
GVTS: Global Virtual Time Fair Scheduling to
Support Strict Fairness on Many Cores

Changdae Kim , Seungbeom Choi , and Jaehyuk Huh ,Member, IEEE

Abstract—Proportional fairness in CPU scheduling has been widely adopted to fairly distribute CPU shares corresponding to their

weights. With the emergence of cloud environments, the proportionally fair scheduling has been extended to groups of threads or

nested groups to support virtual machines or containers. Such proportional fairness has been supported by popular schedulers, such

as Linux Completely Fair Scheduler (CFS) through virtual time scheduling. However, CFS, with a distributed runqueue per CPU,

implements the virtual time scheduling locally. Across different queues, the virtual times of threads are not strictly maintained to avoid

potential scalability bottlenecks. The uneven fluctuation of CPU shares caused by the limitations of CFS not only violates the fairness

support for CPU assignments, but also significantly increases the tail latencies of latency-sensitive applications. To mitigate the

limitations of CFS, this paper proposes a global virtual-time fair scheduler (GVTS), which enforces global virtual time fairness for

threads and thread groups, even if they run across many physical cores. The new scheduler employs the hierarchical enforcement of

target virtual time to enhance the scalability of schedulers, which is aware of the topology of CPU organization. We implemented GVTS

in Linux kernel 4.6.4 with several optimizations to provide global virtual time efficiently. Our experimental results show that GVTS can

almost eliminate the fairness violation of CFS for both non-grouped and grouped executions. Furthermore, GVTS can curtail the tail

latency when latency-sensitive applications are co-running with batch tasks.

Index Terms—Proportional Fairness, CPU Scheduling, Group Fairness, Tail Latency

Ç

1 INTRODUCTION

PROPORTIONAL fairness in CPU scheduling mandates that
the CPU shares of threads must be proportional to their

assigned weights. It has been widely adopted by general
purpose systems, as the de facto fairness support. With the
popularity of system consolidation for clouds, proportional
fairness has been further extended to enable weighted
fairness among groups of threads or nested groups. Such
extension of weighted fairness for thread groups is essential
to support fair CPU assignments for containers or virtual
machines served for different clients.

In such cloud-based computing models, the require-
ments for fairness support have become stricter than con-
ventional native systems. Each user must receive the CPU
share mandated by a service-level agreement (SLA). The
user’s container or virtual machine commonly consists of
multiple threads or virtual CPUs, and thus the CPU share
must be specified collectively at the group-level. However,
in such clouds, heterogeneous workloads from different
users share a physical system, with fluctuating loads. Fur-
thermore, for latency-sensitive server workloads, fairness
violation often causes significant increases of tail latencies,
degrading the quality-of-service.

To implement the proportional fairness, a common
mechanism is to maintain virtual time for each thread or
group. The popular Completely Fair Scheduler (CFS) is
designed to provide proportional fairness by scheduling
based on such virtual time [1]. For each runqueue, CFS
schedules runnable threads in a manner to equalize their
virtual time progresses. CFS has also been extended to pro-
vide group fairness. A group with its own virtual time is
inserted into the runequeue as a scheduling entity, and the
group entity has a separate runqueue containing its member
threads. In the hierarchical design, a group is selected, and
then a thread from the group is selected based on the virtual
time status.

However, CFS with per-CPU runqueues, implements the
virtual time scheduling locally. Across different queues, the
virtual times of threads are not strictly equalized to avoid
potential scalability bottlenecks for enforcing global virtual
time scheduling. Instead, a simpler load balancing mecha-
nism distributes threads across multiple CPUs, and it pro-
vides approximate fairness for threads and thread groups
running acrossmultiple CPUs.

This paper investigates the limitation of the local virtual
time scheduling in CFS. When the number of active threads
is not always a multiple of physical cores, the proportional
fairness is not strictly supported by the current CFS imple-
mentation. Such fairness violation gets worse with weighted
fairness supports for groups. Furthermore, the CPU share of
a thread may fluctuate significantly, depending on the deci-
sion of the load balancing mechanism. Such unfair fluctua-
tion of CPU shares not only violates the SLA for CPU
assignments, but also significantly increases the tail latencies
of latency-sensitive applications.

� The authors are with the Department of Computer Science, Korea
Advanced Institute of Science and Technology, Daejeon 305-701, Republic
of Korea. E-mail: {cdkim, sbchoi}@calab.kaist.ac.kr, jhhuh@kaist.ac.kr.

Manuscript received 13 Nov. 2017; revised 31 May 2018; accepted 23 June
2018. Date of publication 29 June 2018; date of current version 12 Dec. 2018.
(Corresponding author: Jaehyuk Huh.)
Recommended for acceptance by X. Wang.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2018.2851515

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019 79

1045-9219� 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-9895-5125
https://orcid.org/0000-0002-9895-5125
https://orcid.org/0000-0002-9895-5125
https://orcid.org/0000-0002-9895-5125
https://orcid.org/0000-0002-9895-5125
https://orcid.org/0000-0002-5343-4553
https://orcid.org/0000-0002-5343-4553
https://orcid.org/0000-0002-5343-4553
https://orcid.org/0000-0002-5343-4553
https://orcid.org/0000-0002-5343-4553
https://orcid.org/0000-0002-1742-047X
https://orcid.org/0000-0002-1742-047X
https://orcid.org/0000-0002-1742-047X
https://orcid.org/0000-0002-1742-047X
https://orcid.org/0000-0002-1742-047X
mailto:
mailto:

To mitigate the limitations of CFS, this paper proposes a
Global Virtual Time Fair Scheduler (GVTS), which enforces
global virtual time fairness for threads and thread groups,
even if they run across many physical cores. The new sched-
uler employs topology-aware enforcement of target virtual
time to support the scalability of schedulers. Using the scal-
able global virtual time accounting, GVTS provides consis-
tent CPU shares for threads even if they migrate across
different CPUs.

We implemented GVTS in Linux kernel 4.6.4 with several
optimizations to provide global virtual time efficiently. Our
experimental results show that GVTS can almost eliminate
the fairness violation of CFS for both non-grouped and
grouped configurations. Furthermore, GVTS can effectively
curtail the tail latency when latency-sensitive applications
are co-running with batch tasks.

The followings are the new contributions of this paper:

� This study identifies the limitation of the current
local virtual time scheduling in CFS. It shows that
proportional fairness is violated when the number of
threads is not a multiple of physical CPUs or CPU
utilizations fluctuate.

� It proposes a new global virtual time scheduling. To
efficiently support virtual time globally, it proposes
a topology-aware balancing mechanism, which is
aware of CPU interconnection topology.

� It improves proportional fairness support for thread
groups, so that virtual machines and containers in
clouds are provisioned as the SLA mandates.

� It investigates several optimizations to reduce un-
necessary thread migrations which may incur by
global enforcement of virtual time.

The rest of the paper is organized as follows. Section 2
discusses the limitations of CFS with its local virtual time
tracking. Section 3 presents the design of global virtual time
scheduling, and Section 4 discusses its implementation
issues. Section 5 presents the experimental results. Section 6
discusses the related work and Section 7 concludes this
paper.

2 MOTIVATION

2.1 Virtual Time Based Proportional Fairness

Proportional fairness is a widely adopted definition of
fairness in CPU scheduling. It was first proposed in the
context of network flow control [2], and later adopted
for CPU scheduling [3], [4], [5]. To use a proportional
fair scheduler, all threads are assigned with their corre-
sponding weights. The weight of a thread is the relative
amount of CPU share it is entitled to receive. A schedul-
ing is fair if all threads receive their CPU shares in proportion
to their weights.

In real systems, multiple threads are assigned to CPUs in
a time-sharing manner, and CPU share is represented as the
received CPU time. Let shareiðt1; t2Þ be the CPU time thread
i receives between time t1 and t2. If there are n runnable
threads between time t1 and t2, and their weights are
w1; w2; :::wn, the following equation represents the condition
of proportional fairness, where #CPUs is the number of
CPUs in the system.

shareiðt1; t2Þ ¼ wiX

j¼1::n

wj

� ðt2 � t1Þ �#CPUs:

In addition to per-thread scheduling supports, threads can
be grouped to provide group-level scheduling weights. A
container can containmultiple threadswith their ownweights
specifying proportional fairness within the container. The
container itself has its own weight to specify its weight across
different containers. Such thread grouping can be nested. A
thread group can contain multiple inner thread groups. With
thread groups, schedulers should support inter-group pro-
portional fairness as well as intra-group proportional fairness.
Let Wk be the weight of group k and SHAREkðt1; t2Þ be the
sum of the CPU time group k’s threads receive. For brevity,
suppose that groups are not nested and every thread belongs
to a group. The following equation represents the condition of
proportional fairness forN groups and their threads.

