Run-time Monitoring and Steering based on Formal

Specifications®

Sampath Kannan, Moonjoo Kim, Insup Leef,
Oleg Sokolsky, and Mahesh Viswanathan
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA, U.S.A

August 30, 2000

Abstract

We describe the Monitoring-aided Checking and
Steering (MaCS) framework that assures the cor-
rectness of software execution at run-time. Check-
ing is performed based on a formal specification of
system requirements to ensure that the current sys-
tem behavior is in compliance with these require-
ments. When the system behavior violates these
requirements, steering is invoked to correct the sys-
tem. Our framework bridges the gap between for-
mal verification and testing. The former is used
to ensure the correctness of a design specification
rather than an implementation, whereas the latter
is used to validate an implementation. The pa-
per presents an overview of the framework and the
three scripting languages, which are used to spec-
ify what to observe from the running program, the
requirements that the program should satisfy, and
how to steer the running program to a safe state.
An important aspect of the framework is clear sepa-
ration between the implementation-dependent de-
scription of monitored objects and the high-level
requirements specification. Another salient feature
is automatic instrumentation of executable code for
monitoring and steering. This paper also describes
our current prototype implementation in Java.

*This research was supported in part by ARO DAAG55-
98-1-0393, ARO DAAG55-98-1-0466, NSF CCR-9619910,
NSF CCR-9988409, and ONR N00014-97-1-0505 (MURI).

TPOC: lee@cis.upenn.edu

1 Introduction

The design analysis and verification of distributed
and real-time systems has become an important re-
search topic over the past two decades. Important
results have been achieved, in particular, in the area
of formal verification [4]. Formal methods of system
analysis allow developers to specify their systems
using mathematical formalisms and prove proper-
ties of these specifications. These formal proofs
increase confidence in correctness of the system’s
behavior. Complete formal verification, however,
has not yet become a practical method of analysis.
The reasons for this are twofold. First, the com-
plete verification of real-life systems remains infea-
sible. The growth of software size and complexity
seems to exceed advances in verification technology.
Second, verification results apply not to system im-
plementations, but to formal models of these sys-
tems. That is, even if a design has been formally
verified, it still does not ensure the correctness of
a particular implementation of the design. This is
because an implementation often is much more de-
tailed, and also may not strictly follow the design.

One way that people have traditionally tried to
overcome this gap between design and implementa-
tion has been to test an implementation on a pre-
determined set of input sequences. This approach,
however, fails to provide guarantees about the cor-
rectness of the implementation since not all possible
behaviors can be tested. For mobile code, testing
may not even be possible, especially if such code
is downloaded on demand for execution. Conse-

quently, when the system is running, it is hard to
guarantee whether or not the system is executing
correctly.

Computer systems are often monitored for per-
formance measurement, evaluation and enhance-
ment as well as to help debugging and testing [24].
Lately, there has been increasing attention from the
research community to the problem of designing
monitors that can be used to assure the correct-
ness of a system at runtime [1, 5, 23, 19, 22, 17, 15].
These systems, however, tend to be based on infor-
mal specifications, require manual instrumentation,
or depend much on the specificity of target systems.
Our goal is to develop the monitoring, checking and
steering framework based on formal specifications,
which supports automatic instrumentation and iso-
lates the implementation-dependency of the target
system.

The overall structure of the Monitoring, Check-
ing and Steering framework is shown in Figure 1.
The user specifies the requirements of the system,
which are expressed in terms of a sequence of ab-
stract events, or trace. A monitoring script de-
scribes the mapping from observations to abstract
events. The Monitor use this script to decide when
and how to observe the system to extract abstract
events needed by the checker. The Checker veri-
fies the sequence of abstract events with respect to
the requirements specification, detects violations of
requirements and generate a meta-event as the re-
sult. The Steerer uses the sequence of meta-events
to decide how to adjust the system dynamically to
a safe state through control events.

In the next section, we decribe the framework. In
keeping with the design philosophy of the frame-
work, we have developed three languages in our
prototype implementation. The Meta-Event Def-
inition Language (MEDL) is used to express re-
quirements. MEDL is based on an extension of a
linear-time temporal logic. It allows us to express a
large subset of safety properties of systems, includ-
ing real-time properties. MEDL is described in Sec-
tion 3 Monitoring scripts are expressed in the Prim-
itive Event Definition Language (PEDL). PEDL
describes primitive high-level events and conditions
in terms of system objects. PEDL, therefore, is
tied to the implementation language of the moni-
tored system in the use of object names and types.
MEDL is independent of the monitored system.
The Steering Action Definition Language (SADL)

is used to specify how a system is affected by steer-
ing actions. Section 4 describes the prototype im-
plementation for Java as well as PEDL and SADL.

