다.

1. 무한대의 이동국과 하나의 Hub로 구성된 무선통신망을 가정한다. 서로 다른 환산 코드를 가진 이동국들은 전송되는 모든 메시지에 대하여 동일한 환산코드를 사용하여 데이터가 발생하는 메시지 시작점에서 바로 데이터 메시지를 전송하고, Hub는 충돌(colision)이 일어나지 않는 엔트와 시간 차단을 갖는 모든 메시지 신호들을 차분화하여 수신할 수 있다[6].

2. 이동국이 발생시키는 데이터는 랜덤한 임의로 선택된 유사 동일한 회전표를 갖는 동일한 확산은 L 비트로 고정된다. 실제로 데이터 메시지가 이러한 구조를 갖는 경우에는 전자우편(e-mail), 파일전송(ftp)[7] 또는 웹트래픽[8] 등이 있다.

3. 이동국은 하나의 파라미터의 Reed-Solomon(RS) 코드를 사용하여 L비트의 메시지를 정렬할 수 있다. \(n, k \) RS 코드는 \(n = \frac{k}{2} \) 개의 오류를 정렬할 수 있다[11]. 여기서 \(n \)은 표현의 크기이고 \(k \)는 실제 데이터의 크기가이다. 2\(n \)개의 편의 중 | 1 \(n \) 비트의 오류를 정렬할 수 있는 RS 코드의 경우, \(n = 2m-1 \)이며 \(k = 2m-1-2r \) 이다\((m=2,3,...)\). 따라서 \(L \)비트의 메시지에서 코딩율은 \(k/L \)이다.

4. 이동국이 전송한 모든 데이터 메시지는 Hub에서 동일한 전력크기로 수신된다.

5. 비트 에러는 다른 사용자에 의한 간섭과 패킷 갭에서 발생하는 경우(AWCN)에 의해서만 발생하는데 대역확산 unslotted ALOHA 시스템의 비트 에러는 식 (1)과 같다[12].

\[
P_b(k) = \frac{2}{3}Q\left(\frac{k}{3N} + \frac{N_0}{2E_b}\right) \\
+ \frac{1}{6}Q\left(\frac{k(N/3)\sigma}{N^2} + \frac{N_0}{2E_b}\right) \\
+ \frac{1}{6}Q\left(\frac{k(N/3)\sigma}{N^2} + \frac{N_0}{2E_b}\right)
\]

여기서 \(k \)는 다른 사용자의 수이며, \(N \)은 환산 개수 즉 비트당 합의 수이고 \(N_0 \)는 가우시안 잔차이다. \(\sigma^2 \)와 에러함수 \(Q(x) \)는 각각 식 (2), 식 (3)과 같다.

\[
\sigma^2 = k\left[\frac{N^2 - 2N}{360} + N_0\left(\frac{1}{20} + \frac{k-1}{36}\right) - \frac{1}{20} - \frac{k-1}{36}\right]
\]

\[
Q(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} du
\]

III. 대역확산 unslotted ALOHA 시스템의 분석

1. 시스템 부하량

시스템 부하량 \(G \)를 식 (4)와 같이 파라미터 값은 \(T_p \) 동안 모든 패킷에 들어가는 평균 패킷 개수로 정의한다.

\[
G = \lambda \cdot T_p \cdot \frac{L}{R}
\]

여기에서 \(T_p \)는 파리전송 시간이며, \(L \)은 한 개의 패킷 길이이고 \(R \)는 데이터 전송 속도이다. \(\lambda \)는 무선국이 한 번에 전송할 수 있는 평균 패킷의 수이다. \(\lambda \)는 다른 사용자에 의한 간섭과 패킷 갭에서 발생하는 경우(AWCN)에 의해서만 발생하는데 대역확산 unslotted ALOHA 시스템의 비트 에러는 식 (1)과 같다[12].

\[
G_{\text{norm}} = \frac{G}{N} \cdot \frac{T_p}{L} [\text{bit/Hz/sec}]
\]

여기서 \(G_{\text{norm}} \)는 정규화된 \(G \)를 최적의 \(G_{\text{norm}} \)과 같이 정의한다.
또한 데이터 메시지가 1개의 패킷으로 분할되어 전달된 후식식 (6)와 같은 기하 분포를 따른다.

\[P(B=x) = p \cdot (1-p)^{x-1}, \quad p = 1/B \quad (6) \]

여기서 \(B \)는 메시지 길이, 즉 이동국이 전송하는 패킷의 수이다.