SHAREkðt1; t2Þ ¼ WkX

l¼1::N

Wl

� ðt2 � t1Þ �#CPUs

shareikðt1; t2Þ ¼
wiX

j2groupk
wj

� SHAREkðt1; t2Þ:

However, schedulers cannot provide perfect propor-
tional fairness due to two reasons. First, in real systems,
CPU time cannot be divided infinitesimally. The minimum
scheduling quantum is restricted to be a multiple of timer
interrupt interval, which is 1 ms�10 ms on most systems,
unless threads voluntarily yield their running CPUs. For
this reason, Lag Time is defined as follows to present the dif-
ference between the ideal CPU time (share) and actual
received CPU time of a thread between time t1 and t2 [6].

Lagiðt1; t2Þ ¼ shareiðt1; t2Þ � receivedCPUtimeiðt1; t2Þ:

Second, if a thread has a very large weight, perfectly fair
scheduling may not be achievable. For example, suppose
that there are two CPUs and the weight of one thread is
larger than the sum of the weights of all the other threads.
By the definition of proportional fairness, the thread with
the largest weight should receive more than a half of the
total CPU share in the two-CPU system. Since a thread can-
not consume more than one CPU at once, the thread with
the largest weight cannot receive the share mandated by its
weight. This phenomenon has been called infeasible weight
problem [5], [7], [8]. If the weight of a thread satisfies the fol-
lowing condition, no scheduler can maintain perfect pro-
portional fairness.

wiX

j¼1::n

wj

>
1

#CPUs
:

To realize proportional fairness in CPU scheduling, sev-
eral methods have been proposed, as we will explain in
section 6.1. Among them, virtual time based proportional
fair scheduling is widely used, and the Linux kernel sched-
uler adopts it [1], [3], [4], [5].

80 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

Virtual time is defined as the received CPU time divided
by the weight of a thread. With the notations above, virtual
time is represented as follows.

vtime ¼ receivedCPUtimei=wi

Then, virtual time fair schedulingmaintains the virtual times
of all threads as similar as possible. If the virtual times of two
threads are equal, their received CPU times are exactly pro-
portional to their weights. Thus, proportional fairness can be
maintained by virtual time based scheduling.

2.2 Local Virtual Time Fair Scheduling in CFS

Completely Fair Scheduler [1] has been the mainline Linux
scheduler since 2007. It provides thread-level and group-
level proportional fairness based on virtual time fair sched-
uling. However, virtual time based scheduling is used for
only local scheduling within a CPU as CFS maintains a sep-
arate runqueue for each CPU. For global scheduling across
cores, a load balancing mechanism is used to improve the
scalability.

At each CPU, CFS maintains a runqueue for the CPU, and
threads are inserted to the queue as scheduling entities. CFS
maintains virtual time of all threads, and always picks the
thread with the lowest virtual time. CFS runs the picked
thread for a while and updates its virtual time with the CPU
time received by the thread. After CFS compares the updated
virtual time to those of the other threads, if the current one is
not the lowest one anymore, CFS picks the next thread to run.
Thismechanism forces the virtual times of all threads tomake
approximately equal progresses and proportional fairness is
maintained within the runqueue. To implement the run-
queue, CFS uses a red-black tree for its efficient time complex-
ity. By using virtual time as the key of the red-black tree,
picking the lowest virtual time thread can be done in Oð1Þ
time, and re-inserting the previous thread to the tree is done
inOðlogNÞ time.

To support group-based proportional fairness, CFS imple-
ments a hierarchical scheduling mechanism. A group of
threads is considered as a unit for scheduling, being inserted
as a scheduling entity to the CPU’s runqueue. Each group
maintains its own runqueue for the threads in the group.
Since a group also has its weight, the virtual time of the
group is defined similarly to threads. If CFS picks a schedul-
ing entity from the CPU’s runqueue and the selected entity is
a thread group, CFS picks a scheduling entity from the
group’s runqueue. Since CFS allows nested groups, this selec-
tion process is repeated until a leaf thread is selected. This
scheduling makes the virtual times of groups progress in
equal paces to support inter-group proportional fairness. In
addition, since CFS makes the virtual times of threads for
each group progress similarly, intra-group proportional fair-
ness is alsomaintained.

However, virtual time fair scheduling of CFS is restricted
to each CPU, enforcing strict virtual time maintenance only
within the runqueue of a CPU. CFS does not support accurate
virtual time accounting globally across multiple CPUs to
avoid a potential scalability problem of tracking accurate
global virtual time across multiple runqueues. When a thread
migrates to another CPU for load balancing, its accurate vir-
tual time is not transferred to the new CPU, maintaining only

approximate relative information regarding the virtual time
of themigrated thread.

2.3 Inaccuracy of Virtual Time Tracking with CFS

Without strict virtual time accounting across CPUs, CFS
uses its load balancing mechanism for global scheduling.
The load of a thread is defined as the thread’s weight multi-
plied by the thread’s CPU utilization, and the load of a CPU
is defined as the sum of thread loads in the CPU’s run-
queue. Since the CPU utilization of a thread represents the
time portion when the thread is in a runnable state, load of a
CPU represents the expected sum of its own active threads’
weight. Thus, if the loads of two CPUs are equal, for a given
time, the amounts of total virtual time increase per CPU are
equal. CFS periodically compares CPU loads and migrates
threads to balance the loads. This makes local fair schedul-
ing at each CPU leads to approximate global fair scheduling
across CPU cores.

To support global proportional fairness for groups, CFS
uses hierarchical load balancing. The load of a group is
defined as the group’s weight multiplied by the group’s
CPU utilization. The hierarchical load of a thread is the por-
tion of group’s load contributed by the thread. The sum
of hierarchical loads of all the threads in the group is
the group’s load. The same core mechanism is used as load
balancing, but each thread uses its hierarchical load instead
of load.

The load balancing mechanism provides high scalability
as the runqueue for each CPU is managed independently.
However, load balancing does not guarantee accurate pro-
portional fairness, since loads can be balanced only at
thread granularity. For example, if there are two CPUs and
three threads with equal loads, loads cannot be balanced
accurately between CPUs. In such situations, local virtual
time fair scheduling with load balancing does not lead to
globally fair scheduling.

Although such approximate fair scheduling of CFS has
been effective enough for private systems, the recent
trends of consolidation in clouds require more strict pro-
portional fairness support. In such consolidated systems
with multiple heterogeneous applications which have fluc-
tuating CPU utilizations, the imperfect fairness support
can cause inconsistent CPU shares among threads, incur-
ring severe variances in latencies for server workloads.
Such problems exacerbate as multiple clients share a phys-
ical system either by containers and virtual machines. The
next section quantitatively analyzes the limitation of CFS.

2.4 Impact of the Fairness Limitations in CFS

In this section, we show the impact of unfairness in load bal-
ancing on application performance. We use a 16-core sys-
tem, and the details of the experimental setup are presented
in Section 5.1. We measure the effect of imperfect CPU
resource accounting of CFS using a synthetic benchmark
and real applications. The synthetic benchmark is a multi-
threaded application, and each thread consumes CPU
continuously. It measures the received CPU time for every
second. We implemented the measurement part of the
benchmark as simple as possible to avoid disk I/O, page
fault, interactions with kernels or other processes, and any
other side effects that may influence performance. As the

KIM ETAL.: GVTS: GLOBALVIRTUALTIME FAIR SCHEDULING TO SUPPORT STRICT FAIRNESS ON MANYCORES 81

real applications, we use two representative types of appli-
cations: the throughput-oriented batch tasks that continu-
ously use CPUs, and the latency-sensitive server programs
with fluctuating CPU loads.

First, we use a synthetic benchmark to measure the CPU
share distribution by CFS, when perfect load balancing is
difficult to achieve. Fig. 1 shows the results with 20 threads
on 16 cores. The left graph shows the received CPU time
measured in each second. Since we set all the threads to
have an equal weight, with the ideal scheduling, threads
should receive 0.8 seconds of CPU time per second. How-
ever, the received CPU time fluctuates significantly between
0.5�1.0 seconds. In addition, the cumulative lag times
shown in the right figure increase significantly as time pro-
gresses. After 10 seconds, some threads receive 1.0 second
less CPU time compared to that of ideal scheduling, while
some threads receive 1.2 seconds more CPU time than that
with an ideal scheduling.

