
Local Algorithms for Approximate Inference in
Minor-Excluded Graphs

Kyomin Jung
Dept. of Mathematics, MIT

kmjung@mit.edu

Devavrat Shah
Dept. of EECS, MIT

devavrat@mit.edu

Abstract

We present a new local approximation algorithm for computing MAP and log-
partition function for arbitrary exponential family distribution represented by a
finite-valued pair-wise Markov random field (MRF), say G. Our algorithm is
based on decomposing G into appropriately chosen small components; computing
estimates locally in each of these components and then producing a good global
solution. We prove that the algorithm can provide approximate solution within
arbitrary accuracy when G excludes some finite sized graph as its minor and G
has bounded degree: all Planar graphs with bounded degree are examples of such
graphs. The running time of the algorithm is Θ(n) (n is the number of nodes in
G), with constant dependent on accuracy, degree of graph and size of the graph
that is excluded as a minor (constant for Planar graphs).
Our algorithm for minor-excluded graphs uses the decomposition scheme of
Klein, Plotkin and Rao (1993). In general, our algorithm works with any decom-
position scheme and provides quantifiable approximation guarantee that depends
on the decomposition scheme.

1 Introduction

Markov Random Field (MRF) based exponential family of distribution allows for representing dis-
tributions in an intuitive parametric form. Therefore, it has been successful for modeling in many
applications Specifically, consider an exponential family on n random variables X = (X1, . . . , Xn)
represented by a pair-wise (undirected) MRF with graph structure G = (V,E), where vertices
V = {1, . . . , n} and edge set E ⊂ V × V . Each Xi takes value in a finite set Σ (e.g. Σ = {0, 1}).
The joint distribution of X = (Xi): for x = (xi) ∈ Σn,

Pr[X = x] ∝ exp


∑

i∈V

φi(xi) +
∑

(i,j)∈E

ψij(xi, xj)


 . (1)

Here, functions φi : Σ → R+ 4
= {x ∈ R : x ≥ 0}, and ψij : Σ2 → R+ are as-

sumed to be arbitrary non-negative (real-valued) functions.1 The two most important computa-
tional questions of interest are: (i) finding maximum a-posteriori (MAP) assignment x∗, where
x∗ = arg maxx∈Σn Pr[X = x]; and (ii) marginal distributions of variables, i.e. Pr[Xi =
x]; for x ∈ Σ, 1 ≤ i ≤ n. MAP is equivalent to a minimal energy assignment (or ground state)
where energy, E(x), of state x ∈ Σn is defined as E(x) = −H(x) + Constant, where H(x) =∑

i∈V φi(xi)+
∑

(i,j)∈E ψij(xi, xj). Similarly, computing marginal is equivalent to computing log-

partition function, defined as log Z = log
(∑

x∈Σn exp
(∑

i∈V φi(xi) +
∑

(i,j)∈E ψij(xi, xj)
))

.

In this paper, we will find ε-approximation solutions of MAP and log-partition function: that is, x̂
and log Ẑ such that: (1− ε)H(x∗) ≤ H(x̂) ≤ H(x∗), (1− ε) log Z ≤ log Ẑ ≤ (1 + ε) log Z.

1Here, we assume the positivity of φi’s and ψij’s for simplicity of analysis.

1

Previous Work. The question of finding MAP (or ground state) comes up in many important appli-
cation areas such as coding theory, discrete optimization, image denoising.Similarly, log-partition
function is used in counting combinatorial objects loss-probability computation in computer net-
works, etc. Both problems are NP-hard for exact and even (constant) approximate computation for
arbitrary graph G. However, applications require solving this problem using very simple algorithms.
A plausible approach is as follows. First, identify wide class of graphs that have simple algorithms
for computing MAP and log-partition function. Then, try to build system (e.g. codes) so that such
good graph structure emerges and use the simple algorithm or else use the algorithm as a heuristic.

Such an approach has resulted in many interesting recent results starting the Belief Propagation
(BP) algorithm designed for Tree graph [1].Since there a vast literature on this topic, we will recall
only few results. Two important algorithms are the generalized belief propagation (BP) [2] and the
tree-reweighted algorithm (TRW) [3,4].Key properties of interest for these iterative procedures are
the correctness of fixed points and convergence. Many results characterizing properties of the fixed
points are known starting from [2]. Various sufficient conditions for their convergence are known
starting [5]. However, simultaneous convergence and correctness of such algorithms are established
for only specific problems, e.g. [6].

Finally, we discuss two relevant results. The first result is about properties of TRW. The TRW
algorithm provides provable upper bound on log-partition function for arbitrary graph [3]However,
to the best of authors’ knowledge the error is not quantified. The TRW for MAP estimation has
a strong connection to specific Linear Programming (LP) relaxation of the problem [4]. This was
made precise in a sequence of work by Kolmogorov [7], Kolmogorov and Wainwright [8] for binary
MRF. It is worth noting that LP relaxation can be poor even for simple problems.