2 Overview of the Framework

The Monitoring, Checking and Steering (MaCS)
framework specifies components that are necessary
to perform run-time correctness monitoring of a
system. It is independent of the system implemen-
tation. Of course, any concrete implementation
of the framework will have to interface with the
system to ensure proper exchange of information
between the system and the monitor. In describ-
ing the framework, we carefully separate system-
dependent components from system-independent
ones. System-dependent components are presented
in the context of an existing prototype implemen-
tation of the framework.

The overall structure of the MaCS framework
is shown in Figure 1. The user specifies the re-
quirements of the system in a formal language.
Requirements are expressed in terms of high-level
events and conditions (see Section 3). In addition,
a monitoring script relates these events and condi-
tions with low-level data manipulated by the sys-
tem at run time. Based on the monitoring script,
the system is automatically instrumented to deliver
a stream of observations to the monitor. Obser-
vations are low-level data such as values of vari-
ables, method calls, etc. The monitor, also gen-
erated from the monitoring script, transforms this
low-level data into abstract events. Since detection
of abstract events is the primary function of the
monitor, we also refer to it as the event recognizer.

The reason for keeping the monitoring script
distinct from the requirements specification is to
maintain a clean separation between the system it-
self, implemented in a certain way, and high-level
system requirements, independent of a concrete
implementation. Implementation-dependent event
recognition performed by the monitor insulates the
requirement checker from the low-level details of
the system implementation. This separation also
allows us to perform monitoring of heterogeneous
distributed systems. A separate event recognizer
may be supplied for each module in such system.
Each event recognizer may process the low-level
data in a different way, and all deliver high-level

Scrip
- abstract
- o)~ [T})

Scrip

Figure 1: The Monitoring, Checking and Steering Framework

events to the checker in a uniform fashion.

The abstract events recognized by the monitor
are delivered to the run-time checker. The run-
time checker verifies the sequence of abstract events
with respect to the requirements specification and
detects violations of requirements. When a viola-
tion is detected, the checker raises an alarm. Be-
sides the identification of the violation, the checker
may be able to provide diagnostic information to
the user, based on the data collected during moni-
toring. Because of the rich content, the outputs of
the checker are called meta-events.

Run-time monitoring and checking effectively de-
tects violations of system requirements and raise
an alarm when a violation happens. The question
is what to do when such a violation is detected,
especially for those systems that cannot be reset
and restarted. For such systems the run-time state
can be adjusted to steer the system to a safe state
through feedback from the checker to the monitored
system. The design philosophy of steering follows
the general idea of the framework, namely, that the
system is mostly correct, except for a few subtle
cases. Therefore, the steerer should not try to take
over the control of the system, but help the system
to recover from the detected violation by tuning
parameters of the system. This approach captures
the limitations of control that can be performed by
a loosely coupled component such as the checker.

3 Logic for Events and Condi-
tions

The framework provides an architecture for ana-
lyzing systems formally and flexibly using runtime
information. In order to specify safety properties
that are being ensured, we distinguish observations
into events and conditions as in SCR [10]. Events
occur instantaneously during the system execution,
whereas conditions are predicates that hold for a
duration of time. The distinction between events
and conditions is very important in terms of what
the monitor can infer about the execution based on
the information it gets from the filter. The checker
assumes that truth values of all conditions remains
unchanged between updates from the monitor. For
events, the checker makes the dual assumption,
namely, that no events (of interest) happen between
updates.

Since events occur instantaneously, we can assign
to each event the time of its occurrence. Times-
tamps of events allow us to reason about timing
properties of monitored systems. A condition, on
the other hand, has duration, an interval of time
when the condition is satisfied. There is a close con-
nection between events and conditions: the start
and end of a condition’s interval are events, and
the interval between any two events can be treated
as a condition. This relationship is made precise in
the logic [14].