Fig. 2 shows the results with thread grouping. There are
20 threads, but 8 threads and 12 threads are grouped sepa-
rately. We set the weights of two groups equally, and the
weights of all the threads within a group are also equal.
With the ideal inter-group proportional fairness, each group
should receive 8 cores. Therefore, the threads in the 8-thread
group should receive 1.0 second for each second, and the
threads in the 12-thread group should receive 0.66 seconds
for the same time period. However, the received CPU times
fluctuate regardless of thread groups, and differences in lag
times are larger than the non-grouped case.

The main reason of such unfair CPU allocation is due to
the failure in load balancing. Since there is no way to
equally distribute 20 threads on 16 cores, load balancing
does not provide inter-runqueue fairness. With thread
grouping, the loads become more complicated to be equal-
ized by the coarse-grained load balancing approach of CFS.

As the first type of real applications, we use a CPU inten-
siveworkload, namd fromSPECCPU2006 benchmark suite [9],
to show the impacts of unfair CPU allocation on the batch
jobs. To evaluate the scheduling, we define fairness as the

normalized performance to the performancewith ideal sched-
uling as follows.

fairness ¼ actual perf

ideal perf
¼ actual perf

ideal share
share of solo run

� solo run perf
:

Since we use CPU bound workloads, the ideal performance
can be calculated from the solo run performance and CPU
share with the ideal scheduling. For namd, the performance
is defined as the reciprocal of execution time.

The experiment scenarios are similar to the previous
cases for the synthetic benchmark and the experiments are
repeated 5 times. Fig. 3 shows the results with 20 copies of
namd, running 20 threads on the 16-core system, and Fig. 4
shows the results with thread grouping. 8 copies and 12
copies are grouped separately. The results were similar to
the ones with the synthetic benchmark. The actual perfor-
mance of namd varies from the ideal performance, up to
5 percent in the non-grouped scenario and up to 13 percent
in the grouped scenario.

Note that the performance variance of namd copies is not
as large as that with the synthetic benchmark. The main rea-
son is the randomized scheduling effect. Since there are
many kernel threads or service threads which wake up
occasionally, the load distribution in the system changes
and the load balancing tries to re-balance loads again. Then,
namd threads that have received less CPU shares can have
chances to receive more CPU shares later. Even with the
long-term randomization of loads, the grouped scenario
shows worse fairness than the non-grouped one since the
group weights are not accurately accounted with the cur-
rent CFS implementation. It can lead to potential violation
of service-level agreement for CPU resources, where the
weights of virtual machines or containers are contracted for
each user.

Finally, to show the impacts of unfair scheduling on server
programs, we use four server workloads from TailBench [10].
Since server programs are latency-critical workloads, we use

Fig. 1. Synthetic benchmark: 20 threads on 16 cores.

Fig. 2. Synthetic benchmark: 8-thread and 12-thread groups.

Fig. 3. 20 copies of namd on 16 cores.

Fig. 4. 8-copy and 12-copy groups of namd on 16 cores.

82 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

two tail latencies, 95%-tile and 99%-tile latencies, as perfor-
mancemetrics.

Fig. 5 shows 95%-tile and 99%-tile latencies of the server
workloads when batch jobs share the same system.We use 16
copies of namd for the batch job, which can fill all 16 CPUs.
With 16 batch jobs, the shares of batch jobs are varied to mea-
sure the response time changes of the latency-sensitive work-
loads. In the figure, the x-axis represents the batch job share
varied from 0 to 90 percent. We group the threads of server
workloads and the threads of batch jobs separately, and set
the group’s weight to adjust the ideal CPU share ratio. The
threads in each group have an equal weight. The y-axis shows
the tail latencies inms.

The percentage after the workload name presents CPU
utilization of the workload when no batch jobs are run-
ning. For example, (b) masstree uses only 12 percent
of CPUs when running alone. Thus, ideally, the tail laten-
cies of latency-sensitive workloads should not be affected
by batch jobs until the share setting exceeds the required
CPU utilization of latency-sensitive workloads. However,
as shown in the figure, tail latencies increase significantly
even when the batch job share is set to be relatively low.
As exemplified in (b) masstree, even if the latency-
sensitive workload requires only 12 percent of CPUs,
when the share of the batch group exceeds 10 percent, the
99%-tile latency jumps to 14ms. The result shows that
even short-term unfairness can lead to a significant qual-
ity-of-service degradation.

In conclusion, we show that CPU resource account-
ing of CFS can be unfair if the number of threads is not
a multiple of the number of CPUs. For long-running
batch jobs, the impact of unfair accounting can be amor-
tized by the randomized scheduling effect. However,
for server workloads, the temporal unfairness in CFS
significantly affects the performance consistency across
many responses, causing significant increases of the tail
latencies.

3 GLOBAL VIRTUAL TIME FAIR SCHEDULER

This section describes the design of Global Virtual Time Fair
Scheduler in three parts. First, Section 3.1 describes topology-
aware global virtual time balancing, which is a scalable mecha-
nism to provide thread-level proportional fairness with
high accuracy. Second, Section 3.2 explains how GVTS sup-
ports inter-group proportional fairness. Third, Section 3.3
proposes optimization techniques to reduce thread migra-
tion overheads.

3.1 Topology-Aware Global Virtual Time Balancing

For GVTS, the main difference from CFS is that virtual time is
a global value for all CPUs in a system. GVTS makes virtual
time of all threads globally progress equally. This enables the
progress of all threads to be fair according to their weights.

At each CPU, GVTS is very similar to CFS. It always
picks up a thread with the lowest virtual time. It runs the
thread until the virtual time of the thread is not the lowest
one anymore. Then, it selects the next thread with the low-
est virtual time, and the procedure is repeated.

To make virtual time progress fair between threads in a
system, GVTS uses global virtual time balancing. The mecha-
nism sets target virtual time for CPUs, and the target value
works as a barrier for virtual time progress. When the virtual
times of all threads in a CPU exceed the target, the CPU stops
picking up a thread in the runqueue. Instead, it scans the other
CPUs to find threads whose virtual time do not exceed the tar-
get. If such threads are found, it pulls and runs the threads.
Otherwise, if there are no such threads, the CPU increases the
target as much as target interval. Then, it runs its own threads
until all the threads pass the new target.

Determining target interval is an important issue for
GVTS. A short interval incurs frequent balancing and it
may result in the performance degradation due to frequent
thread migration. At the same time, short intervals keep the
fairness among threads at fine granularity, as such fine-
grained barriers minimize the difference in virtual time
across all threads. On the other hand, long intervals reduce
the thread migration overhead, but increase temporal
unfairness among threads.

To balance the trade-off between the migration overhead
and fairness, GVTS employs topology-aware global virtual
time balancing. Based on the CPU topology, GVTS builds
multi-level scheduling domains and sets a different target
interval for each level of domains. For example, suppose
that there is a many core system with multiple NUMA
nodes and each node has several cores with SMT (Simulta-
neous Multi-Threading) support in each core. In the system,
the logical SMT CPUs within a physical core constitutes a
scheduling domain (SMT domain), which is the lowest level
domain. In addition, several SMT domains in the same
NUMA node constitute the next level domain. The domain
of a NUMA node has the SMT domains as its children.
Finally, all the NUMA nodes constitute the highest level
scheduling domain.

The thread migration overheads also depend on the
CPU topology. Migrating threads between the logical SMT
CPUs in a core incurs little overheads, while migrating

Fig. 5. Tail-latency of TailBench with batch jobs. The percentage in the parentheses represents CPU utilization in a solo run.

KIM ETAL.: GVTS: GLOBALVIRTUALTIME FAIR SCHEDULING TO SUPPORT STRICT FAIRNESS ON MANYCORES 83

threads between NUMA nodes incurs large overheads.
Therefore, we set a short interval for the scheduling
domain with less migration overheads, and a long interval
for the scheduling domain with larger migration over-
heads. This mitigates the overall thread migration over-
head, while reducing temporal unfairness. Note that the
lower level of scheduling domains have short intervals.
The fairness between threads is maintained at fine granu-
larity within the domains.

Fig. 6 summarizes the overall procedure of topology-aware
global virtual time balancing. When all the threads in a CPU
pass the target virtual time, the CPU scans the CPUs in the
lowest level domain to find other threads to pull. If there is no
thread to pull, the target of the lowest level domain increases
by the interval of the domain. Then, the scanning is extended
to the higher level domain until any remote thread can be
pulled or any local thread does not pass the target virtual time
of the domain.