2. 시스템 전이율

이동국이 메시지를 전송할 때, 메시지 전송도중 다른 사용자의 간섭량의 변화가 그림 1에 나타나 있다. 이동국은 메시지가 발생하는 순간에 비트 시작점에서 메시지를 전송할 수 있으므로 메시지 전송도중 다른 사용자의 간섭량의 변화는 비트 단위로 변화한다.

그림 2는 태그 패킷이 전송되는 동안 다른 사용자에 의한 간섭량의 변화를 메시지 발송 순서에 따라 그린 것이다. 패킷을 성공적으로 전송함 확률을 구하기 위해서 그림 2의 태그 패킷을 고려한다. 이동국의 데이터 메시지 발생은 입력률 \(\lambda \) 가지는 포아송 분포로 가정하였으며 \(T_{m} \) 동안 \(k \)개의 메시지가 발생할 확률은 식 (7)과 같은 포아송 분포를 따른다.

\[P_{p}(k) = \frac{(\lambda T_{m})^{k}}{k!} e^{-\lambda T_{m}} \quad (7) \]

그림 2에서 \(T_{m} \) 시간에 \(m \)개의 메시지가 있을 확률 \(P_{p}(m) \) 을 구한다. \(m \)개의 메시지는 \(m \)간 간격 \(T_{m-1}, T_{m-2}, \ldots \)에서 발생한 메시지가 \(T_{m} \) 시간 후에 재전달에 남아 있는 메시지들의 합이다 (\(i = 1, 2, 3 \ldots \)). 먼저 \(T_{m}, T_{m-1} \) 간격을 \(i \) 구간이라 하고 \(i \) 구간에서 발생하여 \(T_{m} \) 시간 이후에 서비스가 종료되는 메시지의 개수를 \(a_{i} \)개라 할 때, \(i \) 구간에서 \(a_{i} \)개의 메시지가 발생한 확률 \(P_{a_{i}}(a_{i}) \)를 구한다. 먼저 \(i = 0 \)일 때에는 태그 패킷이 전송되는 구간이다. 이 구간에서 발생하는 메시지의 개수는 태그 패킷이 전송되기 시작하는 시간 \(T_{m} \)에서의 메시지 개수와는 무관하며 일어날 수 없는 경우이다. 따라서 \(0 \)구간에서 \(a_{0} \)의 메시지가 발생할 확률 \(P_{a_{0}}(a_{0}) = 8 \) 이다. \(i \)가 0보다 큰 경우는 식 (8)와 같이 구해진다.

\[P_{a_{i}}(a_{i}) = \sum_{k=0}^{a_{i}} P(a_{i} | k) P_{p}(k) \]

\[= \sum_{k=0}^{a_{i}} P_{p}(k) \cdot \binom{k}{a_{i}} \cdot P(B \geq i)^{a_{i}} \cdot (1-P(B \geq i))^{k-a_{i}}, \quad \text{for } i = 1, 2, 3, \ldots \quad (8) \]

여기서 \(P(B \geq i) \) 은 식 (9)와 같다.
이것이 \(M \)은 메시지의 최대 폭파 개수, 즉 이동국이 한 번에 최대로 볼 수 있는 최대 폭파의 개수이다.

태그 메시지가 전송되는 동안 다른 사용자간의 간섭량은 데미트 단위로 변화한다. 즉, \(j \)메시지의 간섭량이 \(m_j \)개일 때, \(j+1 \)메시지에서는 \(m_j+1 \)개로 한 개의 메시지가 증가하거나 \(m_j-1 \)개로 감소하거나 또는 변하지 않을 수 있다. 현재의 비트간을 \(\Delta T \)로 생각한다면 시스템을 그림 3과 같은 마코프 체인으로 모델링할 수 있다.

