ESP-scheme: A realization of system entity
structure in a LISP environment

Tag Gon Kim, ERLab and B.P. Zeigler, ECE Dept.

University of Arizona
Tucson, AZ 85721

ABSTRACT

System entity structure (SES) developed by Zeigler is a
structural knowledge representation scheme that contains
knowledge of decomposition, taxonomy, and coupling of a sys-
tem. Formally, SES is a labeled tree with attached variable
type that satisfies certain axioms. This paper describes a
realization of SES in Scheme (a LISP dialect) called ESP-
Scheme. The paper first presents representation of SES and
main operations on SES, and then describes facilities in ESP-
Scheme. ESP-Scheme acts as a model base management sys-
tem in DEVS-Scheme, a knowledge-based simulation
environment developed by the authors. It supports specifica-
tion of the structure of a family of models, pruning the struc-
ture to a reduced model, and transforming it to a simulation
model by synthesizing components models in the model base.

1. Introduction

DEVS-Scheme realizes Zeigler’s DEVS (Discrete Event
System Specification) formalism in Scheme (a LISP dialect)
(Kim and Zeigler, 1987; Kim, 1988; Zeigler, 1987). The en-
vironment supports building models in a hierarchical, modular
manner, a systems oriented approach not possible in conven-
tional languages (Concepcion and Zeigler, 1988). To organize
such complex hierarchical structures of models developed
using DEVS-Scheme, a model base management system is
highly desirable. The system entity structuring formalism
developed by (Zeigler, 1984) is one such tool for the model
base management. ESP-Scheme is a realization of the system
entity structuring formalism in the Scheme environment. The
ESP-Scheme supports hierarchical specification of the struc-
ture of a family of models, pruning the structure to a reduced
model, and transforming the structure to a simulation model
by synthesizing components models in the model base
developed using DEVS-Scheme. This paper first reviews the
system entity structuring formalism and then describes overall
features of the ESP-Scheme including representation and
operations of the system entity structure. It also presents an
outline of a knowledge base framework for modelling and
simulation based on the entity structure and model base.

2. System Entity Structuring Formalism: A Review

A system entity structure (SES) is a knowledge repre-
sentation scheme which contains the decomposition, coupling,
and taxonomy information necessary to direct model synthesis
(Zeigler 1984; Rozenblit, 1985). Formally, the SES is a labeled

tree with attached variable types that satisfies five axioms —al-
ternating mode, uniformity, strict hierarchy, valid brothers, and
attached variables. Detail description of the axioms is available
in (Zeigler, 1984).

2.1 Three Relationships in SES

There are three types of nodes in the SES —entity, aspect,
and specialization —which represent three types of knowledge
about the structure of systems. The entity node, having several
aspects and/or specializations, corresponds to a model com-
ponent that represents a real world object. The aspect nodzéa
single vertical line in the labeled tree of Fig. 1) represents onie
decomposition, out of many possible, of an entity. Thus the
children of an aspect node are entities, distinct components of
the decomposition. The specialization node (a double vertical
arrows in the labeled tree of Fig. 1) represents a way in which a
general entity can be categorized into special entities. As shown
in Fig. 1, attached to an aspect node is a coupling scheme,
which specifies external input, external output, and internal
couplings of a system and its components.

A multiple entity is a special entity that consists of a collec-
tion of homogeneous components. We call such components a
multiple decomposition of the multiple entity. The aspect of
such a multiple entity is called multiple aspect (triple vertical
lines in the labeled tree of Fig. 1). The representation of such a
multiple entity is as follows. A multiple entity A and its com-
ponents Bs are represented by A, three vertical lines, and B
from the top down. Note that instead of presenting all Bs for
A’s components, only one B is placed in the labeled tree. The
number of Bs is specified by a variable, which is attached to the
multiple aspect node.

AB
/Qmu scheme
A BS
1
B
Al A2

Fig. 1. A System Entity Structure.

2.2 Operations on SES

A SES represented by a labeled tree consists of branches
and nodes (nodes are also called items). An item in the SES is
in one of three types —entities, aspects, or specializations —an
ordered pair of which is represented by a branch of the SES.

Some operations on the SES are: adding an item to the SES,
deleting an item from the SES, attaching variables to items in
the SES, deleting variables from items in the SES, pruning the
SES, transforming the pruned SES into a model.

