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We introduce a natural origin of the Peccei-Quinn (PQ) symmetry with a sufficiently good precision. In
the standard model, the baryon number symmetry Uð1ÞB arises accidentally due to the SUð3ÞC color gauge
symmetry, and it protects the proton from a decay at a sufficient level. Likewise, if there is an SUðNÞ gauge
symmetry in the hidden sector, an accidental hidden baryon number symmetry Uð1ÞBH

can appear. The
hidden baryon number is solely obtained by the structure of the SUðNÞ group. In particular, the quality of
the Uð1ÞBH

can be arbitrarily good for an asymptotically-free theory with large enough N. The Uð1ÞBH
can

be identified as a PQ symmetry. Using our findings, we build two types of novel composite axion models:
a model where only one SUðNÞ gauge symmetry is required to both guarantee the quality and break the
Uð1ÞBH

, and a model with SUðNÞ × SUðMÞ gauge symmetry where the exotic quarks responsible to the

axion-gluon coupling do not confine into exotic hadrons through the dynamical breaking of the PQ
symmetry, and have masses of TeV scales.

DOI: 10.1103/PhysRevD.99.015041

I. INTRODUCTION

Peccei-Quinn (PQ) symmetry, a global Uð1ÞPQ, is a
leading candidate to solve the strong CP problem of the
standard model (SM) [1,2], and axion is a pseudo-Nambu-
Goldstone boson (pNGB) of the Uð1ÞPQ [3–8]. The Uð1ÞPQ
carries the quantum anomaly to the color gauge symmetry
SUð3ÞC of the SM, and thus the axion gets a potential with
a CP-conserving minimum due to the nonperturbative
effect of the QCD. As a pleasant surprise, the axion can
also explain the dark matter puzzle [9–11]. (See, e.g.,
Refs. [12–16] for recent reviews.)
The implicit assumption is that the Uð1ÞPQ should have a

very good quality at the perturbative level. However, it is
believed that anyglobal symmetry shouldbeexplicitlybroken
by Planck-scale physics. (See, e.g., Refs. [17,18].) Thus, the
PQ symmetry should not be imposed by hand but be an
accidental symmetry of the Lagrangian. Within the 4D
quantum field theory, it was pointed out that a PQ symmetry
with good enough quality can be obtained by imposing
discrete gauge symmetries [19–23], Abelian gauge sym-
metries [24–26], andnon-Abeliangauge symmetries [27–29].
Within the SM, we can actually find an accidental U(1)

symmetry, the baryon number symmetry Uð1ÞB, which is
of a sufficient precision to suppress the proton decay.

The existence of the Uð1ÞB can be understood from the
triality (or Z3 symmetry) of the SUð3ÞC gauge group [30],
where all quarks are charged. From the triality, the baryon
number is conserved among all possible renormalizable
terms if there is no scalar charged under the SUð3ÞC. In the
SM, the quarks are chiral under the SM gauge group
GSM≡SUð3ÞC×SUð2ÞL×Uð1ÞY , and the Uð1ÞB is anoma-
lous to the SUð2ÞL × Uð1ÞY . This leads us to contemplate
that the Uð1ÞPQ may have a similar origin as the Uð1ÞB.
In this article, we show that if there is an SUðNÞ gauge

theory, a hidden baryon number can be generally and solely
obtained from the structure of the SUðNÞ gauge group,
and can be a good candidate of the Uð1ÞPQ charge. The
approximate conservation of the hidden baryon number is
due to the “N-ality” of the SUðNÞ gauge group just like the
Uð1ÞB case. In particular, if one considers an asymptotically-
free SUðNÞ gauge theory with large enough N, the hidden
baryon number symmetry Uð1ÞBH

is arbitrarily precise.
The Uð1ÞBH

will be anomalous to the SUð3ÞC with chiral
fermions under SUðNÞ × SUð3ÞC, and thus can be identified
as the Uð1ÞPQ that solves the strong CP problem.
We also build concrete models to demonstrate our

idea. Interestingly, due to the chiral fermions under
SUðNÞ × GSM, light exotic quarks and leptons can exist
that can be tested in collider experiments.