3.2 Effective Weight for Inter-Group Fairness

Topology-aware global virtual time balancing provides pro-
portional fairness between threads for many cores. To
support proportional fairness between groups, we pro-
pose an effective weight mechanism which also supports
nested grouping.

The weight of a thread represents the desirable CPU
share ratio of the thread. However, this is not true if threads
are grouped since CPU share should first be distributed to
groups according to the group’s weight, and then CPU
share for each group can be distributed to threads according
to the thread’s weight.

Thus, we propose effective weight to represent the desirable
CPU share ratio for both grouped and non-grouped threads.
For non-grouped threads, the effective weight is the same
with its weight. For threads in a group, the effective weight of

the thread,weff
thread, is defined as follows.

weff
thread ¼

wthreadX

entity2group
wentity

�Weff
group:

In the definition, entity is a thread or group which
belongs to the group. Since GVTS supports nested group-
ing, a group can belong to another group. The effective
weight of a group is defined in the same way. If a group
does not belong to any other group, its effective weight is
the same with its weight. Otherwise, the effective weight of
the group is defined as follows.

Weff
group ¼

WgroupX

entity2parent
wentity

�Weff
parent

where parent is the parent group.
Fig. 7 shows an example of effective weight values. Rec-

tangles represent groups, and ellipses represent threads.
Suppose that the weight of all groups and threads are 1024.
The effective weight of each entity is shown inside the rect-
angle or ellipse, and the CPU share ratio for a thread is
shown under of the ellipse.

3.3 Optimizations to Reduce Thread Migrations

One negative effect of GVTS is that the number of thread
migrations is likely to increase. When the effective weight
of threads cannot be distributed equally among CPUs,
threads jump from a CPU to another to receive fair amounts
of CPU time. When a thread is migrated, it loses the data
loaded on caches and other processor states such as TLB,
branch predictor, etc, and its performance can be degraded.

Although topology-aware global virtual time balancing adjusts
the threadmigration frequency considering the threadmigra-
tion overhead, we add two more optimizations to reduce
throughput degradation by the thread migrations. First,
when global virtual time balancing occurs, the scheduler
attempts to make CPUs reach the next target virtual time as
similarly as possible. This reduces the number of required
thread migrations for the next virtual time balancing. Second,
GVTS skips virtual time balancing if progress among CPUs
are similar. This further reduces the thread migrations when
the unfairness is negligible.

In the rest of this section, we first explain a technique,
remaining time estimation, which is used for the optimiza-
tions, and then describe the optimization techniques in
detail.

Remaining Time Estimation. For the optimization techni-
ques, it is necessary to estimate the required CPU time of a
thread to reach the next target. We call it remaining time or

Fig. 6. Topology-aware global virtual time balancing.

Fig. 7. An example of effective weight values.

84 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

remain_time which represents the remaining time to reach
the next target virtual time.

To estimate remaining time, we first define remain_weight
of a thread, which represents the required CPU time to
increase 1 virtual time, as follows.

wremain
thread ¼ weff

thread � CPUutilthread:

Note that when a thread takes 1ms CPU time, its virtual
time increases by 1ms=weff

thread. In addition, the CPU utiliza-
tion factor is included to account the virtual time increase
only by receiving actual CPU time. However, when a thread
wakes up from sleeping state, the virtual time of a thread is
increased to a new value approximated to the current mini-
mum virtual time in the system, to make the thread receive
a fair amount of CPU share when it finally becomes active
after the sleep state. The detailed mechanism will be
explained in Section 4.

Using remain weight, the remaining time of a thread to
reach the target can be estimated as follows.

remain timethreadðtargetÞ ¼ ðtarget� vtimethreadÞ � wremain
thread :

The first part of the definition represents the remaining virtual
time to the target. The target should be provided as an argu-
ment. The second part represents the estimated time to
increase 1 virtual time. Thus, the multiplication of two terms
represents the required CPU time to reach the target. Then,
remaining time of a CPU can be defined as the sumof remaining
time of threads in the CPU’s runqueue. A CPU’s remaining
timerepresents the required CPU time to reach the target pro-
vided.

remain timeCPUðtargetÞ ¼
X

thread2CPU
remain timethreadðtargetÞ:

Optimizing Virtual Time Balancing.When a CPU pulls a thread
from another CPU for topology-aware virtual time balancing,
this optimization attempts to balance the remaining times of
CPUs to reach the next target. With the balancing, two CPUs
are likely to reach the next target at a similar time, and less
thread migrations are required later. Similar to load in CFS,
remaining time can be changed only at thread granularity. In
addition, since remaining time increases or decreases depend-
ing on the target or received CPU time, the remaining times of
two CPUs are not exactly equal for most cases. However,
unlike the load balancing of CFS, remaining time does not
affect the fairness, as it can change only migration frequency.
This optimization, as well as thread migration, does not
change the virtual times of threads, and the fairness is main-
tained by equal progress in virtual time.

Skipping Virtual Time Balancing. In the second optimization,
the scheduler skips the balancing step if the progresses of
CPUs are similar. If the remaining times of CPUs are similar,
they will reach the next target at a similar time frame. There-
fore, virtual time balancing is not necessary in this case. To
determine whether the progresses of two CPUs are similar
enough to skip the balancing step, we add a parameter, toler-
ance, which represents the allowed difference of remaining
time. If the difference in remaining times is less than the toler-
ance value, the scheduler skips the balancing procedure,
avoiding thread migration. While this optimization may

slightly increase the unfairness of a system, the unfairness
cannot increase boundlessly, since the scheduler skips the bal-
ancing only when CPUs progress similarly. Furthermore, this
optimization also does not affect virtual time of threads, and
the unfairness will be fixed soon by topology-aware global vir-
tual time balancing.

4 IMPLEMENTATION

GVTS is implemented on Linux kernel 4.6.4 by modifying
the CFS scheduler. Most of the codes related to load balanc-
ing are removed and replaced by topology-aware global vir-
tual time balancing. Since our implementation is done within
the Linux kernel interfaces, the KVM hypervisor or Dockers
can be used with our implementation without modification.
In addition, our implementation has the same level of porta-
bility as the Linux kernel and is able to recognize various
system topologies as the Linux kernel can.

For the target interval parameters, we use the following val-
ues according to the resource sharing level of scheduling
domains. First, for the SMT domain, target interval is set to
30ms. Then, for domains on the same chip,whoseCPUs share
a last level cache, target interval is set to 90 ms. Finally, for
NUMA nodes, target interval is set differently, depending on
the distance, to thenumberofhops � 300 ms.

For toleranceparameters,which is used for the optimization
techniques, the value for each domain is set to 30 percent of
target interval value of the domain. Setting the tolerance to the
relative value to the target interval of each domain, allows
temporal unfairness across higher level scheduling domains
with large target interval values. At lower level scheduling
domains, virtual time management is more strictly enforced
for fine-grained proportional fairness support.

There are several implementation issues to maintain vir-
tual time as global values. The rest of this section explains
how to address the implementation issues.

Thread Group Management. To manage thread groups effi-
ciently, GVTS modifies the hierarchical scheduling of CFS.
In CFS, a group has its virtual time and an associated run-
queue containing member threads with their own virtual
time independent from the group virtual time. In GVTS, as
the virtual times of threads are globally maintained, the vir-
tual time of a group is just set to the minimum virtual time
of member threads. Since the hierarchical scheduling selects
the lowest virtual time entity in the runqueue, such setting
makes the lowest virtual time thread to be selected regard-
less of the group hierarchy.

In addition, GVTS adds a shared variable within a group,
the sum of weights of active threads and active child
groups. This is used to calculate effective weight, as described
in Section 3.2. Since the weights of threads rarely change,
the weight variable needs to be updated only when a thread
forks, exits, sleeps, or wakes up. It does not need to be
updated when a thread migrates to another CPU. Due to
such infrequent change, the shared variable per group does
not incur any performance impact.

Virtual Time of Waking up Task. A thread waking up from
the idle state must be assigned with a new virtual time. In
CFS, when a thread wakes up, the minimum value of virtual
time in the local runqueue is used for the virtual time of the
thread. The minimum virtual time setting gives the highest
priority to the activated thread, and improves I/O latency if

KIM ETAL.: GVTS: GLOBALVIRTUALTIME FAIR SCHEDULING TO SUPPORT STRICT FAIRNESS ON MANYCORES 85

the thread had been in sleep state to wait for an I/O
response.