그림 2에서 태그 메시지의 시작점 \(t_m \)에 \(m_1 \)개의 메시지가 있고, \(m_1 \)개의 메시지 중 \(m_1' \)개의 메시지가 \(T_p \)시간 안에 서비스 종료된다고 가정하면, \(m_1' \)개의 평균 메시지 서비스 시
간이 T_p/m_1' 이므로 사멸률은 식 (12)와 같다.

$$\mu(m_1, m_1') = \frac{m_1'}{T_p}$$ \hspace{1cm} (12)

한편, 출생률 λ는 식 (4)로부터 식 (13)에 의해서 구한다.

$$\lambda = \frac{G}{T_p \cdot B}$$ \hspace{1cm} (13)

따라서 시스템 전체 확률은 다음과 같다.

$$q(m_j | m_{j-1}) = \begin{cases} 1 - \lambda \Delta t - \mu(m_j, m_{j-1}') \Delta t, & \text{if } m_j = m_{j-1}' \\ \mu(m_j, m_{j-1}') \Delta t, & \text{if } m_j = m_{j-1} - 1 \\ \lambda \Delta t, & \text{if } m_j = m_{j-1} + 1 \\ 0, & \text{otherwise} \end{cases}$$ \hspace{1cm} (14)

3. 패킷을 성공적으로 전송할 확률

태크 패킷을 성공적으로 전송할 확률을 구하기 위해 확률 $f_j(e, m_j, m_1, m_1')$를 다음과 같이 정의한다. $f_j(e, m_j, m_1, m_1')$는 태그 패킷의 첫번째 비트에서 j번째 비트까지 전송되는 동안 e개의 비트 에러가 발생하였고, j번째 비트에서의 간섭이 m_1개일 확률이다. 여기서 m_1은 태그 패킷의 첫번째 비트의 간섭있는 수이며, m_1'은 m_1개의 짧은 중간에서 태그 패킷이 전송되는 동안 서비스 종료될 때까지의 수이다.

$$f_j(e, m_j, m_1, m_1')$$은 태그 패킷을 첫번째 비트의 경우 한바 섬비니 다른 경우로 구하여 구한다. 먼저 $j = 1$ 경우는 이전 비트가 존재하지 않으므로 $e = 0$이다. 따라서 $f_1(e = 0, m_1, m_1')$는 태그 패킷의 첫번째 비트의 간섭이 m_1개이고 그 중 m_1'개가 태그 패킷이 전송되는 동안 서비스 종료될 확률이다. 이 확률의 $P(m_1, m_1')$이라 하자.

$$f_j(e = 0, m_j, m_1, m_1') = P(m_1, m_1'), \quad \text{for } j = 1$$ \hspace{1cm} (15)

구간 $[t_{n-1}, t_{n-1} + 1)$에서 발생한 메시지, 즉 i 구간에서 발생한 메시지가 t_n 이후에 서비스가 종료될 확률과 $[t_{n-1}, t_{n-1} + 1)$ 구간에서 서비스가 종료될 확률의 비율 ρ는 모든 구간에서 ρ로 동일하다.

$$\rho = \frac{[t_{n-1}, t_{n-1} + 1)에서 발생한 메시지의 수}{[t_{n-1}, t_{n-1} + 1)에서 발생한 메시지의 수 + [t_{n-1}, t_{n-1} + 1)이후에 서비스가 종료될 확률}$$

$$= \frac{P(B = i)}{P(B \geq i)}, \quad i = 1, 2, 3, \ldots, M$$

따라서 $j = 1$인 경우에는 $f_j(e, m_j, m_1, m_1')$는 식 (17)과 같이 구해진다.

$$f_j(e = 0, m_j, m_1, m_1') = P(m_1, m_1')$$

$$= P_j(m_1) \cdot P(m_1')$$

$$= P_j(m_1) \cdot \left(\frac{m_1}{m_1'} \right) \cdot p^{m_1'} \left(1 - p \right)^{m_1 - m_1'}$$

$$\quad \quad \text{for } j = 1$$ \hspace{1cm} (16)

여기서 $P_j(m_1)$은 식 (10)에서 구해진다. j가 첫번째 비트가 아닌 경우에는 식 (11)의 좌석 에러 확률 $P_j(m_1)$을 고려하여 $f_j(e, m_j, m_1, m_1')$을 구하면 식 (18)과 같다.