Based on this distinction between events and
conditions, we have a simple two-sorted logic. The
syntax of conditions (C) and events (E) is as fol-

lows:

<C> ::

c
| [<E>, <E>)
| 1 <C>
| <C> && <C>
| <C> || <C>
| <C> => <C>
<G> ::= <E> -> <Statements>
<E> ::= e
| start(<C>)
| end(<C>)
| <E> && <E>
| <E> || <E>
| <E> when <C>

Here e refers to primitive events that are reported
in the trace by the monitor; c is either a primitive
condition reported in the trace or a boolean con-
dition defined on the auxiliary variables. Guards
(G) are used to update auxiliary variables that may
record something about the history of the execu-
tion.

The models for this logic are similar to those for
linear temporal logic, in that they are sequences of
worlds. The worlds correspond to instants in time
at which we have information about the truth val-
ues of primitive conditions and events. Each world
is, therefore, labeled by the time instant it corre-
sponds to and the set of primitive conditions and
events that are true at that instant. Intuitively,
these worlds correspond to the times when the mon-
itor adds something to the trace.

The intuition in describing the semantics of
events and conditions based on such models, is that
conditions retain their truth values in the duration
between two worlds, while events are present only
at the instants corresponding to certain worlds.
The labels on the worlds give the truth values of
primitive conditions and events. The semantics for
negation (!c), conjunction (c1 && c2), disjunction
(c1 |l ¢2) and implication (c1 => ¢2) of condi-
tions is defined naturally; so !c is true when c is
false, c1 && c2 is true only when both c1 and c2
are true, c1 || c2 is true when either c1 or c2
is true, and c1 => c2 is true if c2 is true when-
ever cl is true. Conjunction (el && e2) and dis-
junction (el || e2) on events is defined similarly.
Now, since conditions are true from some time until

just before the instant when they become false, two
events can naturally be associated with a condition,
namely the instant when the condition becomes
true (start(c)) and the instant when the condi-
tion becomes false (end(c)). Any pair of events
define an interval of time, and forms a condition
[el, e2) that is true from event el until e2. The
event e when c is true if e occurs and condition c
is true at that time instant. Finally, a guard e ->
stmt, is executed when event e is true; the effect of
the execution is to update the values of the auxil-
iary variables according to the assignments given in
stmt. The formal semantics for this logic is given
in [13, 14].

Notice that some natural equivalences hold in
this logic. For example, for any condition ¢, ¢ = [
start(c), end(c)). This allows one to identify
conditions with pairs of events. Also, for conditions
cl and c2, and event e, e when cl1 when c2 = e
when cl1 && c2.

3.1 Meta Event Definition Language

(MEDL)

The safety requirements that need to be moni-
tored are written in a language called MEDL. Like
PEDL, MEDL is also based on the logic for events
and conditions. Primitive events and conditions in
MEDL scripts are imported from PEDL monitor-
ing scripts; hence the language has the adjective
“meta”.

Auxiliary Variables. The logic described
earlier has limited expressive power. For example,
one cannot count the number of occurrences of
an event, or talk about the ith occurrence of an
event. For this purpose, MEDL allows the user to
define auxiliary variables, whose values may then
be used to define events and conditions. Auxiliary
variables must be of one of the basic types in Java.
Updates of auxiliary variables are triggered by
events. For example,

RaisingGate -> {t = time (RaisingGate);}
records the time of occurrence of event
RaisingGate in the auxiliary variable t. Ex-
pression

el -> {count_el = count.el + 1;}
counts occurrences of event el. A special auxiliary
variable currentTime can be used to refer to the

current time of the system. It is set to be the
timestamp of the last message received from the
filter.

Defining events and conditions. The primi-
tive events and conditions in MEDL are those that
are defined in PEDL. Besides these, primitive con-
ditions can also be defined by boolean expressions
using the auxiliary variables. More complex events
and conditions are then built up using the various
connectives described in Section 3. These events
and conditions are then used to define safety prop-
erties and alarms.

Safety Properties and Alarms. The correct-
ness of the system is described in terms safety
properties and alarms. Safety properties are con-
ditions that must always be true during the execu-
tion. Alarms, on the other hand, are events that
must never be raised. Note that all safety proper-
ties [16] can be described in this way. Also observe
that alarms and safety properties are complemen-
tary ways of expressing the same thing. The reason
we have both of them is because some properties
are easier to think of in terms of conditions, while
others are easier to think of in terms of alarms.