To support such a mechanism in GVTS, it is necessary to
maintain the globally minimum virtual time of all threads in
the system, since virtual time is globally enforced in GVTS.
Finding an accurate minimum virtual time may require
global synchronization with high overheads. Instead, GVTS
uses an estimated value for the globally minimum virtual
time. It is estimated by the minimum target virtual time of
the lowest level scheduling domains subtracted by a half of
the target interval of the lowest level scheduling domains.
This approximate virtual time assignment for a newly
woken-up thread allows it to be selected as the next thread
to run, and guarantees a certain amount of share, as its vir-
tual times is smaller than the local minimum minus a half
interval.

To efficiently maintain the minimum target virtual time
of the lowest level scheduling domains, each scheduling
domain maintains the minimum target virtual time of the
child domains. When a scheduling domain updates its tar-
get virtual time, it also updates the minimum target virtual
time of the parent domain if necessary. Then, the scheduler
can find the minimum target virtual time with OðlogP Þ time
complexity where P is the number of CPUs. In addition, the
scheduler can skip the estimation if the thread already has a
virtual time larger than the local minimum virtual time, fur-
ther reducing the overhead.

Infeasible Weight. Unlike CFS, infeasible weight incurs a
negative side effect in GVTS. In CFS, threads with infeasible
weights have an extraordinarily high load, and load balanc-
ing of CFS gives a whole CPU to each of the threads. Even
though the definition of proportional fairness mandates the
thread to receive more than a CPU, the CFS decision for the
thread is proper, since a thread cannot receive more than a
CPU. In addition, since CFS manages a runqueue in each
CPU independently, there is no side effect.

Similar to CFS, a thread with an infeasible weight in
GVTS receives a whole CPU, as the virtual time of the
thread increases very slowly compared to the other threads
and its remaining time becomes much larger than those of
the other threads. However, the slow increase of virtual time
becomes a significant problem in GVTS, since it prevents
the global minimum virtual time from increasing. This leads
to a problematic situation where a thread waking up has an
abnormally low virtual time. The newly woken-up thread
receives a large amount of CPU shares until it catches up
the virtual times of the other long running threads, leading
to unfair scheduling.

To address this problem, we implement an infeasible
weight detection mechanism and exclude the CPU with the
infeasible weight threads from maintaining the global mini-
mum target virtual time. By this exclusion, threads waking
up can have proper virtual time values, even when a thread
with an infeasible weight exits in the system. The conditions
for the detection is as follows. 1) A CPU is lagging behind
the other CPUs for more than 3 intervals. 2) The CPU has
only one thread. 3) The CPU’s remain_weight is larger than
those of the other CPUs. If all conditions are satisfied, the
scheduler decides that the thread has an infeasible weight,
and it excludes the CPU executing the thread from main-
taining the minimum target virtual time.

5 EVALUATION

5.1 Methodology

For evaluation, we use two systemswith 16 cores and 80 cores
respectively. The first system has an AMD Opteron 6282 SE
processor with 32 GB RAM. The processor has 16 cores
(16-core system). Among 16 cores, each pair of cores shares an
FPU, L1 instruction cache, and 2 MB unified L2 cache. Each
pair constitutes a level-1 scheduling domain. In addition, a
group of 8 cores share an 8MB L3 cache, and they constitute a
level-2 scheduling domain. Finally, two 8-core groups consti-
tute the final level 3 domain. This system was also used in
Section 2.4.

The second system has 4 Intel Xeon E5-4620 processors
with 256 GB RAM. Each processor has 20 cores and the total
number of cores in the system is 80 (80-core system). In this sys-
tem, a pair of logical CPUs is coupled by Hyper-Threading
technology. For topology-aware global virtual time balancing,
each pair of logical CPUs constitute a level-1 scheduling
domain, the 20 cores in a chip constitute a level-2 scheduling
domain, and four processor chips in the system constitute the
highest level scheduling domain.

In this section, our GVTS implementation on Linux kernel
4.6.4 is compared with CFS and DWRR [8]. First, CFS is the
virtual time based proportional fair scheduler for Linux ker-
nel, as described in Section 2.2. For CFS evaluation, we use the
same 4.6.4 kernel. Second, DWRR is a weighted round-robin
based fair scheduler. For each round, a CPU schedules each
local thread for wi � round interval. After finishing a round
for the local threads, it scans CPUs at the lower round to pull
their threads. This makes the progress of CPUs fair at round
granularity, and the lag time of threads is kept within
wi � round interval. For round_interval, we use 30 ms as in the
DWRR paper. Note that DWRR has a trade-off between
thread migration overhead and fairness granularity. If
round_interval is short, the maximum lag time is reduced but
threads can be frequently migrated across CPUs. We ported
DWRR to Linux kernel 4.6.4 based on the original DWRR
implementation on Linux kernel 2.6.24 [8]. However, as
DWRRdoes not support thread grouping, we do not evaluate
DWRR for the inter-group fairness.

We use several workloads to compare fairness and
throughput of the schedulers. First, we use a synthetic bench-
mark whichwas described in Section 2.4. This is used to show
the CPU share allocation in details. Second, to show the real
impact of global fair scheduling on batch jobs, we use two sin-
gle thread benchmarks and a multi-threaded benchmark. For
the single thread workloads, we select namd and milc from
SPECCPU2006 [9]. The former one is a CPU intensive bench-
mark and CPU allocation has a major impact on performance,
while the latter one is a memory intensive benchmark and the
migration overhead also has a significant impact on the perfor-
mance. For the multi-threaded batch workload, we use swap-
tions of PARSEC [11], which exhibits highCPUutilization.

Last, we use two kinds of server workloads. TailBench
suite [10] is used to test the schedulers with various server
programs. It includes 8 real-world server workloads such as
web search engine, in-memory and disk-based databases,
face recognition, speech recognition, etc. In addition, we use
memcached 1.4.25 which is a representative key-value store
application. For the client driver, we use treadmill [12] to

86 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

mimic a real usage scenario. We run the client driver on a
remote server connected to our experimental systems
through TCP/IP.

5.2 Results of Synthetic Benchmark

As described in Section 2.4, the synthetic benchmark creates
the specified number of threads which continuously run for
10 seconds. Fig. 8 shows the results when the benchmark
creates 20 threads on 16-core system. The results show that,
unlike the CFS results shown in Fig. 1, GVTS can maintain
inter-thread proportional fairness. As shown in the left
graph, threads receive from 0.76 to 0.87 seconds of CPU
share for each second. Since the ideal scheduling should dis-
tribute 0.8 seconds of CPU share to all threads for each sec-
ond, this results is much closer to the ideal scheduling than
the results of CFS. Moreover, temporal unfairness is
being resolved over time as shown in the right graph.
Lag times do not diverge and are maintained between
�0.05�0.04 seconds.

Fig. 9 uses the same microbenchmark, but 8 threads and
12 threads are grouped separately. Comparing the CFS
results in Fig. 2, the results also show that GVTS provides
much more accurate fairness than CFS. Lag times are near
zero for all threads with GVTS.

Finally, Fig. 10 shows the results on the 80-core system.
Since there are many threads, we show the lag time distri-
bution of threads after 10 seconds in the graph. In the
figure, the x-axis represents the threads, and the y-axis rep-
resents the lag time in seconds. The three lines show the
lag times of threads with CFS, DWRR, and GVTS respec-
tively. When 120 threads run, the lag times with CFS
increase up to 2.2 seconds. When the threads are grouped,
the results of CFS become worse as shown in the right
graph. Meanwhile, the curves for GVTS in the left and
right graphs are close to zero, as its global virtual time fair
scheduling distributes CPU share proportional to threads’
weight. DWRR also shows the near-zero lag times thanks

to the round based fair scheduling. However, it does not
support thread grouping, and the result is omitted from
the right graph.

5.3 Results of Batch Jobs

In this section, we evaluate long time scheduler behaviors
and their effect on performance. We use namd and milc from
SPECCPU2006 [9] and swaptions from PARSEC [11]. For
benchmarks from SPECCPU2006, reference input is used for
all scenarios. Note that namd is a CPU intensive benchmark
while milc is a memory intensive benchmark. For swaptions,
native input, 128 point dimensions with 1,000,000 input
points, is used on 16-core system. We increase input size to
160 points dimensions with 10,000,000 input points for 80-
core system to make sure that the benchmark sufficiently
utilizes 80 cores.