$$f_j(e = 0, m_j, m_1, m_1')$$

$$= \sum_{m_1'} \sum_{m_1 = 1}^{m_1} f_j(e = 0, m_1, m_1') \cdot q \left(m_j | m_1 \right) \cdot p^{m_1'} \left(1 - p \right)^{m_1 - m_1'}$$

$$\quad \quad \quad \text{for } j > 1$$ \hspace{1cm} (17)

태그 패킷이 j번째 비트까지 전송되는 동안 e개의 비트 에러가 발생하는 경우는 $j-1$번째 비트까지 e개의 에러가 발생하고, 다음 비트에서 에러가 발생하지 않거나, 또는 $j-1$번째
그림 4. CLSP를 적용한 경우 다른 사용자의 간섭량의 상대성장도

때로 비트까지 \(r-1 \)개의 메시지가 발생하고 다음 비트에 메시지가 발생하는 경우이다.

\[f_l(e, m_r, m_{r-1}, m_{r-2}) \] 을 이용하여 메시지 성공적으로 전송될 확률 \(Q \)을 구한다. 메시지 성공적으로 전송되는 경우는 \(L \) 비트가 전송되는 동안 비트에서 \(r \) 비트 이상이 발생하는 경우이다. 따라서 \(L-1 \) 비트까지 \(r-1 \)개의 메시지가 발생한 경우에는 마지막 \(L \) 비트에서 메시지는 전송되지 않아야 한다. 따라서 \(Q \)는 식 (19)와 같이 계산된다.

\[
Q = \sum_{m_r = 0}^{\infty} \sum_{m_{r-1} = 0}^{\infty} \sum_{m_{r-2} = 0}^{\infty} \left(\prod_{e = 0}^{L-1} f_l(e, m_r, m_{r-1}, m_{r-2}) \right) + f_l(e, m_r, m_{r-1}, m_{r-2}) (1 - P_l(m_r))
\]

여기서 \(L \)은 한 개의 메시지 길이이고, \(I \)는 메시지당 점정 가능한 비트 수이다.

시스템 수용을 전송한 시간 \(T_p \) 동안 발생한 메시지 수 \(m \)의 성공 확률로 정의하며, 코딩률을 고려한 시스템 수용 \(S \)은 식 (20)과 같다.

\[
S = \frac{k}{L} \cdot G \cdot Q \quad (20)
\]

여기서 \(k \)는 \(L \) 비트의 패킷에서 실제 데이터 비트 수이다. 확산 제수를 고려하여 시스템 수용은 정규화시킨 식 (21)과 같다.

\[
S_{\text{norm}} = \frac{S}{N} \cdot \frac{L}{T_p} \quad \text{[bits/Hz/sec]} \quad (21)
\]

IV. CLSP를 고려한 역역확산 unslotted ALOHA 시스템 분석

1. 시스템 모델

동시에 전송되는 메시지의 수를 채널 부하량이라 하면. Hub는 채널 부하량을 감지하여 동시에 전송할 수 있는 메시지의 수를 결정한다. 채널 부하량을 결정하기 위해서는 동심점에 \(\alpha \)보다 작은 경우는 잘라 전송할 수 없다. 시스템 모델은 12정의 내용과 동일하다.

시스템에서 동시에 전송할 수 있는 메시지 수 \(m \)는 주기적으로 재한되므로 시스템 부하량은 식 (22)와 같다.

\[
G_m = \frac{\sum_{m=0}^{\infty} m \cdot P_m(m)}{\sum_{m=0}^{\infty} P_m(m)}
\]

여기서 \(m \)은 메시지의 수이며, \(P_m(m) \)은 식 (11)에 의해서 구해진다.

2. 시스템 분석

시스템에 존재할 수 있는 메시지의 수가 \(\alpha \)개 이상으로 재한되므로 다른 사용자의 간섭량은 \(\alpha - 1 \)개까지 존재한다. 따라서 그림 4와 같이 마르코프 체인의 \(\alpha - 1 \)까지 전이할 수 있다.