The checker, which is generated automatically
from the MEDL script, evaluates the events and
conditions described in the script, whenever it reads
an element from the trace. The evaluation of in-
dividual events and conditions is fairly standard
based on the semantics of the logic. However, there
are dependencies between different events and con-
ditions. For example, an event el that is defined
in terms of an auxiliary variable that is updated by
event e2, must be evaluated after e2 and the vari-
able have been updated. Hence, the checker must
evaluate the events and conditions in a consistent
order. In our implementation we use a DAG data
structure that implicitly encodes this dependency
and has additional information that allows for fast
evaluation of the events and conditions. Details of
this algorithm can be found in [13].

Example. We illustrate the use of MEDL using
a simple but representative example. The exam-
ple is inspired by the railroad crossing problem,
which is routinely used as an illustration of real-
time formalisms [9]. The system is composed of a

import event OpenGate, CloseGate;
import condition Gate_Down;
//Declaration of auxilliary variables
var float lastClose;
var float currentTime;
//Safety properties
property GateClosing =
[CloseGate when !'Gate_Down,
OpenGate || start(Gate_Down))
=> lastClose + 30 > currentTime;
//Rules for updating auxilliary variables
CloseGate ->

{lastClose = time(CloseGate); }

Figure 2: A sample MEDL script

gate that can open and close, taking some time to
do it, trains that pass through the crossing, and
a controller that is responsible for closing the gate
when a train approaches the crossing and opening it
after it passes. The common specification approach
is to assume an upper bound on the time necessary
for the gate to open or close. In reality, however,
mechanical malfunctions may result in unexpect-
edly slow operation of the gate. A timely detection
of such a violation lets the train engineer stop the
train before it reaches the crossing. In this exam-
ple, we monitor the controller of the gate, using
the requirement that the gate is down within 30
seconds after signal CloseGate is sent, unless signal
OpenGate is sent before the time elapses. Precisely,
we check that if there is a signal CloseGate, not fol-
lowed by either signal OpenGate or completion of
gate closing, is present in the execution trace, then
the time elapsed since that signal is less than 30.

The correctness requirement, for the gate is given
in the MEDL script shown in Figure 2. The time of
the last occurrence of event CloseGate is recorded
by the auxiliary variable lastClose. The require-
ment uses the events and conditions imported from
the monitoring script and states that if there was
a CloseGate event at the time when the gate was
not down, which was not followed by either event
OpenGate or condition Gate Down becoming true,
then the time allotted for gate closing has not
elapsed yet.

4 Java MaCS

A prototype of the framework has been imple-
mented and tested on a number of examples.
The prototype is targeted towards monitoring and
checking of programs implemented in Java. Java
has been chosen as the target implementation lan-
guage because of the rich symbolic information that
is contained in Java class files, the executable for-
mat of Java programs. This information allows us
to perform the required instrumentation easily and
concentrate on the more fundamental aspects of the
monitoring and checking framework implementa-
tion. Figure 3 shows the overall structure of the
Java-based MaCS prototype.

The PEDL language of the prototype allows the
user to define primitive events in terms of the
objects of a Java program: updates of program
variables (fields of a class or local variables of a
method) and method calls. Automatic instrumen-
tation guarantees that all relevant updates are de-
tected and propagated to the event recognizer.

The prototype uses interpreters for PEDL and
MEDL. Each interpreter includes a parser for the
respective language and works on a parsed version
(the abstract syntax tree) of a script. The MEDL
interpreter is the run-time checker. It accepts prim-
itive events sent by the event recognizer and, af-
ter each primitive event, re-evaluates all events and
conditions described in the MEDL script that may
be affected by this event and raises alarms if nec-
essary. If a steering action is invoked in response
to an alarm, the run-time checker sends the corre-
sponding message to the system. The PEDL inter-
preter is the event recognizer. It accepts the low-
level data sent by the instrumented program and,
based on the definitions in the monitoring script,
detects occurrence of the primitive events and de-
livers them to the run-time checker. In addition,
the PEDL interpreter produces the instrumenta-
tion data that is used to automatically instrument
the system.

The MaCS instrumentation is based on JTREK
class library [12], which provides facilities to ex-
plore a Java class file and insert pieces of bytecode,
preserving integrity of the class. During instrumen-
tation, the instrumentor detects updates to moni-
tored variables and calls to monitored methods and
inserts code to send a message to the event recog-
nizer. The message contains the name of the called

method and its parameter values, or the name of
the updated variable and its new value. Each mes-
sage contains a time stamp that can be used in
checking of real-time properties. In addition, if
steering is to be performed, the instrumentor in-
serts the additional code at the positions prescribed
by the steering conditions. The code tests the flag
for action invocations and makes calls to the injec-
tor to execute the action.