As the construction of a SES is a sequence of adding new
items — entities, aspects or specializations —to the SES, the
most common operation is adding an item. The deletion opera-
tion, which deletes entities and associated branches from the
SES, can be applied only to those entities with no aspects.
Variables can be attached to and removed from the items in
the SES.

The pruning operation extracts a substructure of the SES by
selecting one aspect and/or one specialization for each entity in
the SES. The pruning operation ultimately reduces the SES to
a composition tree that contains all the information about the
structure of a model. The transform operation synthesizes a
model in a hierarchical fashion from components in the model
base developed by using the DEVS-Scheme.

3. Implementation of ESP-Scheme

3.1 Representation of SES in ESP-scheme

The SES is implemented by a module called entity-struc-
ture —a package of hidden variables and associated opera-
tions —as shown in Fig. 2. Lists of items and branches are main
variables representing a tree structure for the SES. The vari-
able current-item points to the current item in the SES, under
which new items can be added. Each item in the items-list is
represented by a structure type called item, the fields of which
include type, name, coupling, mult-coup-type, and attributes-Ist.
Each branch in the branches-list is represented by another
structure type called branch that maintains an ordered pair of
two items, left- and right-items, in the SES.

set-current-iten ENTITY STRUCTURE

add-item

items-list
item
delete-item type
_—% nane
add-coupling sub-type
—_———> coupling
* sult-coup-type
. attributes-1st
.
* branches-1ist
current-item? branch
— >
[(1eft-tten |
—>
branches? current-item

Fig. 2. Representation of System Entity Structure Module.

The field type in item structure represents the type of an en-
tity in an entity structure whose range is in {entity, aspect,
specialization}. The field name is used to identify an entity by
its name. The field coupling is used to specify coupling scheme
of a model specified by a system entity structure. The coupling
scheme is a collection of three coupling specifications: external
input, external output, and internal coupling. Each of three
coupling specifications is represented by a set of ordered pairs
of ports. The representation of coupling scheme is compatible
with that of DEVS-Scheme. The field sub-type with range
{multiple-entity, multiple-aspect, multiple-children} repre-
sents information on multiple entities and multiple decomposi-
tion. The field mult-coup-type with range {broadcast,
hypercube, cellular} is used to specify the coupling scheme for
a kernel model in DEVS-Scheme. Items in SES may have at-
tributes that characterize their features. The field attributes-Ist
maintains a list of such attributes, each of which is a pair of
variable and its value.

The main operations on the SES are set-current-item, add-
item, add-mult, delete-item, add-coupling, prune, and transform.
To explain such operations, let us build the SES of a system
BUF-PROC, a processing element containing a buffer cas-
caded with a processor. The type of buffer;-assumed to be
either FIFO (First In First Out) or LIFO (Last In First Out),
will be selected by the user in the pruning process. Once the
SES of the BUF-PROC with an aspect and a specialization is
built, we prune the BUF-PROC entity structure and transform
the pruned BUF-PROC in a model.

Building the SES for the BUF-PROC starts with creating an
entity structure, the root of which is an entity BUF-PROC (line
(1) of Fig. 3 (a)). Once the SES with the root entity BUF-
PROC has been created, items are added to the SES.
However, a sequence of adding items should be such that the
resulting SES satisfies the axiom of alternating mode. SES
axioms are automatically checked by the Entity Structure
Module as operations are processed. Since the next items to be
added are either aspects or specializations, we add an aspect
called comp-dec under the root entity BUF-PROC (line (2) of
Fig. 3 (a)). To add other items under the aspect comp-dec re-
quires setting the current item to the aspect comp-dec (line (3)
of Fig. 3 (a)). After the current item is set, two components, a
buffer and a processor, are added one by one (lines (4) and (5)
of Fig. 3 (a)). Note that the current item of the SES is still at
the aspect comp-dec. When an item with type specialization is
added under the entity BUFFER, the current item must be set
to the BUFFER (line (6) of Fig. 3 (a)). Then line (7) adds a
specialization buf-type under the entity BUFFER. Similarly,
lines (8), (9), and (10) add two items FIFO-BUF and LIFO-
BUF under the specialization buf-type.