II. HIDDEN BARYON NUMBER
IN SUðNÞ GAUGE THEORIES

Here, we study the possibility of the Uð1ÞPQ as a hidden
baryon number symmetry Uð1ÞBH

from an SUðNÞ gauge
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theory. We first review the baryon number in the QCD.
Then we discuss that for an SUðNÞ gauge theory, in
general, there is a hidden baryon number solely determined
by the group structure, which can be conserved at a good
precision thanks to the N-ality.
We consider the SUðNÞ QCD with flavor F > 1, which

has F Weyl fermions, qαii and qαi i of fundamental and
antifundamental representations, where i (αi) is the flavor
(gauge) indices. If N ¼ 3, the model corresponds to the
QCD of the SM. The Lagrangian of a general form for
N ¼ even (for the sake of simplicity of discussion) is

L ¼ Ln¼0 þM−3N=2þ4
pl ðg1qN þ g2q̄NÞ þ � � � þ H:c: ð1Þ

where g1, g2 are dimensionless parameters with flavor
indices omitted; Ln¼0 ¼ Mijq̄iqj þ � � � has operators with
equal numbers of q and q̄; we neglect higher dimensional
terms in “� � �” for an illustrative purpose; qN ≡
ϵα1���αNq

α1
i1
� � � qαNiN is a gauge singlet with antisymmetric

contraction of indices.
We notice that in each term the power of the quarks

always differs from that of the antiquarks by n × N where n
is an integer. The operators in Ln¼0 have a baryon number
symmetry Uð1ÞB with the charge

qi∶1; q̄i∶ − 1 ð2Þ

up to a normalization factor. However, the operator with
n ≠ 0 has at least nN (anti)quarks (e.g., the second terms),
and thus breaks the Uð1ÞB. The dimension of the operator
satisfies

d ≥
3N
2

: ð3Þ

When N is odd, qN is not a Lorentz invariant and d should
be larger. For the F ¼ 1 case, the breaking term has a larger
dimension because the leading breaking operator has qN

and derivatives.
In a general SUðNÞ gauge theory, there can be multiple

representations of fermions and bosons. (N can be either
even or odd.) Even in this case, Uð1ÞBH

can exist and be
precise due to the N-ality of the group theory [30], which is
an extension of the triality of the SUð3ÞC.
A scalar or fermion, Φi of an SUðNÞ can have a general

representation, ri decomposed by specific positive integers,
ðni; m̄iÞ of fundamental and antifundamental representa-
tions. The ni and m̄i can be understood as the numbers of
fundamental and antifundamental indices of a representa-
tion, respectively. We take a convention that jni þ m̄ij is
minimized by the contractions of indices with ϵα1���αN . (For
ni, m̄i ≳ N, this convention may not be unique, but it does
not change our discussion.) For instance, a fundamental
representation, ri ¼ N has (1,0), a second rank symmetric
(or antisymmetric) representation, ri ¼ NðN þ 1Þ=2 [or

NðN − 1Þ=2Þ] has (2,0), and an adjoint representation or
singlet, ri ¼ N2 − 1 has (1,1), etc. A complex-conjugate
representation, r̄i has ðm̄i; niÞ.
ni − m̄i ðmodNÞ is noted as N-ality, which is conserved

in the contraction of the gauge indices. In particular, a
gauge singlet operator (with various indices omitted),

On ¼
Yl
i¼1

Φi; ð4Þ

which is a product of fields of general representations has
vanishing N-ality:

Xl
i¼1

ni − m̄i ¼ nN: ð5Þ

Here, the subscript n of On represents the n in Eq. (5). l is
the total number of fields in the operator, and Φi and Φj

could be the same field for i ≠ j.
One finds that On with n ¼ 0 conserves a U(1) sym-

metry, which is the Uð1ÞBH
with the hidden baryon number

bHðriÞ as

Φi∶ ni − m̄i ð6Þ

up to a normalization factor. For instance, bHðNÞ ¼ 1;
bHðNðN � 1Þ=2Þ ¼ 2; bHðN2 − 1Þ ¼ 0, etc. where we
have used the dimension to denote the representation.
[Strictly speaking, the existence of the Uð1ÞBH

requires
any matter with a hidden baryon number bH ≠ 0.] We
emphasize the hidden baryon number is obtained for the
representations solely by the group structure.
The Uð1ÞBH

is explicitly broken by a gauge singlet
operator On≠0. However, with n ≠ 0 and jni − m̄ij ≪ N,
the l in Eq. (4) needs to be large to satisfy Eq. (5). This
means that On≠0 should include many fields, and thus
can only appear in the Lagrangian as a high dimensional
operator. As a result, one gets an arbitrarily precise Uð1ÞBH

for sufficiently large N and small rank ni þ m̄i. [For
jni − m̄ij ≥ N, one may also get a precise Uð1ÞBH

with
bHðriÞ ¼ ni − m̄i ðmodNÞ or −ðm̄i − ni ðmodNÞÞ.]
In particular, if a large N gauge theory is asymptotically-

free, small ni, m̄i are needed for a negative beta function
βðgNÞ≡ ∂gN=∂ logðμÞ of the gauge coupling gN . For
instance, the beta function with only rank-k representations
satisfies 16π2β=g3N þ 11

3
N ∝ Nk−1, which implies only

matters with k ¼ ni þ m̄i ≤ 2 are allowed for sufficiently
large N.
The Uð1ÞBH

can be anomalous to other gauge groups
if there are chiral fermions. This is similar to the
Uð1ÞB–SUð2Þ2L anomaly induced by the loops of left-handed
quarks, i.e., chiral fermions under SUð3ÞC × SUð2ÞL. Notice
that in the presence of other gauge groups, some types of the
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On≠0 are forbidden, and the precision of the Uð1ÞBH
gets

only better. As will be discussed, if there are chiral fermions
under SUðNÞ × SUð3ÞC, there can be an anomaly of
Uð1ÞBH

–SUð3Þ2C. The anomaly and the good precision of
the Uð1ÞBH

implies that we can identify it as the Uð1ÞPQ.
In a general SUðNÞ gauge theory, we obtain the hidden

baryon number assignment given in Eq. (6), which is
model independent and can lead to a precise Uð1ÞBH

due to
the N-ality of the SUðNÞ. In particular, the Uð1ÞBH

has an
arbitrarily good precision for a large N asymptotically-free
gauge theory, and it can be identified as the PQ symmetry.
In our best knowledge, this has not been clearly pointed out
in existing literature although many works used such a
structure in various forms originating from their choice of
gauge symmetries.

III. MODELS WITH Uð1ÞBH
=Uð1ÞPQ

Here, we address how the Uð1ÞBH
from the SUðNÞ can

be broken producing a pNGB. We also show that this
pNGB can be identified as a QCD axion.
In order to achieve the Uð1ÞBH

breaking, there can be
many scenarios including (1) strong dynamics of the
SUðNÞ gauge theory, (2) spontaneous breakdown of the
SUðNÞwith a new Higgs boson, and (3) strong dynamics of
another gauge group SUðMÞ. Our mechanism introduced in
the last section is a generic one and does not depend on the
breaking mechanism. In the following, we discuss two
scenarios for the sake of concrete model buildings. We will
not introduce any scalar field since the mass scale would
lead to a fine-tuning problem.
Scenario (i): A chiral symmetry breaking of the Uð1ÞBH

can happen due to the strong dynamics of the SUðNÞ gauge
theory. Let us suppose that Uð1ÞBH