The parser for SADL produces two components:
1) a list of actions together with their conditions
in the form that can be used by the instrumentor;
2) a new class, Injector, which is responsible for
communication with the run-time checker. When
the system is started, the injector is loaded into the
virtual machine of the monitored system. At run
time, when a steering action happens, the injector
receives a message from the checker and sets a flag
to indicate that the steering action has happened.
The bodies of the steering actions are also repre-
sented in the prototype as methods of the Injector
class.

During system start-up, the interpreters for
PEDL and MEDL are run together with the sys-
tem, either on the same computer or elsewhere on
the network. Connections between the system and
the interpreters are established during the system
initialization.

We give a brief overview of the three languages,
PEDL, MEDL, and SADL, used to describe what
to observe in the program, the requirements the
program must satisfy, and how to steer the running
program, respectively. These languages are based
on the logic for events and conditions described in
Section 3.

Primitive Event Definition Lan-
guage (PEDL)

PEDL is the language for writing monitoring
scripts. The design of PEDL is based on the fol-
lowing two principles. First, we encapsulate all
implementation-specific details of the monitoring
process in PEDL scripts. Second, we want the pro-
cess of event recognition to be as simple as possible.
Therefore, we limit the constructs of PEDL to allow
one to reason only about the current state in the
execution trace. The name, PEDL, reflects the fact
that the main purpose of PEDL scripts is to define
primitive events of requirement specifications.

4.1

Steering script Program Monitoring script Requirements
(SADL) (Java byte code) (PEDL) (MEDL)
SADL PEDL MEDL
parser parser parser
Instrumentation Instrumentation O MaCware
data data
[> run-time
dataflow
Instrumentor T
—= compile-time
dataflow
Java virtual| machine parsed
MEDL
Instrumented
Program
Injector ‘ Eel Checker

|

recognizer

Figure 3: Java-based MaCS prototype

Monitored Entities. PEDL scripts can refer to
any object of the target system. This means that
declarations of monitored entities are by necessity
specific to the implementation language of the sys-
tem. In the current prototype which is based on
Java, values of fields of an object, as well as of lo-
cal variables of a method, and method calls can be
monitored. Examples of monitored entities’ decla-
rations are given in Figure 5.

Defining Conditions. Primitive conditions in
PEDL, are constructed from boolean-valued ex-
pressions over the monitored variables. An example
of such condition is

condition TooFast =
Train.Position().speed > 100.

In addition to these, we have primitive condition
InM(f). This condition is true as long as the ex-
ecution is currently within method f. Complex
conditions are built from primitive conditions us-
ing boolean connectives.

Defining Events. The primitive events in PEDL
correspond to updates of monitored variables, and

calls and returns of monitored methods. Each event
has an associated timestamp and may have a tuple
of values.

The event update(x) is triggered when variable
z is assigned a value. The value associated with
this event is the new value of x. Events StartM(f)
and EndM(f) are triggered when control enters to
and return from method f, respectively. The value
associated with StartM is a tuple containing the
values of all arguments. The value of an event EndM
is a tuple that has the return value of the method,
along with the values of all the formal parameters
at the time control returns from the method. Be-
sides these three, we have one other primitive event
which is ToM(£). This is also triggered when con-
trol returns from a method £, but has as its value a
tuple that contains the return value of the method,
and the values of the arguments at the time of
method invocation. This event allows one to look
at the input-output behavior of a method, and is
needed if one wants to program check some numer-
ical computation. Notice that event ToM(f) is the
only event to violate our second design principle,
namely that the operation of the event recognizer
is to be based only on the current state.

class GateController {
public static final int GATE_UP
public static final int GATE_DOWN
public static final int IN_TRANSIT 2;
int gatePosition;
public void open() { ... }
public void close() { ... }

non
= O

};
Figure 4: Implementation of the gate controller

All the operations on events defined in the logic
can be used to construct more complex events from
these primitive events. In PEDL, we also have two
attributes time and value, defined for events. As
mentioned in Section 3, events have associated with
them attribute values, and the time of their oc-
currence, and these can be accessed using the at-
tributes time and value. time(e) gives the time
of the last occurrence of event e, while value(e)
gives the value associated with e, provided e oc-
curs. time (e) refers to the time on the clock of the
monitored system (which may be different from the
clock of the monitor) when this event occurs.