We use two metrics to evaluate fairness and throughput
of CPU scheduling. First, the fairness metric represents the
normalized performance compared to the performance of
ideal scheduling, as used in Section 2.4. The second metric
is weighted throughput which represents the overall system
throughput. The metric is the weighted average of fairness
of threads, where the weights of threads are used as the
weight for averaging.

weighted throughput ¼
P

fairness� wthreadP
wthread

Single Thread Benchmark. Fig. 11 shows the results of namd
on the 16-core system. The same setupwas used in Section 2.4.
In the figures, the x-axis represents each experimental run
repeated 5 times for both schedulers, and the y-axis represents
the fairness metric. For each column, the triangles indicate the
minimum and the maximum value of fairness and the lower
and upper boxes show the 25%-ile and 75%-ile value of fair-
ness. The diamonds represent the weighted throughput for
each experiment.

Fig. 8. Synthetic benchmark: 20 threads on 16 cores.

Fig. 9. Synthetic benchmark: 8-thread and 12-thread groups on 16
cores.

Fig. 10. Synthetic benchmark results on 80 cores.

Fig. 11. Results of namd on 16-core system.

KIM ETAL.: GVTS: GLOBALVIRTUALTIME FAIR SCHEDULING TO SUPPORT STRICT FAIRNESS ON MANYCORES 87

The results show that GVTS successfully maintains pro-
portional fairness even when CFS fails to balance loads and
fails to provide fairness, as expected in the synthetic bench-
mark results. Moreover, the difference in weighted through-
put between two schedulers is less than 0.5 percent. The
results show that GVTS can almost eliminate fairness viola-
tion without any severe throughput degradation. The
results with DWRR are also similar to GVTS as it distributes
CPU resource evenly to threads at round interval granular-
ity. Note that namd is a CPU intensive workload and CPU
allocation alone has a major impact on performance.

Fig. 12 shows the results on the 80-core system. The sce-
narios are similar to the ones on the 16-core system, but the
number of namd copies is increased 5 times. The trends are
similar to the results on 16-core. This shows that our sched-
uler has enough scalability to work on large systems.

Figs. 13 and 14 show the results with milc. Since milc is a
memory intensive benchmark, the frequent migrations may
lead to notable performance degradation. As similar to namd
results, CFS shows a high performance variance between
threads. In addition, the intensity of performance variance
also differs between runs.

DWRR reduces the performance variance significantly, but
it also reduces the overall throughput due to the threadmigra-
tion overhead. The throughput degradation is 4�6 percent on
16-core system and 1.4 percent on 80-core system. There
is a notable difference in throughput degradation across
machines, since CPUs of two machines are from different
CPU vendors and the thread migration overhead is signifi-
cantly affected by the CPU architectures.

Finally, GVTS shows the minimum performance vari-
ance with acceptable throughput degradation, due to opti-
mization techniques to reduce thread migrations. The
throughput degradation is around 2�3 percent for 16-core
system and less than 0.3 percent for 80-core system. How-
ever, although GVTS shows a less performance variance

compared to CFS, there is a still minor performance vari-
ance, especially for Fig. 13b case. The main reason is that the
number of thread migration events for fair scheduling can
be biased between threads. This problem results in imbal-
anced migration overheads of threads and causes uneven
performance of threads. Balancing the number of migra-
tions between threads will be our future work.

To further analyze the trade-off of DWRR between fairness
accuracy and migration overhead, we run the synthetic
benchmark and milc with varying round_interval for DWRR
which ranges from 30 ms (default) to 1s. Fig. 15b shows the
weighted throughput of 20milc copies on 16-core system. We
repeat the experiment 5 times for each parameter, and the
average is shown in the figure. Note that the weighted
throughput with CFS scheduler is close to 1 as shown in
Fig. 13a. The default round_interval (30 ms) shows 5 percent
additional throughput degradation compared to CFS. The
overhead decreases as round_interval increases, and 1 second
round_interval shows weighted throughput comparable to
GVTS. However, 1 second round_interval degrades fairness
accuracy of the scheduler. Fig. 15a shows the lag timedistribu-
tions of our synthetic benchmark, when it runs 20 threads on
the 16-core system.DWRRwith 1 second round_interval incurs
lag time longer than 1 second, while GVTS shows a much
shorter lag time. Consequently, GVTS achieves both accurate
fairness and low migration overhead due to the topology-
aware virtual time balancing and other optimizations.

Multi-Threaded Benchmark. To evaluate inter-group pro-
portional fairness with a multi-threaded benchmark, we use
4 scenarios with swaptions. For all scenarios, each instance of
swaptions belongs to different thread groups. Then, we
adjust the weights of groups respectively for each scenario.
The fairness between thread groups is measured in terms of
the performance of each instance. Although we experiment
4 scenarios on both experimental platforms, we show 2

Fig. 12. Results of namd on 80-core system.

Fig. 13. Results ofmilc on 16-core system.

Fig. 14. Results ofmilc on 80-core system.

Fig. 15. DWRR results with varying round slice.

88 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

scenarios on 80-core system due to the space limit. The rest
of the results show similar trends.

Fig. 16 shows the results of the first scenario. We run 4
instances of swaptions with 40 threads per instance. Each
instance belongs to different groups and the weight ratio
between the groups is 3:2:1:1. In the graph, each column
presents a run repeated 5 times for both of the schedulers, and
the bars in each column show the fairness value of the instan-
ces of swaptions. Since swaptions is a CPU intensive workload
and highly scalable, the performance of the copies must be
proportional to its CPU share. As shown in the figure, CFS
shows large performance variances up to 8 percent, while
GMFS successfully provides inter-group proportional fair-
ness, close to the ideally fair scheduler.

Fig. 17 shows the results of the second scenario. The sce-
nario runs 3 instances of swaptions with 80 threads per
instance. As before, threads of each instance constitute a
thread group, and the weight ratio between the three groups
is 10:3:1.With CFS, the heavyweighted group tends to receive
less CPU share and exhibit low fairness, and the lightweighted
groups tend to receive more CPU share than the ideal sched-
uling. On the other hand, GVTS does not show such problems
and provides near-perfect fairness.

Note that all fairnesswith GVTS in Figs. 16 and 17 slightly
exceed 1. This is the effect of the fine-grained intra-group fair
scheduling. Since swaptions has a barrier at the end of the pro-
cedure, it can finishwhen all of its threads finish. Fine-grained
intra-group fair scheduling can fully utilize as much core as
possible, and help all threads finish simultaneously. Without
such scheduling, some threads lag behind other threads, and
the program shouldwait until all lagged threads to finish.

5.4 Results of Server Workloads

As shown in Section 2.4, tail latency critical workloads, such
as web servers, may suffer from the temporal fairness viola-
tions, degrading their quality-of-service due to tail latency
increases. Since server workloads may be consolidated with
batch jobs in clouds to improve resource utilization, fine-
grained fair scheduling is important.

To evaluate server workloads, we use two benchmarks,
TailBench [10] and memcached, and use namd for consolidated
batch jobs. First, TailBench consists of 8 real-world server appli-
cations from various domains, including search engine, key-
value store, translation, speech/image recognition, java mid-
dleware andOLTP.Weuse integrated configurationwhich a sin-
gle process combines clients and application threads. It does
not include network latency and network stack overheads, but
focuses on the CPU usage of the server applications. Second,
memcached represents the realistic usage scenario including the

network overhead. We use treadmill [12] for the client driver
on a separate machine. The client machine has two Intel Xeon
E5-2630 CPUs and totally 40 cores. Third, for batch jobs, namd,
we set the number of batch jobs to be equal to the number of
CPUs in the system, so the batch jobs can fully utilize the
whole system, if they have enough share. All scenarios are
repeated 5 times and we use the average value of tail latencies
to compensate for the performance variances across runs [12].

Fig. 18 shows the results of TailBench [10] with batch jobs.
The x-axis represents the desired CPU share for batch jobs.
We adjust the relative weight of batch jobs and server appli-
cations to set the desired CPU share. When the desired CPU
share for batch jobs is 10 percent, the server applications
can use up to 90 percent of CPU share with the ideal sched-
uling. The y-axis represents the tail latency of server appli-
cations. The circles show the 95%-ile latencies and the
triangles show the 99%-ile latencies. In addition, the empty
marks with dotted lines represent the results of CFS and the
filled marks with solid lines represent those with GVTS. For
DWRR, which does not support thread grouping, we only
show the results of two cases: one is when there are no batch
jobs, and the other is when the weight of the batch jobs are
equal to the weight of server workloads. The percentage
after the application name shows the CPU utilization of the
application without batch jobs. This represents the maxi-
mum CPU utilization for each application.