The coupling scheme of the BUF-PROC system, which is
attached to the aspect comp-dec, can be specified by the opera-
tion add-coupling. This operation needs to specify the names of
two entities and the names of ports in the two entities. The
operation add-coupling specifies both internal and external
coupling of the BUF-PROC system. Lines (12) and (13) of Fig.
3 (a) specify the external coupling scheme, while lines (14) and
(15) of Fig. 3 (a) specify the internal coupling scheme of the
BUF-PROC.

Fig. 3 (b) shows the resulting SES for the BUF-PROC Sys-
tem, which has one aspect under the BUF-PROC entity and
one specialization under the BUFFER entity.

Having specified the SES, we are ready to prune it to select
a particular pruned entity structure. The pruning operation
queries the user to select one entity under a specialization, if
there is one, while traversing all items in the SES. One such
pruned entity structure is shown in Fig. 3 (c), where the FIFO-
BUF has been selected as a specialized buffer.

make-entstr ’'BUF-PROC)
add-item e:buf-proc ’asp ’comp-de?
set-current-item e:buf-proc ’comp-dec
add-item e:buf-proc ’ent ’BUFFER)
add-item e:buf-proc ’ent PROCESSOR)
set-current-item e:buf-proc ’BUFFER)
%add-item e:buf-proc ’spec ’buf-?'pe)
set-current-item e:buf-proc ’buf-type
add-item e:buf-proc ’ent "FIFO-BUF,
(add-item c:buf-proc ’ent ’LIFO-BUF
set-current-item e:buf—Proc ’comg—dec)
add-couple e:buf-proc’BUF-PROC 'BUFFER ’in ’in)
add-couple e:buf-proc’PROCESSOR *BUF-PROC ’out "out)
add-couple e:buf-proc ’BUFFER "PROCESSOR ’out *in)
add-couple e:buf-proc’PROCESSOR "BUFFER ’done ’ready)

(a)

BUF-PROC

e | BUF-PROC. 1n, BUFFER. 1n)
COmp=deC \ipa0CESSOR. out, BUF-PAOC. out)
l (PROCESSOR.done, BUFFER.ready)}

et e ek et b \O OO B0 N =
A =) S &

BUFFER PROCESSOR
buf-type
il
| i
FIFO-BUF LIFO-BUF
(b)
BUF-PROC
{ (BUF-PROC. in, FIFO-BUF.in)
comp-dec (pancESSOR. out, BUF-PROC. out)
| (PROCESSOR.done, FIFO-BUF.ready))
[l
FIFO-BUF PROCESSOR
(©)
— BUF-PROC
in in out out
out 1n
ready| FIFO-BUF —>—» PROCESSOR |done
(d)

Fig. 3. (a) ESP-Scheme Code (b) System Entity Structure
(c) Pruned Entity Structure (d) Transformed Model

To automatically construct a simulation model in DEVS-
Scheme we apply the transform operation to a pruned entity
structdure. The operation transform retrieves the models from
the model base, which correspond to the entities in the pruned
entity structure, and then synthesizes them into a simulation
model for the BUF-PROC (Fig. 3 (d)). For such models to be
available in the model base, we need to specify atomic DEVS
models for the FIFO-BUF, LIFO-BUF, and PROCESSOR
and save them in the model base before applying the trans-
form. Details of the transform operation will be described in
section 5.3

3.2 Multiple Entity

The specification of multiple entity and multiple decom-
position is powerful for specifying a massively parallel com-
puter architecture with appropriate connection
topologies —such as broadcast, hypercube, or cellular —which
has been recently introduced as a special-purpose architecture.
To demonstrate the power of such specification of the parallel
architecture, let us assume that the parallel processor has a col-
lection of processing elements with one of three connections
above, each element of which is the BUF-PROC that has al-
ready been specified. Let us call the parallel processor BUF-
PROCS, meaning that BUF-PROCS consists of a collection of
BUF-PROCs.