–SUðNÞ2 anomaly is
zero. Otherwise, the pNGB of Uð1ÞBH

may not appear in
the low energy effective theory like the pNGB of the axial
U(1) in the QCD [31]. By solving the vanishing conditions
for anomalies of Uð1ÞBH

–SUðNÞ2 with Eq. (6) and SUðNÞ3,
up to ni þ m̄i ≤ 2, one obtains the chiral fermions as Fchi
sets of representations of

�
NðN − 1Þ

2

�
þ 8N þ

�
NðN þ 1Þ

2

�
ð7Þ

plus vectorlike fermions (and arbitrary scalars in general
which but we do not consider). The one-loop β function of
the model is

βðgNÞ ¼ −
g3N
16π2

��
11

3
− Fchi − δð2Þvec

�
N − 4Fchi − δð1Þvec

�
;

ð8Þ

where δð1;2Þvec denote the contributions of the vectorlike
fermions up to second rank representations, and are positive

numbers depending on the contents. The model can be
asymptotically-free if

N ≥
12Fchi þ 3δð1Þvec

11 − 3Fchi − 3δð2Þvec

: ð9Þ

With Fchi ¼ 1 without a vectorlike fermion, the model
was studied in Ref. [32] in a different context. It was
discussed that there is a chiral SUð8ÞF flavor symmetry, and
SUð8ÞF can remain unbroken, while the Uð1ÞBH

is broken
due to the strong dynamics of the SUðNÞ.
We point out that this Uð1ÞBH

is at a good precision as
shown in the previous section. Therefore there is a light
pNGB. If a subgroup of SUð8ÞF is gauged as SUð3ÞC or
GSM, the pNGB may become the QCD axion, since the
anomaly of Uð1ÞBH

–SUð8Þ2F is nonvanishing. However,
several theoretical details are beyond our scope, e.g.,
whether the SUð3ÞC coupling changes the SUðNÞ strong
dynamics, and we do not discuss this possibility more.
We emphasize that we have shown the group theoretical
definition of the Uð1ÞBH

as Eq. (6) makes it easy to identify
the model which has an accidental Uð1ÞPQ at a good
precision.
Scenario (ii): In what follows, we will consider a more

conservative scenario by breaking the SUðNÞ. Even with-
out a scalar field, the Uð1ÞBH

can be spontaneously broken
down by the strong dynamics of another gauge group
SUðMÞ. To be conservative, we assume there is no particle
both charged under the SUðMÞ and GSM so that the strong
coupling of the SM is irrelevant to the dynamics of the
SUðMÞ. Moreover, our model would not have a Landau
pole of the SUð3ÞC coupling below the Planck scale [33].
Because of this assumption we can separate the model
and discussion into three sectors: the Uð1ÞBH

breaking
sector where the SUðMÞ charged particle lives, the hidden
sector where the Uð1ÞBH

–SUð3Þ2C anomaly is obtained, and
the ordinary SM sector.
Uð1ÞBH

breaking sector: In the Uð1ÞBH
breaking sector,

SUðNÞ and Uð1ÞBH
breaking can take place. To see this,

consider fermions

q∶ ðN;M;1Þ; q̄∶ ðN̄;M;1Þ; ψ I∶ ð1;M̄;1Þ; ð10Þ

where we denote the corresponding representation of
ðSUðNÞ; SUðMÞ;GSMÞ, 1 represents a gauge singlet, and
the flavor index I ¼ 1 � � � 2N. By taking all couplings
except for the gauge coupling of SUðMÞ to zero, there
appears a chiral SUð2NÞL × SUð2NÞR global symmetry.
The chiral symmetry was shown to be broken down
when [34,35]

M ≳ N; ð11Þ

and one gets the expectation values

PECCEI-QUINN SYMMETRY FROM A HIDDEN GAUGE … PHYS. REV. D 99, 015041 (2019)