Similar to Fig. 5 in Section 2.4, CFS has a harmful effect on
tail latency in most of the applications. For example, silo’s
maximum CPU utilization is just 15 percent, but its 99%-ile
latency is drastically increased, when it can use 90 percent of
CPU share. On the other hand, the fine-grained fair schedul-
ing with GVTS removes such effect, and shows the stable tail
latency until the batch job share setting is less than the maxi-
mum CPU utilization of server applications. On average,
when the desired batch job’s CPU share is 70 percent, GVTS
reduces 95%-ile latency by 2.0X and 99%-ile latency by 3.0X
compared toCFS.

Fig. 19 shows the results of memcachedwith batch jobs. The
notations are identical with the previous figure, but the y-axis
is plotted on a logarithmic scale. Without batch jobs, the aver-
age CPU utilization of memcached is about 78 percent. When
the desired batch job’s CPU share is 10�40 percent,
which shows a reasonable tail latency with batch jobs, GVTS
reduces 95%-ile latency by 2.1X�4.1X and 99%-ile latency by
2.0X�3.7X compared to CFS.

For both of the server workloads, DWRR shows the lon-
ger tail latency compared to GVTS. In addition, as DWRR
does not support the thread grouping, the fine-grained
adjustment of weights of groups is not supported.

Fig. 16. 4 copies of swaptions with 40 threads. Weight=3:2:1:1. Fig. 17. 3 copies of swaptions with 80 threads. Weight=10:3:1.

KIM ETAL.: GVTS: GLOBALVIRTUALTIME FAIR SCHEDULING TO SUPPORT STRICT FAIRNESS ON MANYCORES 89

5.5 Scheduling Overhead

In this section, we analyze the scheduling overhead of
GVTS. There are two types of overheads from schedulers.
First, the scheduling decision may negatively impact appli-
cation performance by thread migrations. For example, if a
scheduler frequently incurs thread migrations, the threads
cannot efficiently exploit caches and thus their performance
can be degraded. The previous experimental results show
that this type of the overheads are negligible, as the
weighted throughput of GVTS is similar to CFS, Even when
all threads in a system are running memory intensive work-
loads, such as milc in our experiments, the overhead is less
than 0.3�3 percent depending on the CPU architecture.

Second, the scheduler itself consumes CPU share to run
its algorithms. This directly degrades the application per-
formance, since the applications cannot run while the
scheduler is running. However, it is very difficult to mea-
sure the CPU time consumed by scheduler, since schedu-
lers run for a very short time. Instead, we compare the
statistics of CPU time in the kernel space between CFS and
GVTS. Since we use the same version of kernel for CFS
and GVTS, the comparison shows the additional CPU con-
sumption of GVTS algorithm compared to CFS. Fig. 20
shows the results. The numbers in the x-axis show the
number of copies for the column, and the y-axis shows the

percentage of CPU utilization in kernel space. As shown in
the figure, GVTS consumes negligible 0.04�0.07 percent
more CPU share. In addition, even though the number of
threads increases, the CPU share in kernel space does not
increases. This shows the scalability of GVTS in terms of
the number of threads.

6 RELATED WORK

6.1 Fair CPU Scheduling

There are several ways to support proportional fairness in
CPU scheduling. First, as explained in Section 2.1, virtual
time based schedulers define the virtual time as the weigh-
ted time given to each thread, and always select the thread
with the lowest virtual time to run. Surplus Fair Schedul-
ing [5], Borrowed-Virtual-Time [3], and Start-time Fair
Queueing [4] are based on virtual time fair scheduling, and
Completely Fair Scheduler [1] in Linux kernel adopted this
method to support proportional fairness since version
2.6.23. As this method restricts the difference in virtual
time within a small constant, the maximum lag time is
also bounded by a constant. However, as it needs to sort
threads in virtual time order, the algorithmic complexity
with N threads is OðlogNÞ � OðNlogNÞ depending on the
implementation.

Fig. 18. Tail-latency of TailBench on 16 cores.

Fig. 19. Memcached Results on 16 cores. Fig. 20. Scheduling overhead: CPU time in kernel space.

90 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

Second,Weighted Round-Robin (WRR) [14] based schedu-
lers select a thread from a runqueue in a round-robinmanner,
and runs the selected thread for wi � interval. After a round,
all threads receive CPU time exactly proportional to their
weight. As the thread selection is done in round-robin, its
algorithmic complexity is Oð1Þ. However, the maximum lag
time is wi � interval for each round, which is usually larger
than virtual time fair scheduling. Virtual-Time Round-Robin
scheduler (VTRR) [15] reduces the maximum lag time to
interval by reducing the execution time for each selection to
interval but increasing the number of selections for threads
with high weights. Group Ratio Round-Robin scheduler [16]
extends VTRR for multiprocessor systems, and Grouped Dis-
tributed Queues scheduler [17] and Distributed Weighted
Round-Robin scheduler [8] proposed scalable algorithms for
large scale systemswhich are based onweighted round-robin.

Last, Lottery scheduling [18], [19] supports proportional
fairness probabilistically. Selecting a thread is randomized
but with a probability of selection being proportional to its
Lottery tickets, which are encapsulated resource rights. The
algorithmic time complexity with N threads is OðlogNÞ, and
the lag time is not bounded in a constant time.

Another aspect of fair CPU scheduling is to support fair-
ness when cores have different computing capabilities [20],
[21], [22], [23]. In such asymmetric multicore processors
(AMP), an equal CPU share does not provide an equal perfor-
mance. Kwon et al. defined the fairness on AMP as the state
that all threads receive the same CPU share for each type of CPUs,
and proposed a scheduler for virtual machines on AMP [20].
Craeynest et al. studied the fairness support for AMPs with
HW supports [21]. Kim et al. proposed a SW scheduler sup-
porting the proportional fairness for AMP [22], [23].

6.2 Scheduler Implementations

In this section, we describe the design choices of three open
source scheduler implementations and compare them to the
proposed scheduler.

CFS.Completely Fair Scheduler [1] is themostwidely used
open source scheduler. As explained in Section 2, CFS use the
virtual time fair scheduling for per-CPU scheduling, but use
load balancing mechanism for global scheduling. CFS pro-
vides nested thread group support and its load balancing
mechanism is scalable to the number ofCPUs.However, there
are many corner cases that load balancing fails to provide
accurate fairness onmulti-core systems. Lozi et al. fixed some
corner case problems of load balancing [24] and Huh et al.
proposed a mechanism which periodically places threads
based on the current virtual time [25]. Compared to them, our
work fundamentally solves the problems of load balancing by
extending virtual time fair scheduling onmulti-core systems.

DWRR. Distributed Weighted Round-Robin (DWRR) [8]
scheduler implements a round-robin based fair scheduling

for multi-core systems. Although DWRR uses the Linux ker-
nel implementation, O(1) scheduler or CFS, for per-CPU
scheduling, it uses a weighted round-robin for global sched-
uling. DWRR maintains round for each thread, and round is
incremented when the thread receives CPU time as wi�
round interval. Although its round balancing mechanism is
somewhat similar to the balancing in GVTS, it works as a
whole system is flat, and there is a single round_interval
value. Depending on the length of interval, the thread migra-
tion overhead or the lag time bound becomes large. Note
that large lag time indicates low fairness accuracy. More-
over, DWRR does not support thread grouping, which is
required for virtualization or containerization.

Xen Credit. Xen Credit Scheduler is the current mainline
scheduler of Xen hypervisor [13]. It is designed to schedule
virtual CPUs of virtual machines, so it supports only flat
thread groups for inter-group fairness. In Xen Credit Sched-
uler, each virtual CPU has a credit value, which indicates
the right of CPU time usage, and the scheduler periodically
distributes credits for all the virtual CPUs according to their
weights. With per-CPU runqueues in the scheduler. a physi-
cal CPU selects any virtual CPU which has a remaining
credit and runs it until all of its credit is consumed. If all vir-
tual CPUs in the runqueue are running out of credits, the
physical CPU scans other physical CPUs first to find virtual
CPUs with remaining credits. In this way, the scheduler
provides proportional fairness between virtual CPUs.
However, as the credit distribution requires a whole sched-
uler lock, the scalability is limited. The recently released
Xen Credit Scheduler 2 removes the scalability bottleneck.
However, its global scheduler mechanism is similar to the
load balancing mechanism of CFS.

Comparison. Table 1 compares the aforementioned sched-
uler implementations with the proposed one. First, CFS has
a scalable algorithm but cannot guarantee exact propor-
tional fairness on multi-core systems. Second, DWRR pro-
vides accurate fairness on multi-core systems, but the
accuracy is traded off with the thread migration overhead.
In addition, it does not support any thread grouping. Third,
Xen Credit Scheduler also provides accurate fairness on
multi-core systems, but it has a scalability bottleneck on dis-
tributing credit to all virtual CPUs in the system. Finally, the
proposed GVTS scheduler provides accurate fairness on
multi-core systems with little thread migration overhead. It
also supports nested thread grouping.