The second is an approximation algorithm proposed by Globerson and Jaakkola [9] to compute
log-partition function using Planar graph decomposition (PDC). PDC uses techniques of [3] in con-
junction with known result about exact computation of partition function for binary MRF when G is
Planar and the exponential family has specific form. Their algorithm provides provable upper bound
for arbitrary graph. However, they do not quantify the error incurred. Further, their algorithm is
limited to binary MRF.

Contribution. We propose a novel local algorithm for approximate computation of MAP and log-
partition function. For any ε > 0, our algorithm can produce an ε-approximate solution for MAP
and log-partition function for arbitrary MRF G as long as G excludes a finite graph as a minor
(precise definition later). For example, Planar graph excludes K3,3,K5 as a minor. The running
time of the algorithm is Θ(n), with constant dependent on ε, the maximum vertex degree of G and
the size of the graph that is excluded as minor. Specifically, for a Planar graph with bounded degree,
it takes ≤ C(ε)n time to find ε-approximate solution with log log C(ε) = O(1/ε). In general, our
algorithm works for any G and we can quantify bound on the error incurred by our algorithm. It is
worth noting that our algorithm provides a provable lower bound on log-partition function as well
unlike many of previous works.

The precise results for minor-excluded graphs are stated in Theorems 1 and 2. The result concerning
general graphs are stated in the form of Lemmas 2-3-4 for log-partition and Lemmas 5-6-7 for MAP.

Techniques. Our algorithm is based on the following idea: First, decompose G into small-size
connected components say G1, . . . , Gk by removing few edges of G. Second, compute estimates
(either MAP or log-partition) in each of Gi separately. Third, combine these estimates to produce a
global estimate while taking care of the effect induced by removed edges. We show that the error in
the estimate depends only on the edges removed. This error bound characterization is applicable for
arbitrary graph.

Klein, Plotkin and Rao [10]introduced a clever and simple decomposition method for minor-
excluded graphs to study the gap between max-flow and min-cut for multicommodity flows. We
use their method to obtain a good edge-set for decomposing minor-excluded G so that the error
induced in our estimate is small (can be made as small as required).

In general, as long as G allows for such good edge-set for decomposing G into small components,
our algorithm will provide a good estimate. To compute estimates in individual components, we
use dynamic programming. Since each component is small, it is not computationally burdensome.

2

However, one may obtain further simpler heuristics by replacing dynamic programming by other
method such as BP or TRW for computation in the components.

2 Preliminaries
Here we present useful definitions and previous results about decomposition of minor-excluded
graphs from [10,11].
Definition 1 (Minor Exclusion) A graph H is called minor of G if we can transform G into H
through an arbitrary sequence of the following two operations: (a) removal of an edge; (b) merge
two connected vertices u, v: that is, remove edge (u, v) as well as vertices u and v; add a new vertex
and make all edges incident on this new vertex that were incident on u or v. Now, if H is not a minor
of G then we say that G excludes H as a minor.

The explanation of the following statement may help understand the definition: any graph H with
r nodes is a minor of Kr, where Kr is a complete graph of r nodes. This is true because one may
obtain H by removing edges from Kr that are absent in H . More generally, if G is a subgraph of
G′ and G has H as a minor, then G′ has H as its minor. Let Kr,r denote a complete bipartite graph
with r nodes in each partition. Then Kr is a minor of Kr,r. An important implication of this is as
follows: to prove property P for graph G that excludes H , of size r, as a minor, it is sufficient to
prove that any graph that excludes Kr,r as a minor has property P. This fact was cleverly used by
Klein et. al. [10] to obtain a good decomposition scheme described next. First, a definition.
Definition 2 ((δ, ∆)-decomposition) Given graph G = (V,E), a randomly chosen subset of edges
B ⊂ E is called (δ,∆) decomposition of G if the following holds: (a) For any edge e ∈ E,
Pr(e ∈ B) ≤ δ. (b) Let S1, . . . , SK be connected components of graph G′ = (V, E\B) obtained by
removing edges of B from G. Then, for any such component Sj , 1 ≤ j ≤ K and any u, v ∈ Sj the
shortest-path distance between (u, v) in the original graph G is at most ∆ with probability 1.

The existence of (δ,∆)-decomposition implies that it is possible to remove δ fraction of edges so
that graph decomposes into connected components whose diameter is small. We describe a simple
and explicit construction of such a decomposition for minor excluded class of graphs. This scheme
was proposed by Klein, Plotkin, Rao [10] and Rao [11].

DeC(G, r,∆)

(0) Input is graph G = (V,E) and r,∆ ∈ N. Initially, i = 0, G0 = G, B = ∅.
(1) For i = 0, . . . , r − 1, do the following.