We can build the SES for the BUF-PROCS by adding extra
specifications to the one shown in Fig. 3 (a) to create a new
root entity BUF-PROCS of type multiple entity. A multiple
aspect is added under the BUF-PROCS, and BUF-PROC is
added under the multiple aspect by the operation add-mult.
Once the three items are added, lines (2) through (15) of Fig. 3
(a) can be reused without change for the BUF-PROCS
specification. The operation add-mult-couple specifies the in-
ternal coupling scheme for the kernel models in DEVS-
Scheme in constrast to add-coupling for digraph models. It sets
the slot mult-coup-type of the item of type multiple aspect to
one of subclasses of kernel models (Kim, 1988) in DEVS-
Scheme. The resulting SES, which has a multiple entity, is
shown in Fig. 4. If the broadcast coupling is specified for the
multiple decomposition in pruning process, the operation
transform will create a broadcast model for the BUF-PROCS
consisting of one atomic BUF-PROC model. The number of
components, BUF-PROCs, can be specified in the initializa-
tion process before simulation is begun.

BUF-PROCS

i

BUF-PROC

same sub-structure
as in Fig. 3 ()

Fig. 4. System Entity Structure with Multiple Entity.

3.3 Hierarchical Model Structuring Operations

To show the power of SES hierarchical models structuring
formalism we will discuss some advanced operations. Others
can be found in (Kim, 1988).

The operation add-item is extended to the operation add-
sub-entstr. This operation adds one entity structure under the
current item of type aspect in the original entity structure.
Similarly, the operation delete-sub-entstr is an extension of the
operation delete-item. The operation delete-sub-entstr needs to
specify an item so that a subentity structure consisting of all
items under the specified item will be deleted.

The operation add-mult is extended such that the level of
hierarchy for the multiple entities to be added is arbitrary. The
operation add-mult-mult allows us to specify a hierarchical
construction of different kernel models. Fig. 5 shows the
operation that results in three levels of hierarchy of the multi-
ple entities AS, BS, and CS. To specify a different coupling
type for different kernel models, we use the operation set-mult-
coup-type. An application of the operation add-mult-mult to
modelling a multi-level hypercube architecture can be found in
(Kim and Zeigler, 1988). The operation atfach-num-mult-
children attaches the number of components under a multiple
entity to the multiple entity.

AS add-mult-mult A B C AS

I
BS

Fig. 5. Construction of Multi-level Multiple Entities.

3.4 Reuse of Pruned Entity Structures

The Entity Structure Module provides several operations for
reuse of pruned entity structures. The operation add-
spec&ents-at-leaf searches the entity structure base to find
pruned entity structures whose root names are the same as that
of a leaf entity in an entity structure. If any are found, the
operation adds a specialization under the leaf entity and adds
the pruned entities under the specialization (Fig. 6). The
operation mult-asp—~asp changes a multiple aspect in an entity

structure to an aspect by specifying the number of children at-
tached under the aspect.

The operation cut-entstr makes a non-leaf entity into a leaf
entity by cutting all entities under the non-leaf entity, con-
structing a new entity structure with the entities cut, and saving
itin the entity structure base (we shall describe entity strcuture
base in section 5.1). The root of the new entity structure is the
leaf entity under which all cut entities are connected with the
same structure that they used to be. After creating the new en-

ABC A A

ABC-dec A-dec A-dec

A B C At A2A3 A4

add-spec&ents-at-leaf

A-dec A-dec

Al A2 A3 A4

Fig. 6. Addition of Pruned Entity Structure.

tity structure, the operation asks the user to prune the created
entity structure as many times as desired. The pruned entity
structures are saved in the entity structure base for later use by
the operation add-spec&ents-at-leaf. Fig. 7 shows the operation
cut-entstr.

ABC ABC c
| cut-entstr l I M
ABC-dec ABC-dec C-dec C-spac
A B ¢ A B coci oce cf of
—
C-dec C-spac k/‘/ﬁl\‘

c4 ce2 cf cd prune C prune C .- .« pruns C

Fig. 7. Cutting Sub Entity Structure.

An entity structure can be constructed in a hierarchically
distributed manner so that its leaf entities have their respective
entity structures in the entity structure base. The entity struc-
ture so built may be merged into one entity structure. The
operation merge-entstr searches entity structures in the entity
structure base with the same root names as leaf entities of an
entity structure. If such entity structures are present in the en-
tity structure base, they replace the respective leaf entities.

4. Facilities in ESP-Scheme

SES construction, copying, and other facilities are provided
by ESP-Scheme. The facility make-entstr creates an entity
structure, whose name is the same as its root name except for a
prefix “e:”. For example, (make-entstr system) creates an entity
structure e:system with root name system. Since the entity
structure so created has only the root entity system, items
should be added as required to construct the desired entity
structure. The facility delete-entstr deletes an existing entity
structure.

