Hybrid Modeling and Simulation Methodology based on DEVS formalism

*Seong Yong Lim and **Tag Gon Kim

*Converged LAN Team, Router Technology Department, ETRI, KOREA
*+ Department of Electrical Engineering and Computer Science, KAIST, KOREA
E-mail: *seylim@etri.re.kr, **tkim@ee.kaist.ac.kr

Keywords: Hybrid System, Interoperable Simulation,
DEVS formalism, HLA/RTI, E/A Converter, A/E Converter

Abstract

We consider a hybrid system as a mixture of continuous
systems and discrete event systems. This paper proposes a
framework for hybrid systems modeling and simulation. For
modeling a hybrid Discrete Event Systems Specification
(HDEVS) formalism is proposed, which is based on the
hierarchical, modular DEVS (Discrete Event Systems
Specification) formalism. For simulation, an interoperable
simulation environment is developed, in which an existing
continuous system simulator and a discrete event simulator
are interoperated on HLA/RTI. Effectiveness of the proposed
hybrid systems modeling/simulation framework is
demonstrated through simulation of a hybrid system for
mobile robot control. The developed hybrid simulation
environment interoperated with MATLAB, for continuous
system components, and DEVSim++, for discrete event
system components, through HLA/RTI and produced correct
simulation results.

1. Introduction

As a complex system contains both continuous and discrete
event models new modeling/simulation methodologies for
such systems are required. A hybrid system is defined as a
mixture of continuous systems and discrete event systems[1].
Some modeling methods for such systems have been
proposed, but a little on simulation environment has been
developed. Modeling methods based on a combined
formalism, which has both discrete event and continuous
features, and associated simulation frameworks are being
proposed [2][3]. A main limitation of the proposed
methods/frameworks is that they cannot use existing
simulators in different types, which are interoperated during
simulation. The objective of this paper is to develop a
modeling and simulation methodology for hybrid systems,
which overcome the limitation.

This paper proposes a formal modeling and simulation
framework for hybrid systems as shown in Figure 1. For
modeling a hybrid Discrete Event Systems Specification
(HDEVS) formalism is proposed, which is based on the
hierarchical, modular DEVS (Discrete Event Systems
Specification) formalism. For simulation, an interoperable
simulation environment is developed, in which an existing
continuous system simulator, MATLAB, and a discrete event
simulator, DEVSim++, are interoperated on HLA/RTL

[Modeling with Hybrid Systems Specification]

1 H
|

Hybrid DEVS Models ﬁ

 Simulation Engines

Simulation Engines

Figure 1. Overview of the proposed Framework

2. Hybrid Systems Specification

Zeigler's DEVS formalism [2] supports hierarchical modular
descriptions of discrete event systems. The Hybrid Discrete
Event Systems Specification (HDEVS) proposed in this
paper is based on the DEVS formalism. More specially,
discrete event modeling employs the DEVS formalism;
continuous system modeling uses differential equations
formalism. Hybrid system modeling supports communication
between two formalisms based on the proposed concept of
A/E(Analog-to-Event) conversion and E/A(Event-to-Analog)
conversion. To be consistent with the DEVS formalism, the
HDEVS formalism defines two model types, atomic and
coupled, for both continuous and discrete event modeling.

2.1 Atomic Models

A basic model, called an atomic model, has specifications for
the dynamics of the models. Atomic modeling for discrete

event systems is based on atomic model specification in the
DEVS formalism; that for continuous systems employs
differential equations in a set theoretic form. The HDEVS
formalism defines two types of atomic models, DEVS-AM
and CAM for discrete event systems and continuous systems,
respectively.

Def.1 DEVS-AM [2]

DEVS - AM =<X disc? Ydi.\-c ’ Sdisc 4 6ext ? 5

int ?

Ata>
with the following constraints:

X, ' Set of discrete event inputs
Y, : Setof discrete event outputs
S Set of discrete event states

6, OXX,
6, :Q— S, :Internal transition function
A:Q—>7Y, : Output function

@:S>R;.: Time advance function

— S, : External transition function

Def.2 Continuous Atomic Model (CAM)

CAM =< X

with the following constraints:
X, Set of continuous inputs

Y .S 60 A >

cont >~ cont * ™ cont * Y cont * ““cont

Y, : Set of continuous outputs

S, - Set of continuous states

o dism (1) = 8 (S (1), X oy, (1), 1) StAIE transition
t
function
Aeons * Yo @) = A, (S, (), X, (£),1) : Output function

Detial explaination of DEVS-AM and CAM can be found in [21,[4].