(a) Let Si
1, . . . , S

i
ki

be the connected components of Gi.
(b) For each Si

j , 1 ≤ j ≤ ki, pick an arbitrary node vj ∈ Si
j .

◦ Create a breadth-first search tree T i
j rooted at vj in Si

j .
◦ Choose a number Li

j uniformly at random from {0, . . . , ∆− 1}.
◦ Let Bi

j be the set of edges at level Li
j , ∆ + Li

j , 2∆ + Li
j , . . . in T i

j .
◦ Update B = B ∪ki

j=1 Bi
j .

(c) set i = i + 1.
(3) Output B and graph G′ = (V,E\B).

As stated above, the basic idea is to use the following step recursively (upto depth r of recursion):
in each connected component, say S, choose a node arbitrarily and create a breadth-first search tree,
say T . Choose a number, say L, uniformly at random from {0, . . . , ∆− 1}. Remove (add to B) all
edges that are at level L + k∆, k ≥ 0 in T . Clearly, the total running time of such an algorithm is
O(r(n + |E|)) for a graph G = (V,E) with |V | = n; with possible parallel implementation across
different connected components.

The algorithm DeC(G, r,∆) is designed to provide a good decomposition for class of graphs that
exclude Kr,r as a minor. Figure 1 explains the algorithm for a line-graph of n = 9 nodes, which
excludes K2,2 as a minor. The example is about a sample run of DeC(G, 2, 3) (Figure 1 shows the
first iteration of the algorithm).

3

G0

1 2 3 4 5 6 7 8 9

5

4

3

2

1

6

7

8

9

54 6 7 8 9321

L1
T1

G1

S1 S2 S3 S5S4

�� ���� �� �� �� �� �� ����

��

��

�
�
�
�

��

��

��

�
�
�
�

��

��

���� ���� ���� ���� ���� ���� ���� ��������

Figure 1: The first of two iterations in execution of DeC(G, 2, 3) is shown.

Lemma 1 If G excludes Kr,r as a minor, then algorithm DeC(G, r,∆) outputs B which is
(r/∆, O(∆))-decomposition of G.

It is known that Planar graph excludes K3,3 as a minor. Hence, Lemma 1 implies the following.
Corollary 1 Given a planar graph G, the algorithm DeC(G, 3,∆) produces (3/∆, O(∆))-
decomposition for any ∆ ≥ 1.

3 Approximate log Z

Here, we describe algorithm for approximate computation of log Z for any graph G. The algorithm
uses a decomposition algorithm as a sub-routine. In what follows, we use term DECOMP for a
generic decomposition algorithm. The key point is that our algorithm provides provable upper and
lower bound on log Z for any graph; the approximation guarantee and computation time depends on
the property of DECOMP. Specifically, for Kr,r minor excluded G (e.g. Planar graph with r = 3),
we will use DeC(G, r,∆) in place of DECOMP. Using Lemma 1, we show that our algorithm based
on DeC provides approximation upto arbitrary multiplicative accuracy by tuning parameter ∆.

LOG PARTITION(G)

(1) Use DECOMP(G) to obtain B ⊂ E such that
(a) G′ = (V, E\B) is made of connected components S1, . . . , SK .

(2) For each connected component Sj , 1 ≤ j ≤ K, do the following:
(a) Compute partition function Zj restricted to Sj by dynamic programming(or exhaus-

tive computation).
(3) Let ψL

ij = min(x,x′)∈Σ2 ψij(x, x′), ψU
ij = max(x,x′)∈Σ2 ψij(x, x′). Then

log ẐLB =
K∑

j=1

log Zj +
∑

(i,j)∈B
ψL

ij ; log ẐUB =
K∑

j=1

log Zj +
∑

(i,j)∈B
ψU

ij .

(4) Output: lower bound log ẐLB and upper bound log ẐUB.

In words, LOG PARTITION(G) produces upper and lower bound on log Z of MRF G as follows:
decompose graph G into (small) components S1, . . . , SK by removing (few) edges B ⊂ E using
DECOMP(G). Compute exact log-partition function in each of the components. To produce bounds
log ẐLB, log ẐUB take the summation of thus computed component-wise log-partition function along
with minimal and maximal effect of edges from B.

Analysis of LOG PARTITION for General G : Here, we analyze performance of LOG PARTI-
TION for any G. In the next section, we will specialize our analysis for minor excluded G when
LOG PARTITION uses DeC as the DECOMP algorithm.

Lemma 2 Given an MRF G described by (1), the LOG PARTITION produces log ẐLB, log ẐUB such
that

log ẐLB ≤ log Z ≤ log ẐUB, log ẐUB − log ẐLB =
∑

(i,j)∈B

(
ψU

ij − ψL
ij

)
.

4

It takes O
(|E|KΣ|S

∗|) + TDECOMP time to produce this estimate, where |S∗| = maxK
j=1 |Sj | with

DECOMP producing decomposition of G into S1, . . . , SK in time TDECOMP.