Example. Continuing with the railroad cross-
ing example, we illustrate the use of PEDL. Fig-
ure 4 shows a fragment of the gate controller im-
plemented as a Java class. The state of the gate
is represented as variable gatePosition, which
can assume constant values GATE_UP, GATE_DOWN,
or IN_TRANSIT. The controller controls the gate by
means of methods open() and close(). For sim-
plicity, we assume that there is only one instance
of class GateController in the system.

We need to observe calls to methods open()
and close(), and the state of the gate. The fol-
lowing PEDL script introduces high-level events
OpenGate, CloseGate and condition Gate Down.

4.2 A Language for Steering Actions
(SADL)

Steering scripts let the user specify steering actions
and control the moment when a steering action is
executed, ensuring its effectiveness. This is done by
means of steering conditions associated with each
action. After a steering exception is raised by the

export event OpenGate, CloseGate;
export condition Gate_Down;
//Monitored Methods
monmeth void GateController.open();
monmeth void GateController.close();
//Monitored variables
monent int GateController.gatePosition;
//Definition of conditions
condition Gate_Down =
(GateController.gatePosition ==
GateController.GATE_DOWN) ;
//Definition of Events
event OpenGate =
StartM(GateController.open()) ;
event CloseGate =
StartM(GateController.close());

Figure 5: A sample PEDL script

checker, its execution is delayed until its condition
is satisfied. Steering conditions can be either static
or dynamic. Static conditions are fully evaluated
during instrumentation, while dynamic conditions
depend on run-time information. Dynamic condi-
tions provide for finer control of action invocations.
On the other hand, additional effort to evaluate the
conditions at run time can adversely affect perfor-
mance of the system. In the current prototype, only
static conditions are implemented.

To specify steering actions, we designed a spe-
cial scripting language SADL (Steering Action
Definition Language). The steering scripts writ-
ten in SADL specify how the system objects are
affected by a steering action. Figure 6 shows a sam-
ple script, taken from a study in steering of artificial
physics algorithms [8]. In the example, a pattern
of particles is being formed by applying forces of
attraction and repulsion between the particles. If a
problem is discovered, the checker steers the system
by manipulating the force of repulsion.

The script consists of two main sections: declara-
tion of steered objects (that is, system objects that
are involved in steering) and definition of steering
actions where the declared objects are used. Since
steering is performed directly on the system ob-
jects, SADL scripts are by necessity dependent on
the implementation language of the target system.
Since the MaCS prototype implementation aims at
systems implemented in Java, SADL scripts used
in the prototype are also tied to Java.

steering script mav

steered objects
MAV:air;
Point MAV:position;

Air

steering action controlRepulsion(boolean tf)
= { call (MAV:air).setRepulse(tf); }
before write MAV:position;

end

Figure 6: A sample steering script

Steering entities. The entities involved in steer-
ing can be fields and methods of Java classes as
well as local variables of methods. In the example,
the steered entity is the Air object, a repository of
the algorithm parameters shared by all particles.
In addition, the variable representing position of a
particle is used in the specification of the steering
action.

Defining steering actions. The second section
of the steering script defines steering actions and
specifies steering conditions. An action can have a
set of parameters that are computed by the checker
and passed to the system together with the action
invocation. The body of an action is a collection
of statements, each of which is either a call to a
method of the system or an assignment to a system
variable. In the example, the steering action calls a
method that controls repulsion between particles,
and is allowed to happen every time the position of
a particle is about to be updated.

Invocation of steering actions in MEDL
scripts. In addition to a steering script, the re-
quirement specification language is extended to
provide for invocation of steering actions. An ac-
tion is invoked in response to an occurrence of an
event or an alarm. Figure 7 presents a fragment
of the MEDL script of the artificial physics exam-
ple. It shows the declaration of the steering ac-
tion controlRepulsion, imported from the steer-
ing script, and the alarm noPattern that is raised
by the checker when it detects a violation of the
pattern formation. The definition of the alarm is

ReqSpec mav

import action controlRepulsion(boolean);

alarm noPattern = ...;

noPattern -> { invoke controlRepulsion(true); }

end

Figure 7: Action invocation in the MEDL script

rather complex and is omitted for clarity. When
the alarm is raised, the steering action is invoked
with the true value of its parameter, which sus-
pends repulsion between particles and triggers the
process of restoring the pattern.