015041-3



hqαψ Ii ≃ Λ3
MδαI; hq̄ᾱψ Ii ≃ Λ3

Mδᾱ;I−N: ð12Þ

Here we have explicitly written down the indices for SUðNÞ
as α, ᾱ and the flavors with a certain field redefinition. We
expect this result does not change when the coupling gN is
small enough, which is what we assume. Obviously, the
SUðNÞ and Uð1ÞBH

are both broken. The NG modes are
ð2NÞ2 − 1. N2 − 1 NG modes are eaten by the SUðNÞ
gauge bosons whose mass ∼gNΛM. 3N2 − 1 NG modes get
masses of order gN

4π ΛM due to the radiative correction from
the SUðNÞ gauge interaction, and 1 is the pNGB of the
Uð1ÞBH

. The decay constants of the pNGBs are

f ¼ ΛM

c1=3
; ð13Þ

where c is an Oð10Þ positive number which increases
when N increases for a given M [35]. The pNGB of the
Uð1ÞBH

has a Planck-scale suppressed mass contribution of
OðΛd

M=M
d−2
pl Þ, where d satisfies the condition (3).

Hidden sector: Let us couple the pNGB of the Uð1ÞBH
to

the SM gauge bosons through the chiral anomaly. In
particular, when there is the Uð1ÞBH

–SUð3Þ2C anomaly,
the pNGB can be identified as the QCD axion. To this end,
let us introduce additional Fvis copies of fermions that are
chiral under SUðNÞ × SUð3ÞC,

ψ̄vis∶ ðN; 1; r̄SMÞ; ψvis
i ∶ ð1; 1; rSMÞ; χj∶ ðN̄; 1; 1Þ;

ð14Þ

where the flavor indices i ¼ 1 � � �N and j ¼ 1 � � � dim½rSM�.
Notice that due to the anomaly cancellation of the
Uð1ÞY–SUðNÞ2, rSM cannot be a single colored represen-
tation with a nonvanishing hypercharge. By assuming a
grand unification theory (GUT) of SUð5Þ ⊃ GSM at around
the scale 1015−17 GeV, it is natural that rSM is in a complete
GUT multiplet and thus the anomaly vanishes. For in-
stance, let us take rSM¼ð−2=3Y;1L; 3̄CÞþð1=6Y;2L;3CÞþ
ð1Y;1L;1CÞ, which form the 10 multiplet of the SU(5).
We find that despite the cancellation of the anomaly of
SUðNÞ–G2

SM, the anomaly of Uð1ÞBH
–SUð3Þ2C is generated.

The pNGB of the Uð1ÞBH
from the SUðNÞ can be

identified as a composite QCD axion [36,37] with a
sufficient precision, as we show in the following, if

N ≥ 5: ð15Þ

Since the strong CP phase is constrained to be θCP ≲ 10−10

from the neutron electric dipole moment, the Uð1ÞPQ
should be precise up to the Planck-scale suppressed
operator of dimension d ≳ 9 [38], for the axion decay
constant fa ≳ 108 GeV from the constraint of Supernova
1987A [39]. (See also Refs. [40,41].) For N ¼ 5, the lowest

dimension breaking term of the Uð1ÞBH
at the perturbative

level is χ5LSMHSM, where LSM andHSM are the left-handed
lepton fields and Higgs field in the SM, respectively. (When
the SM fermions carry some additional gauge charges, this
term is forbidden and N ≥ 3 is allowed while keeping the
sufficient quality of the PQ symmetry.) χ5 is due to theN-ality
while the SM fields are needed for Lorentz invariance.
The gauge boson coupling of the pNGB in our model is

induced by integrating out the ψ̄vis and ψvis
i fermions,

ffiffiffiffi
N
2

r
3Fvis

16π2
a
f

�
5

6
g2YFYF̃Y þ g22tr½FLF̃L� þ g23tr½FCF̃C�

�
:

ð16Þ

This is the typical coupling of the GUTaxion models [7,8].
Nonetheless, f can be much smaller than the GUT scale
without splitting the components of rSM due to a GUT
breaking, thanks to the gauge anomaly cancellation of
Uð1ÞY–SUðNÞ2. The possibility of the GUT axion-gauge
couplings with a smaller decay constant is one of the
features of this model.
Note that the fermions of ψ̄vis, ψvis out of the dynamical

breaking sector are the main difference from the conven-
tional composite axion models solving the quality problem,
e.g., Refs. [27,29,33] (See also Ref. [42]). As we will see,
due to this setup the Landau pole problem discussed in
Ref. [33] can be solved and light exotic fermions are
predicted.
Our model can be perturbative up to the GUT scale. The

one-loop beta functions of the SUðNÞ and SUð3ÞC above
the scale ΛM are

βðgNÞ ¼ −
g3N
16π2

�
11

3
N − 2M − 10Fvis

�
; ð17Þ

βðgCÞ ¼ −
g3C
16π2

ð7 − 3FvisNÞ; ð18Þ

respectively. To be consistent with perturbative GUT,
the gC as well as the other SM gauge couplings should
be perturbative up to the GUT scale, ∼1016 GeV. This
requires

NFvis ≲ 10 ð19Þ

where we have taken that gC ¼ 0.6 at μ ¼ 1012 GeV. This
condition also holds for the Uð1ÞY and SUð2ÞL gauge
couplings since ψ̄vis and ψvis

i are in GUT multiplets. We
found that for Fvis ¼ 1 or 2, the quality of the PQ symmetry
can be good enough without violating the perturbativity.
Although it is not necessary, the gN can be asymptotically-
free for
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N ≥
6

11
M þ 10

11
Fvis: ð20Þ

We can easily see the conditions (19) and (20) as well as
(11) and (15) can be simultaneously satisfied. (The asymp-
totic freedom of the SM gauge groups may be obtained
after they unify into a large gauge group at the GUT scale.)
Because of the chiral property, our model predicts much

lighter exotic fermions than the dynamical scale ΛM. The
fermions, ψ̄vis and ψvis

i , get masses through dimension six
operators

ψ̄visψvis
i ỹiI q̄ψ I; ð21Þ

where ỹiI ¼ ỹiδiI is dimension−2matrix of flavor, which is
diagonalized by the field redefinition. From Eq. (12), this
implies that the mass of the fermion is

mψvis
i
≃ ỹiΛ3

M

≃0.1N
3
2F3

vis

�
c
60

��
fa

1012GeV

�
3

ðỹ1
2

iMplÞ2 TeV; ð22Þ

where fa ≡
ffiffiffiffiffiffiffiffiffi
2=N

p
f=ð3FvisÞ. We have used Eq. (13) and

assumed Eq. (21) is generated through the Planck-scale
physics. We take the conservative lower bound of c [35].
The decay constant is constrained from the cosmological
axion abundance [9–11], fa ≲ 1012 GeV, for the Hubble
parameter during inflation much greater than the QCD
scale [43,44]. In this case, light exotic quarks and leptons,
ψvis and ψ̄vis, such as of TeV scale are predicted.
The lifetimes of these fermions depend on the couplings

to the SM particles through either renormalizable or
Planck-scale suppressed terms, e.g.,

c̃iτHSMLτψ
vis
i;e ; c̃tRhq̄ψiψ̄vis

u tR=M2
pl; ð23Þ

where c̃τ and c̃tR are dimensionless couplings expected
to be Oð1Þ; Lτ, tR are the left-handed τ lepton and
right-handed top quark, respectively; ψvis

i;e and ψ̄vis
u are

the exotic lepton ð1Y; 1L; 1CÞ of ψvis
i and the exotic quark

ð2=3Y; 1L; 3CÞ of ψ̄vis, respectively; similar terms can be
written for other components of ψvis

i and ψ̄vis. The first term
shows that the ψvis

i (and thus ψ̄vis) can decay into the Higgs
and SM fermions if kinematically allowed. The second
term shows that the mixing term between ψ̄vis and the SM
fermions is not suppressed compared to the mass term (21).
These facts imply the lifetime of the fermions are much
shorter than the cosmological scale, unless we fine-tune the
couplings of c̃iτ; c̃τR , etc. On the other hand, depending on
the lifetime, these visible fermions could be tested at the
LHC and future colliders as the fourth (or even higher)
generation fermions or vectorlike fermions (see, e.g.,
Refs. [45–49]).