Lemma 3 If G has maximum vertex degree D then, log Z ≥ 1
D+1

[∑
(i,j)∈E ψU

ij − ψL
ij

]
.

Lemma 4 If G has maximum vertex degree D and the DECOMP(G) produces B that is (δ,∆)-
decomposition, then

E
[
log ẐUB − log ẐLB

]
≤ δ(D + 1) log Z,

w.r.t. the randomness in B, and LOG PARTITION takes time O(nD|Σ|D∆

) + TDECOMP.

Analysis of LOG PARTITION for Minor-excluded G : Here, we specialize analysis of LOG PAR-
TITIONfor minor exclude graph G. For G that exclude minor Kr,r, we use algorithm DeC(G, r,∆).
Now, we state the main result for log-partition function computation.
Theorem 1 Let G exclude Kr,r as minor and have D as maximum vertex degree. Given ε > 0, use
LOG PARTITION algorithm with DeC(G, r,∆) where ∆ = d r(D+1)

ε e. Then,

log ẐLB ≤ log Z ≤ log ẐUB; E
[
log ẐUB − log ẐLB

]
≤ ε log Z.

Further, algorithm takes (nC(D, |Σ|, ε)), where constant C(D, |Σ|, ε) = D|Σ|DO(rD/ε)

.

We obtain the following immediate implication of Theorem 1.
Corollary 2 For any ε > 0, the LOG PARTITION algorithm with DeC algorithm for constant degree
Planar graph G based MRF, produces log ẐLB, log ẐUB so that

(1− ε) log Z ≤ log ẐLB ≤ log Z ≤ log ẐUB ≤ (1 + ε) log Z,

in time O(nC(ε)) where log log C(ε) = O(1/ε).

4 Approximate MAP
Now, we describe algorithm to compute MAP approximately. It is very similar to the LOG PAR-
TITION algorithm: given G, decompose it into (small) components S1, . . . , SK by removing (few)
edges B ⊂ E. Then, compute an approximate MAP assignment by computing exact MAP restricted
to the components. As in LOG PARTITION, the computation time and performance of the algorithm
depends on property of decomposition scheme. We describe algorithm for any graph G; which will
be specialized for Kr,r minor excluded G using DeC(G, r,∆).

MODE(G)

(1) Use DECOMP(G) to obtain B ⊂ E such that
(a) G′ = (V, E\B) is made of connected components S1, . . . , SK .

(2) For each connected component Sj , 1 ≤ j ≤ K, do the following:

(a) Through dynamic programming (or exhaustive computation) find exact MAP x∗,j for
component Sj , where x∗,j = (x∗,ji)i∈Sj .

(3) Produce output x̂∗, which is obtained by assigning values to nodes using x∗,j , 1 ≤ j ≤ K.

Analysis of MODE for General G : Here, we analyze performance of MODE for any G. Later,
we will specialize our analysis for minor excluded G when it uses DeC as the DECOMP algorithm.

Lemma 5 Given an MRF G described by (1), the MODE algorithm produces outputs x̂∗ such that
H(x∗) − ∑

(i,j)∈B
(
ψU

ij − ψL
ij

) ≤ H(x̂∗) ≤ H(x∗). It takes O
(|E|KΣ|S

∗|) + TDECOMP time to
produce this estimate, where |S∗| = maxK

j=1 |Sj | with DECOMP producing decomposition of G into
S1, . . . , SK in time TDECOMP.
Lemma 6 If G has maximum vertex degree D, then

H(x∗) ≥ 1
D + 1


 ∑

(i,j)∈E

ψU
ij


 ≥ 1

D + 1


 ∑

(i,j)∈E

ψU
ij − ψL

ij


 .

5

Lemma 7 If G has maximum vertex degree D and the DECOMP(G) produces B that is (δ,∆)-
decomposition, then

E
[
H(x∗)−H(x̂∗)

]
≤ δ(D + 1)H(x∗),

where expectation is w.r.t. the randomness in B. Further, MODE takes time O(nD|Σ|D∆

)+TDECOMP.

Analysis of MODE for Minor-excluded G : Here, we specialize analysis of MODE for minor
exclude graph G. For G that exclude minor Kr,r, we use algorithm DeC(G, r,∆). Now, we state
the main result for MAP computation.
Theorem 2 Let G exclude Kr,r as minor and have D as the maximum vertex degree. Given ε > 0,
use MODE algorithm with DeC(G, r,∆) where ∆ = d r(D+1)

ε e. Then,

(1− ε)H(x∗) ≤ H(x̂∗) ≤ H(x∗).

Further, algorithm takes n · C(D, |Σ|, ε) time, where constant C(D, |Σ|, ε) = D|Σ|DO(rD/ε)

.