따라서 시스템 전이 확률 \(q(m_r, m_{r-1}) \)는 다른 사용자의 간섭량 \(m_r \)에서 \(\alpha - 1 \)보다 작은 경우 \(P_{m_r} < \alpha - 1 \)에는 식 (14)와 같고 \(\alpha - 1 \) 이상일 경우에는 식 (23)와 같다.
표 1. 시뮬레이션 파라미터

<table>
<thead>
<tr>
<th>항목</th>
<th>기호</th>
<th>값</th>
</tr>
</thead>
<tbody>
<tr>
<td>전송 속도 (kbps)</td>
<td>R</td>
<td>96</td>
</tr>
<tr>
<td>확산 계수</td>
<td>N</td>
<td>30</td>
</tr>
<tr>
<td>데이터 메시지의 평균 패킷 수 (packets)</td>
<td>B</td>
<td>5</td>
</tr>
<tr>
<td>패킷 길이 (bits)</td>
<td>L</td>
<td>512</td>
</tr>
<tr>
<td>패킷당 정정가능한 비트 수</td>
<td>t</td>
<td>가변</td>
</tr>
<tr>
<td>재건에 동시에 존재할 수 있는 최대 메시지 수</td>
<td>α</td>
<td>가변</td>
</tr>
</tbody>
</table>

\[
q_i(m_i | m_{i-1}) = \begin{cases}
1 - \mu(m_i/m_{i-1}) & \text{if } m_i = m_{i-1} \\
\lambda \Delta t & \text{if } m_i = m_{i-1} + 1 \\
0 & \text{if } m_i > m_{i-1}
\end{cases}
\] \hspace{1cm} (23)

\[
f_i(e, m_i, m_{i-1}) = \begin{cases}
0 & \text{if } j < 1 \\
P(m_i, m_{i-1}) & \text{if } j = 1 \\
\sum_{m_i = 0}^{m_i} P(m_i) & \text{if } j = 1 \\
\sum_{m_i = m_{i-1}}^{m_i + 1} P(m_i) & \text{if } j > 1 \\
\sum_{m_i = m_{i-1}}^{m_i + 1} f_j(e, m_i, m_{i-1}, m_{i-1}, m_{i-1}) q_i(m_i | m_{i-1}) P(m_{i-1}) & \text{if } j > 1 \\
\end{cases}
\] \hspace{1cm} (24)

\[
S_v = \frac{k}{L} \cdot G_{\text{v}}, Q_v
\] \hspace{1cm} (26)

여기서 L은 한 개의 패킷 길이이고, k는 L 비트의 패킷에서 실제 데이터 비트 수다. 확산 계수를 고려하여 시스템 수용율을 정규화시킨다. (27)

\[
S_{\text{norm}} = \frac{S_v}{N} \cdot \frac{L}{T_p} [\text{bits/Hz/sec}]
\] \hspace{1cm} (27)

\[\sum_{m_i = m_{i-1}}^{m_i + 1} f_j(e, m_i, m_{i-1}) q_i(m_i | m_{i-1})(1 - P_o(m_{i-1}))) & \text{if } j > 1
\] \hspace{1cm} \text{if } j > 1

V. 수치 분석 및 시뮬레이션 결과

대역확산 unslotted ALOHA 시스템의 본질 결과를 시뮬레이션 결과와 비교하여 본론의 타당성을 검증한다. 이동통신 등이 동일 시간에서 데이터를 전송하는 경우는 무시할 수 없으므로 코드 충돌을 일으킨 패킷 압박이 발생하지 않는다고 가정하였다. 그리고 Hub는 외부 시간 지연을 가지고 들어오는 모든 메시지를 차례로하여 수신할 수 있다고 가정하였다. 따라서 비트 압박은 가우시안 점вая와 다른 사용자의 간섭이에 의해서만 발생한다. (6) 시뮬레이션에 사용한 입력 트래픽은 에 employer 요청이 평균 320byte의 길이를 가질 것으로 근거하여 (8) 평균 320byte의 가변길이를 갖는 트래픽으로 가정하였고, 전송 속도는 현재 CIRMA 시스템의 전송 속도인 9.6 kbps로 가정하였다. (13). 시뮬레이션에 사용한 값들은 표 1에 정리하였다.

\[
E_p/N_0에 따른 시스템 수용 변화를 그림 5에 나타내었다. E_p/N_0이 유한한 경우는 가우시안 점вая의 영향을 무시한 경우이다. ALOHA 시스템과 같이 대역확산 unslotted ALOHA 시스템도 시스템 보하량이 증가함에 따라 수용이 증가하다가 일정 보하량이 넘을 과부하가 걸리면서 감소하기 시작한다.