The facility copy-entstr copies one entity structure to
another entity structure. For example, the facility create an en-
tity structure that has the same structure as the original one.
The facility copies a list of items and a list of branches from the
original entity structure and constructs a new entity structure.

Since a list of all entity structures is maintained by the entity
structure manager (described in section 5.2), any facility that
creates or deletes entity structures should report to the
manager about the creation and/or deletion of entity structures
so that the manager can update the list of entity structures
within it. For example, the facility rename-entstr asks the
manager to delete the original entity structure from, and add
the renamed entity structure to, the list within the manager.

5. Entity Structure Base/Model Base Management

The system entity structures represent the structure
knowledge about systems. Such system entity structures are to
be saved in the entity structure base (ENBASE) for later use. To
do so, we save an entity structure created in the current
Scheme environment into an external storage such as a disk for
later use.

5.1 Entity Structure Base

We have implemented ESP-Scheme such that it can save
entity structures in, and retrieve them from, the ENBASE by
using two new facilities, save-entstr and load-entstr. The facility
save-entstr saves an entity structure or a pruned entity structure
into the ENBASE by storing a pair consisting of a list of items
and a list of branches for the entity structure in the form of a
disk file. A file name in the ENBASE, corresponding to an en-
tity structure, is the same as its root entity name except for the
extension of the file name, which can be either “.e” for the en-
tity structure or “.p” for the pruned entity structure. The
facility load-entstr searches for a file corresponding to an entity
structure in the ENBASE, retrieves the items list and branches
list for the corresponding entity structure, and constructs the
entity structure.

5.2 Entity Structure Manager

A module entity structure manager (ESM) is designed to
manage all system entity structures in the current environment
and/or in the ENBASE. The module ESM has three local vari-
ables. The first variable is a list of entity structures either in the
ENBASE or in the current environment. The second variable is
a list of pruned entity structures either in the ENBASE or in
the current environment. The third variable is a list of both en-
tity structures and pruned entity structures in the current en-
vironment. The operations on the ESM include: show entity
structures, add entity structure, and delete entity structure.

The operation show-all:ens shows all entity structures in the
current environment and/or in the ENBASE. The operation
shows the entity structures and pruned entity structures in the
three sperate lists, as described above. The operation add en-
tity structure adds an entity structure to the list in the ESM
whenever the ESM receives a report on the creation of the en-
tity structure from the facilities as described in section 4. The
delete entity structure operation deletes an entity structure
from the list in the ESM as required by the facilities delete-
entstr OT rename-entstr.

The initialization routine of the ESP-Scheme initializes the
ESM when the ESP-Scheme is loaded. The initialization in-
cludes searching the ENBASE and setting up all lists of entity
structures in the ESM so that the user can get available entity
structures and retrieve some as required. The current ENBASE
can be moved from one place to the other as requested by the
user using change-dir. Any change in the ENBASE results in
the reinitialization of the ESM.

5.3 Transform into DEVS Models

A pruned entity structure can be synthesized into a simula-
tion model by the operation transform. As it visits each entity
in the pruned entity structure, transform calls upon a retrieval
process that searches a model corresponding to the current en-
tity. If one is found, it is used and transformation of the entity
subtree is aborted. The retrieval process proceeds by evaluat-
ing the retrieval rules, which consist of retrieval rules —pairs of
condition and retrieval action —and conflict resolution rules by
which a rule is selected if there is more than one with condi-
tions satisfied.

One rule for searching a model that corresponds to the cur-
rent entity first looks for the model in the working memory,
then in the MBASE, and finally, if the current entity is a leaf,
in the ENBASE. Before searching the model, another rule
checks the name of the current entity. If the current entity has
a base name and a non-trivial extension (the extension starts
with numbers or “&”), the base name is used as an entity name
for the retrieval process. If more than one rule is satisfied when
evaluated, a conflict resolution rule fires only one rule. We
employ context specificity — the rule with a more specific con-
dition than other rules is fired—to resolve such a conflict.
Details of retrieval rules and conflict resolution rules are avail-
able in (Kim, 1988).

If a pruned entity structure is found in the ENBASE in the
searching process, a transform is invoked and executed in a
separate Scheme environment so as not to interfere with the
current environment. Each recursive invocation can occur in a
leaf entity only.