We obtain the following immediate implication of Theorem 2.
Corollary 3 For any ε > 0, the MODE algorithm with DeC algorithm for constant degree Planar
graph G based MRF, produces estimate x̂∗ so that

(1− ε)H(x∗) ≤ H(x̂∗) ≤ H(x∗),

in time O(nC(ε)) where log log C(ε) = O(1/ε).

5 Experiments
Our algorithm provides provably good approximation for any MRF with minor excluded graph
structure, with planar graph as a special case. In this section, we present experimental evaluation of
our algorithm for popular synthetic model.

Setup 1.2 Consider binary (i.e. Σ = {0, 1}) MRF on an n× n lattice G = (V,E):

Pr(x) ∝ exp


∑

i∈V

θixi +
∑

(i,j)∈E

θijxixj


 , for x ∈ {0, 1}n2

.

Figure 2 shows a lattice or grid graph with n = 4 (on the left side). There are two scenarios for
choosing parameters (with notation U [a, b] being uniform distribution over interval [a, b]):

(1) Varying interaction. θi is chosen independently from distribution U [−0.05, 0.05] and θij chosen
independent from U [−α, α] with α ∈ {0.2, 0.4, . . . , 2}.

(2) Varying field. θij is chosen independently from distribution U [−0.5, 0.5] and θi chosen indepen-
dently from U [−α, α] with α ∈ {0.2, 0.4, . . . , 2}.

The grid graph is planar. Hence, we run our algorithms LOG PARTITION and MODE, with decom-
position scheme DeC(G, 3, ∆), ∆ ∈ {3, 4, 5}. We consider two measures to evaluate performance:
error in log Z, defined as 1

n2 | log Zalg− log Z|; and error inH(x∗), defined as 1
n2 |H(xalg−H(x∗)|.

We compare our algorithm for error in log Z with the two recently very successful algorithms –
Tree re-weighted algorithm (TRW) and planar decomposition algorithm (PDC). The comparison is
plotted in Figure 3 where n = 7 and results are averages over 40 trials. The Figure 3(A) plots
error with respect to varying interaction while Figure 3(B) plots error with respect to varying field
strength. Our algorithm, essentially outperforms TRW for these values of ∆ and perform very
competitively with respect to PDC.

The key feature of our algorithm is scalability. Specifically, running time of our algorithm with a
given parameter value ∆ scales linearly in n, while keeping the relative error bound exactly the
same. To explain this important feature, we plot the theoretically evaluated bound on error in log Z

2Though this setup has φi, ψij taking negative values, they are equivalent to the setup considered in the
paper as the function values are lower bounded and hence affine shift will make them non-negative without
changing the distribution.

6

in Figure 4 with tags (A), (B) and (C). Note that error bound plot is the same for n = 100 (A) and
n = 1000 (B). Clearly, actual error is likely to be smaller than these theoretically plotted bounds.
We note that these bounds only depend on the interaction strengths and not on the values of fields
strengths (C).

Results similar to of LOG PARTITION are expected from MODE. We plot the theoretically evaluated
bounds on the error in MAP in Figure 4 with tags (A), (B) and (C). Again, the bound on MAP relative
error for given ∆ parameter remains the same for all values of n as shown in (A) for n = 100 and
(B) for n = 1000. There is no change in error bound with respect to the field strength (C).

Setup 2. Everything is exactly the same as the above setup with the only difference that grid graph
is replaced by cris-cross graph which is obtained by adding extra four neighboring edges per node
(exception of boundary nodes). Figure 2 shows cris-cross graph with n = 4 (on the right side).
We again run the same algorithm as above setup on this graph. For cris-cross graph, we obtained
its graph decomposition from the decomposition of its grid sub-graph. graph Though the cris-cross
graph is not planar, due to the structure of the cris-cross graph it can be shown (proved) that the
running time of our algorithm will remain the same (in order) and error bound will become only 3
times weaker than that for the grid graph ! We compute these theoretical error bounds for log Z and
MAP which is plotted in Figure 5. This figure is similar to the Figure 4 for grid graph. This clearly
exhibits the generality of our algorithm even beyond minor excluded graphs.