2.2 Coupled Models

A coupled model provides the method of assembly of several
atomic and/or coupled models to build complex systems
hierarchically. As with atomic models specification, the
HDEVS formalism defines two types of coupled models,
DEVS-CM and CCM for discrete event systems and
continuous systems, respectively.

Def.3 DEVS-CM [2]

DEVS —CM =< X yise» Yoo {DM , }, EIC, EOC, IC, Select >
with the following constraints:

Xdi.sc

Y, : Set of discrete event outputs

: Set of discrete event inputs

{DM ,} Set of DEVS component models
EIC c X,,_xY X, External input coupling relation

EOC C YV, xY,, " External output coupling relation
ICCYYxYX, : Internal coupling relation
i j

Select : 2!} — ¢ — pM , : Tie-breaking function

Def.4 Continuous Coupled Model (CCM)

CCM =<X_, .Y, {CM,},EIC,EOC,IC >

with the following constraints:
X__ : Set of continuous inputs

Y, : Set of continuous outputs

cont

{CM ,} : Set of CAM component models
EIC c X xYX,: External input coupling relation
= “*cont N i

EOC ¢ YY,xY,,, : External output coupling relation

IC c YY xY X .- Internal coupling relation
= .t .
! J

X gisce—>]

Xon—!

Figure 2. Structure of Hybrid Model

Hybrid Model(HM), is a class of coupled models which has
CCM, CAM, DEVS-CM, DEVS-AM and other HM models
as component models. A HM shown in Figure 2 is defined as
follows:

Def.5 Hybrid Model (HM) [4]

HM =< X,Y,{M ,},EIC,EOC,IC, Select,CF >

with the following constraints:
X=X, uX,, :Setof hybrid inputs
Y=Y, uY_, :Setof hybrid outputs
{M,;}={DM,} U{CM } U{HM }: Set of hybrid

components
EIC c X xY X, * External input coupling relation
EOC c YY xY : External output coupling relation
IC c YY xY X .- Internal coupling relation

= . . J
i j

Select : 2!+ — ¢ — M ,: Tie-breaking function
CF =<{f,;},{gzy} > : Conversion Functions

Detial explaination of DEVS-CM,CCM and HM can be found in
[2],[4].

2.3 Conversion Functions

In simulation of hybrid systems a discrete output from a
discrete event model can be transmitted as a continuous input
to a continuous model or the other way around. CF, in
definition of HM, is proposed as interface for information
conversion in such a case. The interface is defined in two
types of functions: E/A(Event-to-Analog) converter for
converting an discrete event output to a continuous input,
and A/E(Analogy-to-Event) converter for converting a
continuous output to a discrete event input. Formally, the
two converters as shown in Figure 3 are defined as follows.

Figure 3. Conversion Function
E/A Converter (left) and A/E Converter (right)

Def. 6 Conversion Functions

CF =<{fui}’{gui}>

with the following constraints:
fug: 1 Q — 2% A/E converter

e ZOQ E/A converter

where X: Set of events
Q: Set of piecewise continuous segments.

Note that an analogy segment may produce multiple output events
simultaneously in A/E conversion. The A/E converter generates an
event based on predefined rules. An example of such rules is: when
the segment changes its region or crosses a predefined point such as
Zero.

3. Hybrid Simulation Algorithm: Interoperable
Simulation

3.1 Concept of Pre-Simulation

Hybrid simulation interoperates a discrete event simulator
with a continuous simulator as simulation proceeds. Such
interoperation requires data exchange as well as simulation
time synchronization between the two simulators. Data
exchange can be done by E/A converter and/or A/E
converter explained earlier in section 2.3. Simulation time
synchronization requires a chronological order of logical
times between continuous and discrete event simulations. To

synchronize the two simulation times with different time
advance mechanisms the concept of pre-simulation for
continuous simulation is introduced. Pre-simulation is
continuous simulation only within a predefine time window
to unify the time advance mechanism between two
simulations. Such window is generated by the hybrid
simulation algorithm to be explained later.