5 Related Work

The “behavioral abstraction” approach to monitor-
ing was pioneered by Bates and Wileden [1]. Al-
though their approach lacked formal foundation, it
provided an impetus for future developments. Sev-
eral other approaches pursue goals that are similar
to ours. The work of [5] addresses monitoring of a
distributed bus-based system, based on a Petri Net
specification. Since only the bus activity is moni-
tored, there is no need for instrumentation of the
system. [20] generates a monitor for real-time re-
active system based on a tabular requirement spec-
ification. The monitor watches over a pair of input
and output of the system. The authors of [23] also
consider only input/output behavior of the system.
In our opinion, the instrumentation of key points
in the system allows us to detect violations faster
and more reliably, without sacrificing too much per-
formance. The test automation approach of [19]
is also targeted towards monitoring of black-box
systems without resorting to instrumentation. In
contrast, we aim at using the MaCS framework be-
yond testing, during real system executions. Sankar
and Mandel have developed a methodology to con-
tinuously monitor an executing Ada program for
specification consistency [22]. The user manually
annotates an Ada program with constructs from
ANNA, a formal specification language. Mok and
Liu [17] proposed an approach for monitoring the

violation of timing constraints written in the speci-
fication language based on Real-time Logic as early
as possible with low-overhead. The framework we
describe in this paper does not limit itself to any
particular kind of monitored properties. In [15],
an elaborate language for specification of moni-
tored events based on relational algebra is pro-
posed. Instrumentation of high-level source code is
provided automatically. Collected data are stored
in a database. Since the instrumentation code per-
forms database queries, instrumentation can signif-
icantly alter the performance of a program.

A large body of related research work concen-
trates on automated generation of test oracles from
the requirements. A general methodology for doing
this is discussed in [21], together with examples in
Real Time Interval Logic (RTIL) and Z. In [2] a
trace analysis tool for LOTOS requirements is de-
scribed, while [7] describes a similar tool for Estelle
requirements. Generating test oracles for Graphi-
cal Interval Logic (GIL) is discussed in [6, 18]. An
equivalent problem for a safe fragment of Linear
Temporal Logic is put forth in [11]. This fragment
is expressively similar to MEDL. We note that the
MaCS framework gives more than just a test oracle
for a given specification. Its ability to generate di-
agnostic information and provide feedback the the
system in case of requirement violations makes it a
more general tool.

The simulation and monitoring platform MT-
Sim [3], based on the graphical real-time specifi-
cation language Modechart, is similar in its intent
to MaCS, however, we are not as tied to a fixed
specification formalism.

6 Conclusions

This paper describes the Monitoring-aided Check-
ing and Steering (MaCS) framework which is de-
veloped to assure the correctness of execution at
run-time and to perform dynamic correction of sys-
tem behavior by steering actions. Monitoring and
checking is performed based on a formal specifica-
tion of system requirements, and is use to detect
violations of safety properties in the observed ex-
ecution of the monitored system. Steering is in-
tegrated with monitoring and checking to put the
system back to a safe state. The MaCS framework
is a step towards bridging the gap between verifi-

10

cation of system design specifications and valida-
tion of system implementations in a high-level pro-
gramming language. The former is desirable but
yet impractical for large systems, while the latter
is necessary but informal or incomplete.

There are several issues that need further work.
For example, we would like to understand bet-
ter the theoretical basis for steering; in particular,
what problems can be resolved by means of steer-
ing, what is the right way to reason about steering,
to convince ourselves that steering will have the de-
sired effect. The current prototype system for Java
is available at www.cis.upenn.edu/~rtg/macs,
and will serve as an important vehicle in exploring
the possibilities and shortcomings of our approach.
We are currently conducting several case studies in
monitoring and steering of systems, and we expect
to gain much experience from them. We also plan
to extend the prototype implementation to support
distributed systems written in Java.

References

[1] P.C. Bates and J.C. Wileden. High-level
debugging: The behavioral abstraction ap-
proach. J. Syst. Software, 3(255-264), 1983.

[2] G.v. Bochmann, R. Dssouli, and J.R. Zhao.

Trace analysis for conformance and arbitration

testing. IEEE Transactions on Software Engi-

neering, 15(11):1347-1356, November 1989.

[3] Monica Brockmeyer, Farnam Jahanian, Con-

stance Heitmeyer, and Bruce Labaw. A flex-

ible, extensible environment for testing real-
time specifications. In Proceedings of the IEEE

Real-Time Technology and Applications Sym-

posium (RTAS), 1997.