References
[1] J. Pearl, “Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference,” San Francisco,
CA: Morgan Kaufmann, 1988.
[2] J. Yedidia, W. Freeman and Y. Weiss, “Generalized Belief Propagation,” Mitsubishi Elect. Res. Lab., TR-
2000-26, 2000.
[3] M. J. Wainwright, T. Jaakkola and A. S. Willsky, “Tree-based reparameterization framework for analysis of
sum-product and related algorithms,” IEEE Trans. on Info. Theory, 2003.
[4] M. J. Wainwright, T. S. Jaakkola and A. S. Willsky, “MAP estimation via agreement on (hyper)trees:
Message-passing and linear-programming approaches,” IEEE Trans. on Info. Theory, 51(11), 2005.
[5] S. C. Tatikonda and M. I. Jordan, “Loopy Belief Propagation and Gibbs Measure,” Uncertainty in Artificial
Intelligence, 2002.
[6] M. Bayati, D. Shah and M. Sharma, “Maximum Weight Matching via Max-Product Belief Propagation,”
IEEE ISIT, 2005.
[7] V. Kolmogorov, “Convergent Tree-reweighted Message Passing for Energy Minimization,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 2006.
[8] V. Kolmogorov and M. Wainwright, “On optimality of tree-reweighted max-product message-passing,”
Uncertainty in Artificial Intelligence, 2005.
[9] A. Globerson and T. Jaakkola, “Bound on Partition function through Planar Graph Decomposition,” NIPS,
2006.
[10] P. Klein, S. Plotkin and S. Rao, “Excluded minors, network decomposition, and multicommodity flow,”
ACM STOC, 1993.
[11] S. Rao, “Small distortion and volume preserving embeddings for Planar and Euclidian metrics,” ACM
SCG, 1999.

Grid Cris

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure 2: Example of grid graph (left) and cris-cross graph (right) with n = 4.

7

Z Error

Z Error

(1-A) Grid, N=7

Interaction Strength

TRW

PDC

3

4

5

(1-B) Gird, n=7

Field Strength

TRW

PDC

3

4

5

Figure 3: Comparison of TRW, PDC and our algorithm for grid graph with n = 7 with respect to error in log Z. Our algorithm outperforms TRW and is
competitive with respect to PDC.

(2-A) Grid, n=100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Interaction Strength

(2-B) Grid, n=1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Interaction Strength

(2-C) Grid, n=1000

0

0.5

1

1.5

2

2.5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Field Strength
(3-A) Grid, n=100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Interaction Strength

(3-B) Grid, n=1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Interaction Strength

(3-C) Grid, n=1000

0

0.5

1

1.5

2

2.5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Field Strength

Z
 E

rro
r B

o
u

n
d

Z
 E

rro
r B

o
u

n
d

M
A

P
 E

rro
r B

o
u
n
d

M
A

P
 E

rro
r B

o
u
n
d

M
A

P
 E

rro
r B

o
u
n
d

Z
 E

rro
r B

o
u

n
d

5

20

10

5

20

10

Figure 4: The theoretically computable error bounds for log Z and MAP under our algorithm for grid with n = 100 and n = 1000 under varying
interaction and varying field model. This clearly shows scalability of our algorithm.

(4-A) Cris Cross, n=100

0

0.5

1

1.5

2

2.5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Interaction Strength

(4-B) Cris Cross, n=1000

0

0.5

1

1.5

2

2.5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Interaction Strength

(4-C) Cris Cross, n=1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Field Strength(5-B) Cris Cross, n=1000

0

0.5

1

1.5

2

2.5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Interaction Strength

(5-C) Cris Cross, n=1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Field Strength

Z
 E

rro
r B

o
u

n
d

Z
 E

rro
r B

o
u

n
d

Z
 E

rro
r B

o
u

n
d

M
A

P
 E

rro
r B

o
u
n
d

M
A

P
 E

rro
r B

o
u
n
d

M
A

P
 E

rro
r B

o
u
n
d

5

20

10

(5-A) Criss Cross, n=100

0

0.5

1

1.5

2

2.5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Interaction Strength

5

20

10

Figure 5: The theoretically computable error bounds for log Z and MAP under our algorithm for cris-cross with n = 100 and n = 1000 under varying
interaction and varying field model. This clearly shows scalability of our algorithm and robustness to graph structure.

8

Proofs

Proof of Lemma 1. This essentially follows from arguments in [10, 11] We sketch proof of the property (a)
for B being (r/∆, O(∆))-decomposition; the proof of (b) follows from Theorem 4.2 [10]. To see property (a),
consider an edge e ∈ E. If e /∈ B in the beginning of iteration 0 ≤ i ≤ r − 1, then it will be present exactly
once in a breadth-first tree, say T i

j . This edge will be chosen in Bi
j only if it is at level Li

j + k∆, k ≥ 0. The
probability of this is at most 1/∆ since Li

j is chosen u.a.r. from {0, . . . , ∆ − 1}. By union bound, it follows
that the probability that an edge is chosen in any of the r iterations is at most r/∆. This completes the proof of
Lemma 1. 2

Proof of Lemma 2. First, we prove properties of log ẐLB, log ẐUB as follows:

log ẐLB
(o)
=

K∑
j=1

log Zj +
∑

(i,j)∈B
ψL

ij

(a)
= log


 ∑

x∈Σn

exp


∑

i∈V

φi(xi) +
∑

(i,j)∈E\B
ψij(xi, xj) +

∑

(i,j)∈B
ψL

ij







(b)

≤ log


 ∑

x∈Σn

exp


∑

i∈V

φi(xi) +
∑

(i,j)∈E\B
ψij(xi, xj) +

∑

(i,j)∈B
ψij(xi, xj)