시스템에 과부하가 걸리는 상황에서도 일정한 수용을 얻기 위해서 CLSP을 사용한다. CLSP를 사용한 경우 수용값 α에 따른 시스템 수용 변화의 그림 6과 그림 7에 도시하였다.
line: analysis
symbol: simulation

Normalized Throughput, S_{norm} [bits/Hz/sec]

Normalized Offered Load, G_{norm} [bits/Hz/sec]

$Eb/No = 10$ dB
$Eb/No = 20$ dB
$Eb/No = 60$ dB
$Eb/No = \infty$

그림 5. Eb/No에 따른 시스템 수용의 변화

line: analysis
symbol: simulation

Normalized Throughput, S_{norm} [bits/Hz/sec]

Normalized Offered Load, G_{norm} [bits/Hz/sec]

$\alpha=4$
$\alpha=5$
$\alpha=6$
$\alpha=7$
$\alpha=8$

without CLSP

그림 6. 문맥 값 α 값에 따른 시스템 수용 변화 ($\gamma > S - 1$)
다. 이때 비트 에러는 다른 사용자에 의한 간섭발산을 고려하므로, \(\alpha \) 값은 0보다 적게하였을 경우에는 CLSP가 시스템 무호흡을 지나치게 제한하므로 CLSP를 사용하지 않은 경우보다 시스템 수용이 낮게 나타났다. \(\alpha \) 값을 8로 선택하였을 때 최적의 시스템 수용을 보였으며, \(\alpha \) 값은 26 이상으로 설정하면 CLSP를 사용하지 않는 것과 같았다. 이것은 동시에 전송될 수 있는 메시지가 CLSP에 의해 분석된 \(\alpha \) 값의 하위에서 제한되기 때문이며, 따라서 최적 시스템 수용을 얻기 위해서는 최적의 \(\alpha \) 값 선택이 중요하다.

RS 코드를 사용하여 1개의 오류 비트를 정정할 수 있을 때, 이 변화에 따른 시스템 수용률은 그림 8에 나타내었다. 그림에서 보듯이 적은 수의 오류 정정 비트만을 사용한 경우에도 시스템 수용은 상당히 향상되었다. 한 비트의 오류 정정 비트만 할 수 있어도 최대 약 60\%의 수용 향상이 있었으며, 5 비트의 오류 정정 비트만 할 수 있는 경우 최대 145\%의 수용 향상이 있었다. 그러나 적은 부하(\(G < 2 \))에 있어서는 오류 정정 코드를 사용함으로써 약간의 수용 향상이 있으나 거의 완전하지는 않 정도의 오류를 정정할 수 있다. 5 비트의 오류를 정정할 수 있는 데 \((\alpha=5) \) CLSP의 분할 값 \(\alpha \) 값에 따른 수용 향상이 그림 9에서 보였다. 오류 정정 코드 사용한 때도 오류 정정 코드를 사용하지 않았을 때와 같이 \(\alpha \) 값에 따라서 시스템 수용이 크게 영향을 받는 것을 알 수 있다. 5 비트의 오류를 정정할 수 있는 경우에는 적절의 분할 값 \(\alpha=15 \)로서, 오류 정정 코드를 사용하지 않았을 때 최적의 \(\alpha=8 \)의 경우보다 매우 크다. 따라서 해달 환경이 좋지 않은 무선대역에서는 오류 정정 코드가 적절히 사용함으로써 시스템 수용 향상을 얻을 수 있음을 알 수 있다.