[4] Edmund M. Clarke and Jeannette M. Wing.

Formal methods: State of the art and fu-

ture directions. ACM Computing Surveys,

28(4):626-643, December 1996.

[5] Michel Diaz, Guy Juanole, and Jean-Pierre

Courtiat. Observer - a concept for for-

mal on-line validation of distributed systems.

IEEE Transactions on Software Engineering,

20(12):900-913, December 1994.

[6]

[9]

[10]

[11]

[12]

[13]

[14]

Laura K. Dillon and Q. Yu. Oracles for check-
ing temporal properties of concurrent systems.
In Proceedings of the 2nd ACM SIGSOFT
Symposium on Foundations of Software Engi-
neering (SIGSOFT’94), volume 19, pages 140—
153, December 1994. Proceedings published as
Software Engineering Notes.

S.A. Ezust and G.v. Bochmann. An automatic
trace analysis tool generator for estelle speci-
fications. Computer Communication Review,
25(4):175-184, October 1995. Proceedings of
ACM SIGCOMM 95 Conference.

Diana Gordon, William Spears, Oleg Sokol-
sky, and Insup Lee. Distributed spatial con-
trol and global monitoring of mobile agents.
In Proceedings of the IEEE International Con-
ference on Information, Intelligence, and Sys-
tems - ICIIS’99, to appear, November 1999.

C. Heitmeyer and D. Mandrioli, Eds. Formal
Methods for Real-Time Systems. Number 5 in
Trends in Software. John Wiley & Sons, 1996.

Constance Heitmeyer, Alan Bull, Carolyn
Gasarch, and Bruce Labaw. Scr*: A toolset
for specifying and analyzing requirements. In
Proceedings of COMPASS, 1995.

L. J. Jagadeesan, A. Porter, C. Puchol, J. C.
Ramming, and L.G.Votta. Specification-based
testing of reactive software: Tools and ex-
periments. In Proceedings of the Interna-

tional Conference on Software Engineering,
May 1997.

Java Technology Center, Compaq Corp.
Compaq JTrek . Online documentation:
http://www.digital.com/java/download/jtrek/.

Moonjoo Kim, Mahesh Viswanathan, Hanéne
Ben-Abdallah, Sampath Kannan, Insup Lee,
and Oleg Sokolsky. A framework for run-
time correctness assurance of real-time sys-
tems. Technical Report MS-CIS-98-37, Uni-
versity of Pennsylvania, 1998.

I. Lee, S. Kannan, M. Kim, O. Sokolsky, and
M. Viswanathan. Runtime assurance based on
formal specifications. In Proc. Int. Conf. on
Parallel and Distributed Processing Techniques
and Applications, 1999.

11

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Yingsha Liao and Donald Cohen. A spec-
ificational approach to high level program
monitoring and measuring. IEEE Transac-
tions on Software Engineering, 18(11):969-
979, November 1992.

Z. Manna and A. Pnueli. The Temporal Logic
of Reactive and Concurrent Systems. Springer-
Verlag, 1992.

Aloysius K. Mok and Guangtian Liu. Efficient
run-time monitoring of timing constraints. In
IEEFE Real-Time Technology and Applications
Symposium, June 1997.

T.O. O’Malley, D.J. Richardson, and L.K.
Dillon. Efficient specification-based test ora-
cles. In Second California Software Symposium
(CS5°96), April 1996.

J. Peleska. Test automation for safety-critical
systems: Industrial application and future de-
velopments. In FME’96: Third International
Symposium of Formal Methods Europe, vol-
ume 1051 of LNCS, pages 39-59, 1996.

D. K. Peters and D. L. Parnas. Requirements-
based monitors for real-time systems. In IS-
STA’00: International Symposium on Soft-
ware Testing and Analysis, 2000.

D.J. Richardson, S. Leif Aha, and T.O.
O’Malley. Specification-based oracles for reac-
tive systems. In 14th International Conference
on Software Engineering, May 1992.

Sriram Sankar and Manas Mandal. Concur-
rent runtime monitoring of formally specified
programs. In IEEE Computer, pages 32 —41,
March 1993.

T. Savor and R. E. Seviora. An approach
to automatic detection of software failures in
real-time systems. In IEEFE Real-Time Tech-
nology and Applications Symposium, pages 136
—146, June 1997.

Beth A. Schroeder. On-line monitoring: A tu-
torial. In IEEE Computer, pages 72 — 78, June
1995.