 = log Z

(c)

≤ log


 ∑

x∈Σn

exp


∑

i∈V

φi(xi) +
∑

(i,j)∈E\B
ψij(xi, xj) +

∑

(i,j)∈B
ψU

ij







(d)
=

K∑
j=1

log Zj +
∑

(i,j)∈B
ψU

ij

= log ẐUB. (2)

We justify (a)-(d) as follows: (a) holds because by removal of edges B, the G decomposes into disjoint con-
nected components S1, . . . , SK ; (b) holds because of the definition of ψL

ij ; (c) holds by definition ψU
ij and (d)

holds for a similar reason as (a). The claim about difference log ẐUB − log ẐLB in the statement of Lemma
2 follows directly from definitions (i.e. subtract RHS (o) from (d)). This completes proof of claimed relation
between bounds log ẐLB, log ẐUB.

For running time analysis, note that LOG PARTITION performs two main tasks: (i) Decomposing G using
DECOMP algorithm, which by definition take TDECOMP time. (ii) Computing Zj for each component Sj through
exhaustive computation, which takes O(|E|Σ|Sj |) time and producing log ẐLB, log ẐUB takes addition |E|
operations at the most. Since there are K components in total with max-size of component being |S∗| we
obtain that running time for this task is O(|E|KΣ|S

∗|). Putting (i) and (ii) together, we obtain the desired
bound. This completes the proof of Lemma 2. 2

Proof of Lemma 3. Assign weight wij = ψU
ij − ψL

ij to an edge (i, j) ∈ E. Since graph has maximum vertex
degree D, by Vizing’s theorem there exists an edge-coloring of the graph using at most D + 1 colors. Edges
with the same color form a matching of the G. A standard application of Pigeon-hole’s principle implies that
there is a color with weight at least 1

D+1
(
∑

(i,j)∈E wij). Let M ⊂ E denote these set of edges. That is,

∑

(i,j)∈M

(ψU
ij − ψL

ij) ≥ 1

D + 1


 ∑

(i,j)∈E

(ψU
ij − ψL

ij)


 .

Now, consider a Q ⊂ Σn of size 2|M| created as follows. For (i, j) ∈ M let (xU
i , xU

j) ∈
arg max(x,x′)∈Σ2 ψij(x, x′). For each i ∈ V , choose xL

i ∈ Σ arbitrarily. Then,

Q = {x ∈ Σn : ∀ (i, j) ∈ M, (xi, xj) = (xU
i , xU

j) or (xL
i , xL

j); for all other i ∈ V , xi = xL
i }.

Note that we have used the fact that M is a matching for Q to be well-defined.

9

By definition φi, ψij are non-negative function (hence, their exponents are at least 1). Using this property, we
have the following:

Z ≥

∑

x∈Q

exp


∑

i∈V

φi(xi) +
∑

(i,j)∈E

ψij(xi, xj)







(o)

≥

∑

x∈Q

exp


 ∑

(i,j)∈M

ψij(xi, xj)







(a)

≥ 2|M| ∏

(i,j)∈M

exp(ψL
ij) + exp(ψU

ij)

2

(b)
=

∏

(i,j)∈M

(1 + exp(ψU
ij − ψL

ij)) exp(ψL
ij)

(c)

≥
∏

(i,j)∈M

exp(ψU
ij − ψL

ij) = exp


 ∑

(i,j)∈M

ψU
ij − ψL

ij


 . (3)

Justification of (o)-(c): (o) follows since ψij , φi are non-negative functions. (a) consider the following
probabilistic experiment: assign (xi, xj) for each (i, j) ∈ M equal to (xU

i , xU
j) or (xL

i , xL
j) with prob-

ability 1/2 each. Under this experiment, the expected value of the exp(
∑

(i,j)∈M ψij(xi, xj)), which is
∏

(i,j)∈M

exp(ψij(xL
i ,xL

j))+exp(ψij(xU
i ,xU

j))

2
, is equal to 2−|M|[

∑
x∈Q exp(

∑
(i,j)∈M ψij(xi, xj))]. Now, use

the fact that ψij(x
L
i , xL

j) ≥ ψL
ij . (b) follows from simple algebra and (c) follows by using non-negativity of

function ψij . Therefore,

log Z ≥
∑

(i,j)∈M

(
ψU

ij − ψL
ij

)
≥ 1

D + 1


 ∑

(i,j)∈E

(
ψU

ij − ψL
ij

)

 , (4)

using fact about weight of M . This completes the proof of Lemma 3. 2

Proof of Lemma 4. From Lemma 2, Lemma 3 and definition of (δ, ∆)-decomposition, we have the following.