S,

disc f———

Figure 4. Concept of Pre-Simulation

Time advance mechanism of the event scheduling concept in
discrete event simulation is shown in the left side of Figure
4. The number shown in the Figure is a chronological
sequence of the simulation process. The pre-simulation
concept is shown in the right side of Figure 4, where a
discrete event model(top) and a continuous model(bottom)
are interoperated. We briefly explain simulations
interoperation based on the pre-simulation concept. The
scheduler first computes a next event time of the discrete
event model. It then creates a time window between the
current simulation time and the next event time, and sends
the window to the continuous simulator. The continuous
simulator proceeds simulation either until an output event is
found within the time window or until the time window is
completed. If an output event is found, it would be sent to the
discrete event simulator as an input event. When received the
input event, the discrete event simulator executes its
transition at the current time and schedules another next
event time. If, however, no event is found, the continuous
simulator sends a null output to the discrete event simulator.
When received the null input, the discrete event simulator
executes its state transition at the scheduled next event time
and schedules another next event time. Simulation
interoperation is achieved by iterating the sequence
explained above until no next event time is found. Note that
pre-simulation guarantees an output event of continuous
simulator within a time window.

[Theorem 1] Simulators interoperation using pre-simulation
is deadlock free.

[proof] Informal outline

Interoperable communication between discrete event and
continuous simulators is done by discrete events. Discrete
event simulator can receive an event from continuous
simulator within a pre-defined time window, which is the
next event time of itself. Continuous simulator proceeds its
simulation either by events received from discrete event
simulator or by pre-simulation.

3.2 Simulators Algorithm

Abstract simulator concept associated with the DEVS
formalism characterizes what has to be done to execute
atomic or coupled models with hierarchical structure[5].
Interoperable simulators based on such abstract simulator
concept imports simulation capability of continuous models
simulation. DEVS simulator can simulate discrete event
models, and any differential equation solver can simulate
basic behavior of continuous models.

Hybrid Coordinator (HC) is an abstract simulator, or
simulation algorithm, associated with hybrid models. It
manages a discrete event simulator and a continuous
simulator by means of message passing based on the
concepts of A/E- E/A converters and pre-simulation. Figures
5 and 6 show a state diagram and pseudo code of the HC
algorithm, respectively. Figures 7 and 8 show a state diagram
and pseudo code of a continuous simulator algorithm,
respectively. Note that state diagrams show all input/output
messages of the HC and the continuous simulator, and
pseudo code explains transitions between states in such
diagrams. Simulation algorithms for discrete event
simulators are found in [5].

! (e,t;)-message
! (pre,ty)-message
! (*,ty)-messag

? (y.t)-message
? (done,ty)-message
2 (e,t)-message

? (done,ty)-message ! (e,t;)-message

? (e,t,)-message ? (done.LN)»messag

! (pre,ty)-message

? (y,t)-message

Figure 5. State Diagram of HC Algorithm

4. Hybrid Simulation Environment: Interoperation
of MATLAB and DEVSim++

4.1 Continuous Simulator: MATLAB

MATLARB integrates mathematical computing, visualization,
and a powerful language to provide a flexible environment
for continuous systems modeling and simulation. The open

architecture makes it easy to use MATLAB and its
companion products to explore data, create algorithms, and
create custom tools that provide early insights and
competitive advantages [6].

Hybrid Coordinator:
* tg => current simulation time
*ty —> next event time
main loop
ifto =ty
send (x,t,) to its discrete child
else if to <ty
send (pre,t,) to its continuous child
endif
until end of loop

When receive (done,t’) from its discrete child
ty =ty

When receive (e,t’) from its continuous child through fae
te=t’
if e I= NULL
send (e.t) to its discrete child
endif
When receive (y,t)
gFA(y,t) converting event to analog
End Hybrid Coordinator

Figure 6. Pseudo Code of HC Algorithm

? (pre,ty)-messages

Figure 7. State Diagram of CS Algorithm

Continuous Simulator:
+ t, => last simulation end time

When receive (pre,t,) from parent
simulate from time t,
if an event e found at time t’
L=y
send (e, t,) to parent
return
endif
until time ty
L=ty
send (NULL, t) to parent
End Continuous Simulator

Figure 8. Pseudo Code of CS Algorithm

4.2 Discrete Event Simulator: DEVSim++

DEVSim++ realizes the DEVS formalism for modeling and
associating abstract simulator concepts for simulation, all in
C++. For modeling, DEVSim++ provides the modeler with
facilities for specification of atomic models and coupled
models in a diagraph form within the DEVS framework. For
simulation, DEVSim++ implements hierarchical scheduling

algorithms in abstract simulators of atomic and coupled
models [7].