VI. 결론

본 논문에서는 대역확산 unslotted ALOHA 시스템의 성능을 분석하고 시뮬레이션을 통하여 분석의 타당성을 보였다. 대역확산 ALOHA 시스템은 CDMA의 정점과 ALOHA 방식이 결합된 시스템으로써 무선데이터 서비스를 지원하는 3세대 이동통신 시스템으로 주목받고 있다. 이동통신의 주요 데이터 서비스는 전자우편(e-mail), 파일전송(ftp) 그리고 웹 트래픽과 같은 가변길이 갖는 데이터 트래픽이 될 것이고 무선 구간에서의 메시지 전송이 패킷화로 분할되어 전송되는 것을 고려할 때, 이러한 환경을 가정한 대역확산 ALOHA 시스템이 필요하다. 따라서 본 논문에서는 이러한 무선 환경에서 대역확산 unslotted ALOHA 시스템을 CLSP를 사용한 경우와 사용하지 않은 경우에 대해서 각각 성능을 분석하였으며, RS 코드와 시스템 수용률과 관계를 고찰하였다.
Figure 8: Variation of the system throughput with time.

Figure 9: Variation of the system throughput with the parameter α.
다. 다른 사용자의 간섭력에 의해서만 비트 오류가 발생할 때, R5 코딩을 사용해서 1 비트의 오류 성장만할 수 있어도 약 60%의 수용 향상을 얻을 수 있었고, 5 비트의 오류 성장이 가능한 경우에는 최대 145%의 수용 향상을 얻을 수 있었다. 그리고 CLSP를 사용하여 동시에 전송할 수 있는 매시지의 개수를 제한하면 시스템 수용 능력이 향상되며, 파라미터 상태에서 최적의 시스템 수용가 유지됨을 보였다. 또한 CLSP와 오류 정방 코드를 사용함으로써 동시에 최대 지원할 수 있는 사용자 수를 증가시킬 수 있음을 보였다.

(참고문헌)

한일(韓一)
1995. 2 : 경북대학교전자공학과 (학사)
1997. 3 : 한국과학기술원 전기 및 전자공학과 (석사)
1997. 3 ~ 현재 : 한국과학기술원 전기 및 전자공학과 (박사과정)
관심분야 : IMT-2000 시스템, CDMA 시스템,
무선 접속 프로토콜, Hanakoff

조동호(趙東浩)
1979. 2 : 서울대학교전자공학과 (학사)
1981. 2 : 한국과학기술원 전기 및 전자공학과 (석사)
1985. 2 : 한국과학기술원 통신공학연구실
1985. 3 ~ 1987. 2 : 한국과학기술원 통신공학연구실
1987. 3 ~ 1989. 12 : 한국과학기술원 통신공학연구실
1987. 3 ~ 1998. 1 : 경희대학교전자계산공학과
조교수, 부교수, 교수
1989. 9 ~ 1995. 7 : 경희대학교전자계산소 소장
1996. 2 ~ 현재 : 한국과학기술원 전기 및 전자공학과 부 교수
관심분야 : 유무선 통신망, 유무선 멀티미디어 통신서비스, 유무선 통신 프로토콜
신병철 (申炳鉉)
1975. 2 : 서울대학교 전기공학과 (학사)
1977. 2 : 한국과학기술원 전기 및 전자공학과 (석사)
1984. 8 : 한국과학기술원 전기 및 전자공학과 (박사)
1977. 3 ~ 1980. 1 : 한국전자기술연구원 연구원
1984. 8 ~ 1998. 8 : 한국과학기술원 전기 및 전자공학과 (교수)
International Fellow
1998. 8 ~ 현재 : 충북대학교 전기 및 전자공학부
관심분야 : 무선통신망, 광대역통신망, 인터넷

문순주 (文淳周)
1991. 2 : 서울대학교 산업공학과 (학사)
1993. 2 : 서울대학교 산업공학과 (석사)
1993. 3 ~ 1997. 1 : 고등기술연구원 전자통신연구실 주임연구원 근무
1997. 2 ~ 현재 : SK Telecom IMT-2000 사업추진본부 산업연구원
1999. 7 ~ 현재 : Nokia 서울 연구소에 파견 근무 중
관심분야 : 차세대 이동통신, 무선접속 프로토콜

김영일 (金英逸)
1990. 2 : 서울대학교 전자공학과 (학사)
1990. 1 ~ 1995. 5 : 디지털 정보통신연구소 근무
1995. 9 ~ 현재 : SK Telecom
관심분야 : IMT-2000, 페이트 네트워크, 멀티미디어 서비스