E
[
log ẐUB − log ẐLB

]
≤ E


 ∑

(i,j)∈B
(ψU

ij − ψL
ij)


 =

∑

(i,j)∈E

Pr((i, j) ∈ B)(ψU
ij − ψL

ij)

≤ δ


 ∑

(i,j)∈E

(ψU
ij − ψL

ij)


 ≤ δ(D + 1) log Z. (5)

Now to estimate the running time, note that under (δ, ∆) decomposition B, with probability 1 the G′ =
(V, E\B) is divided into connected components with diameter at most ∆ with respect to G. Since maxi-
mum vertex degree is D, it follows easily that each of these component has at most D∆ nodes. Now, the
running time bound of Lemma 2 implies the desired result. 2

Proof of Theorem 1. The justification about the estimates log ẐLB, log ẐUB follows from (r/∆, O(∆))-
decomposition property of DeC algorithm (Lemma 1) and Lemma 4. The bound on running time follows
from Lemma 4 as well. 2

10

Proof of Lemma 5. By definition of MAP x∗, we have H(x̂∗) ≤ H(x∗). Now, consider the following.

H(x∗) = max
x∈Σn


∑

i∈V

φi(xi) +
∑

(i,j)∈E

ψij(xi, xj)




= max
x∈Σn


∑

i∈V

φi(xi) +
∑

(i,j)∈E\B
ψij(xi, xj) +

∑

(i,j)∈B
ψij(xi, xj)




(a)

≤ max
x∈Σn


∑

i∈V

φi(xi) +
∑

(i,j)∈E\B
ψij(xi, xj) +

∑

(i,j)∈B
ψU

ij




(b)
=

K∑
j=1

[
max

xj∈Σ
|Sj |

H(xj)

]
+


 ∑

(i,j)∈B
ψU

ij




(c)
=

K∑
j=1

H(x∗,j) +


 ∑

(i,j)∈B
ψU

ij




(d)

≤ H(x̂∗) +


 ∑

(i,j)∈B
ψU

ij − ψL
ij


 . (6)

We justify (a)-(d) as follows: (a) holds because for each edge (i, j) ∈ B, we have replaced its effect by
maximal value ψU

ij ; (b) holds because by placing constant value ψU
ij over (i, j) ∈ B, the maximization over

G decomposes into maximization over the connected components of G′ = (V, E\B); (c) holds by definition
of x∗,j and (d) holds because when we obtain global assignment x̂∗ from x∗,j , 1 ≤ j ≤ K and compute its
global value, the additional terms get added for each (i, j) ∈ B which add at least ψL

ij amount.

The running time analysis of MODE is exactly the same as that of LOG PARTITION in Lemma 2. Hence, we
skip the details here. This completes the proof of Lemma 5. 2

Proof of Lemma 6. Assign weight wij = ψU
ij to an edge (i, j) ∈ E. Using argument of Lemma 3, we obtain

that there exists a matching M ⊂ E such that

∑

(i,j)∈M

ψU
ij ≥ 1

D + 1


 ∑

(i,j)∈E

ψU
ij


 .

Now, consider an assignment xM as follows: for each (i, j) ∈ M set (xM
i , xM

j) =

arg max(x,x′)∈Σ2 ψij(x, x′); for remaining i ∈ V , set xM
i to some value in Σ arbitrarily. Note that for

above assignment to be possible, we have used matching property of M . Therefore, we have

H(xM) =
∑
i∈V

φi(x
M
i) +

∑

(i,j)∈E

ψij(x
M
i , xM

j)

=
∑
i∈V

φi(x
M
i) +

∑

(i,j)∈E\M

ψij(x
M
i , xM

j) +
∑

(i,j)∈M

ψij(x
M
i , xM

j)

(a)

≥
∑

(i,j)∈M

ψij(x
M
i , xM

j)

=
∑

(i,j)∈M

ψU
ij

≥ 1

D + 1


 ∑

(i,j)∈E

ψU
ij


 . (7)

Here (a) follows because ψij , φi are non-negative valued functions. Since H(x∗) ≥ H(xM) and ψL
ij ≥ 0 for

all (i, j) ∈ E, we obtain the Lemma 6. 2

11

Proof of Lemma 7. From Lemma 5, Lemma 6 and definition of (δ, ∆)-decomposition, we have the following.

E
[
H(x∗)−H(x̂∗)

]
≤ E


 ∑

(i,j)∈B
(ψU

ij − ψL
ij)




=
∑

(i,j)∈E

Pr((i, j) ∈ B)(ψU
ij − ψL

ij)

≤ δ


 ∑

(i,j)∈E

(ψU
ij − ψL

ij)




≤ δ(D + 1)H(x∗). (8)

The running time bound can be obtained using arguments similar to those in Lemma 4. 2

Proof of Theorem 2. The justification about the bound on estimate H(x̂∗) follows from (r/∆, O(∆))-
decomposition property of DeC algorithm (Lemma 1) and Lemma 7. The bound on running time follows
from Lemma 7 as well. 2

12