6. Summary and Discussion

We have described an implementation of system entity
structure in Scheme, ESP-Scheme, which serves as a model
base management system for DEVS models. Our experience
with the model management system has shown that it is easier
to specify coupled models by defining the appropriate entity
structure and applying transform for model synthesis. The
transform requires existence of atomic models in the model
base defined using DEVS-Scheme.

The utility of ESP-Schem has been demonstrated in con-

* struction of several complex hierarchical models for computer

networks (Sevinc and Zeigler, 1988) and advanced computer
architectures (Kim, 1988).

The above knowledge base framework, implemented in
(Kim, 1988), intended to be generative in nature. It is a com-
pact representation scheme which can be unfolded to generate
the family of all possible models synthesizable from com-
ponents in the model base. This knowledge base framework

serves as our vehicle for research in knowledge-based system
design using variant families of design models (Rozenblit and
Zeigler, 1985; Rozenblit, 1986; Sevinc and Zeigler, 1988).

REFERENCES

Concepcion, A.I. and B.P. Zeigler “DEVS Formalism: A
Framework for Hierarchical Model Development,” IEEE
Trans. Software Engr., vol. SE-14, no. 2, pp. 228-241, Feb. 1988.

Kim, Tag Gon “A Knowledge-Based Environment for Hierar-
chical Modelling and Simulation,” Ph.D. Dissertation. Dept. of
Electrical and Computer Engr., University of Arizona, Tucson,
AZ, 1988.

Kim, Tag Gon and B.P. Zeigler “The DEVS Formalism:
Hierarchical, Modular System Specification in an Object-
Oriented Framework,” In Proc. of 1987 Winter Simulation
Conf., Atlanta, GA, 1987, pp. 559-566.

Kim, Tag Gon and B.P. Zeigler “The Class Kernel-Models in
DEVS-Scheme: A Hypercube Architecture Example,” ACM
SIMULETTER, vol. 19, no. 2, June, 1988.

Rozenblit, JW. “A Conceptual Basis for Model-Based System
Design,” Ph.D. Dissertation. Dept. of Computer Science,
Wayne State University, Detroit, MI, 1985.

Rozenblit, J.W. and Zeigler, B.P. “Concepts of Knowledge
Based System Design Environments,” In Proc. 1985 Winter
Simulation Conf., San Francisco, CA, 1985, pp. 223-231.

Rozenblit, J.W., “A Conceptual Basis for Integrated, Model-
Based System Design,” Technical Report, Dept. of Electrical
and Computer Engineering, University of Arizona, Tucson,
AZ, Jan. 1986.

Sevinc S. and B.P. Zeigler “Entity Structure Based Design
Methodology: A LAN Protocol Example,” IEEE Trans.
Software Engr., vol. SE-14, no. 3, pp. 375-383, Mar. 1988.

Zeigler, B.P. Multifacetted Modelling and Discrete Event
Simulation. London, UK and Orlando, FL: Academic Press,
1984.

Zeigler, B.P. “Hierarchical, Modular Discrete-Event Modell-
ing in an Object-Oriented Environment,” Simulation, vol, 50,
no. S, pp. 219-230, 1987.

Tag Gon Kim is a research engineer at the Environmental
Research Lab of the University of Arizona. From 1980 to 1983,
he has been a faculty in the Department of Electronics and
Communication Engineering at the National Fisheries Univer-
sity of Pusan, Korea. His research interests are in the areas of
Al, modelling and simulation, computer architectures, and ex-
pert system based real-time control system design. He received
his Ph. D. in Electrical and Computer Engineering Depart-
ment from the University of Arizona. He is a member of
IEEE, ACM, and SCS.

Tag Gon Kim :

ERLab, The University of Arizona
2601 E., Airport Dr.

Tucson, AZ 85706

(602) 741-1990

Bernard P. Zeigler is a professor of Computer Engineer at the
University of Arizona. He is the author of Multifacetted
Modelling and Discrete Event Simulation, Academic Press,
1984, and Theory of Modelling and Simulation, John Wiley,
1976. His research interests include artificial intelligence, dis-
tributed simulation, and expert system for simulation
methodology.

Bernard P. Zeigler

Dept. of Electr. and Computer Engr.
The University of Arizona

Tucson, AZ 85721

(602) 621-2108