Notice that light exotic quarks are predicted independent
of the representations of fermions in both the Uð1ÞBH

breaking sector and hidden sector, when no scalar field
charged under the SUðNÞ is present. Since some quarks are
chiral in SUðNÞ × SUð3ÞC to get the pNGB-gluon cou-
pling, these quark mass terms are forbidden. The quark
mass is generated through the breaking of SUðNÞ via a term
with a dimension of at least 6. As a result, the exotic quark
masses are around Eq. (22), or smaller.
Finally, let us comment on phenomenological constraints

on the model. χj get masses through the dimension 9 term,
ðχψqÞ2=M5

pl, and are extremely light. Even if very light,
χj can be cosmologically safe when the reheating temper-
ature of the Universe is sufficiently small and they are not
thermalized. The thermalization rate ∼T5=f4, which is
obtained through the heavy SUðNÞ gauge boson exchange,
implies that the production is ineffective for T≲
ðf4=MplÞ1=3∼1011GeVðf=ð3×1012GeVÞÞ4=3. The reheat-
ing temperature above Oð108Þ GeV allows thermal lepto-
genesis [50] by introducing right-handed neutrinos, or
leptogenesis through the active neutrino flavor oscillation
[51] with certain inflaton decay channels by assuming any
mechanisms generating the ðLSMHSMÞ2 term. (See, e.g.,
Ref. [52].) Such a low reheating temperature is consistent
with the low-scale inflation which avoids the generation of
domain-wall and isocurvature perturbation constraint on
the axion dark matter.

IV. SUMMARY AND DISCUSSIONS

In this work, we have discussed a natural and general
possibility to provide the QCD axion that can solve the
strong CP problem. We have focused on dynamical break-
ing of the Uð1ÞBH

for the concrete examples to realize our
idea. Yet, one can also introduce scalar fields of certain
representations under the SUðNÞ for the symmetry break-
ing. In both cases, some hidden gauge fields can be light or
even massless depending on the breaking scenario. These
gauge bosons may have a dark axion portal interaction,
such as an axion-photon-dark photon vertex, resulting in
various new phenomena [53–55].
A product group of SUðNÞ × Uð1Þ0, where Uð1Þ0 is a

gauge symmetry or a good global symmetry, is also an
interesting setup, where arbitrary combinations of Uð1ÞBH

and Uð1Þ0 become good symmetries [even with better
quality than Uð1ÞBH

]. For instance, particles charged
under Uð1Þ0 gauge symmetry but not charged under
SUðNÞmay carry an accidental global symmetry originated
from Uð1ÞBH

.
From the analogy of the baryon number in the SM, we

have shown that a hidden baryon number of the SUðNÞ
gauge theory can be a natural candidate for the charge of
the PQ symmetry. The hidden baryon number assignment
is solely determined by the structure of the SUðNÞ gauge
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group. The PQ symmetry can be arbitrarily precise when
the SUðNÞ gauge theory is asymptotically-free with large
enough N.
As an interesting phenomenology, in our composite

axion model based on the Uð1ÞBH
, exotic quarks relevant

to the axion-gluon-gluon coupling can remain light enough
to be tested in the present and future experiments. Many
other interesting phenomenology or model buildings based
on our mechanism are warranted. For instance, the acci-
dental Uð1ÞBH

can be also used for providing an ALP, or

purely a precise global continuous symmetry with the
charge assignment (6). In particular, a precise Uð1ÞBH

is
attractive for the ALP as the unified inflaton and dark
matter candidate [56,57].
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