7 CONCLUSION

This paper investigated the impact of the state-of-the-art pro-
portional fair scheduling on multi-core systems. The local
virtual time fair scheduling in Linux can negatively affect the
performance consistency on batch jobs and significantly

TABLE 1
Comparison of GVTS with Prior Approaches

CFS [1] DWRR [8] Xen Credit [13] GVTS(proposed)

Accurate fairness on multi-core NO Trade-off with migration overhead YES YES

Scalability YES YES limited YES

Thread group support Multi-level NO 1-level only Multi-level

KIM ETAL.: GVTS: GLOBALVIRTUALTIME FAIR SCHEDULING TO SUPPORT STRICT FAIRNESS ON MANYCORES 91

increase tail latency of server applications. To provide strict
proportional fairness on multi-core systems, this paper pro-
posed Global Virtual Time Fair Scheduling which extends
the virtual time fair scheduling on multi-core systems with
negligible thread migration overhead. The proposed sched-
uler is implemented on the Linux kernel and its source code
is available online. The experimental results show that it
removes performance variance of batch workloads and
significantly reduces tail latencies of server workloads. Our
source code is publicly available at https://github.

com/cdkimcode/gvts.

ACKNOWLEDGMENTS

This work is supported by the National Research Founda-
tion of Korea (NRF-2016R1A2B4013352) and by the Institute
for Information & communications Technology Promotion
(IITP-2017-0-00466). Both grants are funded by the Ministry
of Science and ICT, Korea.

REFERENCES

[1] I. Molnar, “CFS scheduler.” [Online]. Available: http://people.
redhat.com/mingo/cfs-scheduler/sched-design-CFS.txt,
Accessed on: May 19, 2018.

[2] A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: The sin-
gle-node case,” IEEE/ACM Trans. Netw., vol. 1, no. 3, pp. 344–357,
Jun. 1993.

[3] K. J. Duda and D. R. Cheriton, “Borrowed-virtual-time (bvt)
scheduling: Supporting latency-sensitive threads in a general-
purpose scheduler,” in Proc. Symp. Oper. Syst. Principles, 1999,
pp. 261–276.

[4] P. Goyal, X. Guo, and H. M. Vin, “A hierarchical cpu scheduler for
multimedia operating systems,” in Proc. USENIX Symp. Oper. Syst.
Des. Implementation, 1996, pp. 107–122.

[5] A. Chandra, M. Adler, P. Goyal, and P. Shenoy, “Surplus fair
scheduling: A proportional-share cpu scheduling algorithm for
symmetric multiprocessors,” in Proc. USENIX Symp. Oper. Syst.
Des. Implementation, 2000, pp. 4:1–4:14.

[6] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel,
“Proportionate progress: A notion of fairness in resource allocation,”
inProc. Symp. Theory Comput., 1993, pp. 345–354.

[7] A. Chandra and P. Shenoy, “Hierarchical scheduling for symmet-
ric multiprocessors,” IEEE Trans. Parallel Distrib. Syst., vol. 19,
no. 3, pp. 418–431, Mar. 2008.

[8] T. Li, D. Baumberger, and S. Hahn, “Efficient and scalable multi-
processor fair scheduling using distributed weighted round-rob-
in,” in Proc. Symp. Principles Practice Parallel Program., 2009,
pp. 65–74.

[9] J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, vol. 34, pp. 1–17, Sep. 2006.

[10] H. Kasture and D. Sanchez, “Tailbench: A benchmark suite and
evaluation methodology for latency-critical applications,” in Proc.
IEEE Int. Symp. Workload Characterization, 2016, pp. 1–10.

[11] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: Characterization and architectural implications,” in Proc.
Int. Conf. Parallel Archit. Compilation Tech., 2008, pp. 72–81.

[12] Y. Zhang, D.Meisner, J. Mars, and L. Tang, “Treadmill: Attributing
the source of tail latency through precise load testing and statistical
inference,” in Proc. Int. Symp. Comput. Archit., 2016, pp. 456–468.

[13] L. Cherkasova, D. Gupta, and A. Vahdat, “Comparison of the
three cpu schedulers in xen,” SIGMETRICS Perform. Eval. Rev.,
vol. 35, no. 2, pp. 42–51, Sep. 2007.

[14] J. Nagle, “On packet switches with infinite storage,” IEEE Trans.
Commun., vol. C-35, no. 4, pp. 435–438, Apr. 1987.

[15] J. Nieh, C. Vaill, and H. Zhong, “Virtual-time round-robin: An o
(1) proportional share scheduler,” in Proc. USENIX Annu. Tech.
Conf., 2001, pp. 245–259.

[16] B. Caprita, W. C. Chan, J. Nieh, C. Stein, and H. Zheng, “Group
ratio round-robin: O(1) proportional share scheduling for unipro-
cessor and multiprocessor systems,” in Proc. USENIX Annu. Tech.
Conf., 2005, pp. 337–352.

[17] B. Caprita, J. Nieh, and C. Stein, “Grouped distributed queues:
Distributed queue, proportional share multiprocessor sched-
uling,” in Proc. Symp. Principles Distrib. Comput., 2006, pp. 72–81.

[18] C. A. Waldspurger and W. E. Weihl, “Lottery scheduling: Flexible
proportional-share resource management,” in Proc. USENIX Conf.
Oper. Syst. Des. Implementation, 1994, pp. 1:1–1:11.

[19] D. Petrou, J. W. Milford, and G. A. Gibson, “Implementing lottery
scheduling: Matching the specializations in traditional sched-
ulers,” in Proc. USENIX Annu. Tech. Conf., 1999, pp. 1:1–1:14.

[20] Y. Kwon, C. Kim, S. Maeng, and J. Huh, “Virtualizing perfor-
mance asymmetric multi-core systems,” in Proc. Int. Symp. Com-
put. Archit., 2011, pp. 45–56.

[21] K. VanCraeynest , S. Akram,W.Heirman, A. Jaleel, and L. Eeckhout,
“Fairness-aware scheduling on single-ISA heterogeneous multi-
cores,” in Proc. Int. Conf. Parallel Archit. Compilation Tech., 2013, pp.
177–187.

[22] C. Kim and J. Huh, “Fairness-oriented os scheduling support for
multicore systems,” in Proc. Int. Conf. Supercomputing, 2016,
pp. 29:1–29:12.

[23] C. Kim and J. Huh, “Exploring the design space of fair scheduling
supports for asymmetric multicore systems,” IEEE Trans. Comput.,
pp. 1–16, Jan. 2018, doi: 10.1109/TC.2018.2796077.

[24] J.-P. Lozi, B. Lepers, J. Funston, F.Gaud, V. Qu�ema, andA. Fedorova,
“The linux scheduler: A decade of wasted cores,” in Proc. Eur. Conf.
Comput. Syst., 2016, pp. 1:1–1:16.

[25] S. Huh, J. Yoo, M. Kim, and S. Hong, “Providing fair share sched-
uling on multicore cloud servers via virtual runtime-based task
migration algorithm,” in Proc. IEEE Int. Conf. Distrib. Comput.
Syst., 2012, pp. 606–614.

Changdae Kim received the BS, MS, and PhD
degrees in computer science fromKorea Advanced
Institute of Science and Technology (KAIST). He is
a research fellow in computer science with KAIST.
His research interests include computer architec-
ture, operating systems, and cloud computing.

Seungbeom Choi received the BS degree in
computer engineering from Sungkyunkwan Uni-
versity (SKKU) and the MS degree in computer
science from KAIST. His research focuses on
cloud computing, parallel computing, deep learn-
ing, and GPU acceleration.

Jaehyuk Huh received the BS degree in computer
science from Seoul National University, and theMS
and PhD degree in computer science from the Uni-
versity of Texas at Austin. He is an associate pro-
fessor of computer science with KAIST. His
research interests include computer architecture,
parallel computing, virtualization and system secu-
rity. He is a studentmember of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

92 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

https://github.com/cdkimcode/gvts
https://github.com/cdkimcode/gvts
http://people.redhat.com/mingo/cfs-scheduler/sched-design-CFS.txt
http://people.redhat.com/mingo/cfs-scheduler/sched-design-CFS.txt
http://dx.doi.org/10.1109/TC.2018.2796077

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