4.3 Interoperation of CS/DES Simulators

This paper develops two types of interoperable simulation
environment; centralized and distributed. HDEVSim++, the
centralized environment, is an extension of DEVSim++. As
shown in Figure 9 HDEVSim++ adds a continuous
simulator, MATLAB, to DEVSim++ in which the two
simulators communicates through A/E and E/A converters in
C++. On the other hand, the distributed environment of
HDEVSimHLA exploits the concept of conservative time
synchronous mechanism in High Level Architecture (HLA)
proposed by Defense Modeling and Simulation Office
(DMSO) [8] (Figure 10). HDEVSimHLA has a common
time management arbiter, communicating bus called Run-
Time Infrastructure (RTI) on which two existing simulators,
DEVSim+ and MATLAB, are interoperable.

Conversion Functions

« matlab open request Differential
« pre-simulation with Equations

initial value and

maximal advance time MATLAB

* next event time
« final state value
Hybrid DEVS
Models

HDEVSim++

Figure 9. Centralized Hybrid Simulation Environment

Differential
Equations

Figure 10. Distributed Hybrid Simulation Environment

5. Example: Mobile Robot Control System

A hybrid system, a mobile robot control system consists of
eight continuous systems and two discrete event systems. A
disabled person controls a wheelchair and moves to the
destination along the street with landmarks. Figure 11 shows
a hybrid model of the system which contains discrete event

models, continuous models and conversion functions[9].
DES models consist of Human Operator that controls Mobile
Robot (as electromotive wheel chair) with Joystick and an
environment of landmarks information. Continuous models
consist of Mobile Robot that outputs his/her positions and
velocity and Joystick.

—— DES ——

Figure 11. Mobile Robot Control System

5.1 Continuous Systems Modeling

Continuous systems are modeled in SIMULINK of the
MATLAB Graphics User Interface. Figure 12 shows a CS
models in which every block is modeled as differential
equations [4].

Two Motors

Figure 12. Continuous Model in Simulink

5.2 Discrete Event Systems Modeling

Discrete event systems are modeled in the DEVSim++
environment. In Figure 13, Human Operator receives input
events as ordering direction forms from Environment and
gives control signal about elaborately stick movement to
Joystick. Environment receives crossing events of landmark
from Mobile Robot and gives the next movement
information to Human Operator.

7]

g=e®

Tland.

"*@,_@."M SRS Vo o o= e o e e v b) [
? land.

i
[CRNT

Figure 13. Discrete Event Model in DEVSim++

5.3 A/E and E/A Converters

Figure 14 shows A/E converters and E/A converters. If the
position of the Mobile Robot received from a continuous
model is crossed a landmarks point, an A/E converter creates
an occurrence event to the Environment. On the other hand,
an E/A converter generates a piecewise continuous segment
as an output for Joystick mapped to an input event from
Human Operator.

CF =<{fur: } {820} >

Saso(Ro, R,) = land (x,, y,)
Saso(R,R,) =land(x,, y,)
Sago(Ry, Ry) =land (x,, y,)
Jaro(Ry, R) = land(x,,y,)
Saro(Ry, Ry) =land (x5, y;)
Faeo(Rs, Rg) = land (x5, y5)
faeo(Res Ry) =land (x;, y,)

X ™

8arole_V(V)) = vXu(t—e_vitime)
8raole _W(W)) = wXxu(t —e_ wtime)

Figure 14. A/E and E/A Converters

5.4 Hybrid Simulation Results

Simulation results are the same in the two types of
environments. One such result is shown in Figure 15 where a
wheelchair moves along with landmarks. HDEVSim++ and
HDEVSimHLA employ different number of machines for
simulation. HDEVSim++ uses only one machine for both
MATLAB and DEVSim++; HDEVSimHLA maps
MATLAB and DEVSim++ in different machines
communicating through IP network.

. , “; i
right turn point |

Figure 15. Simulation Result

6. Conclusions

This paper proposed the HDEVS formalism for modeling of
hybrid systems, and developed associated modeling and
simulation environments in two types, centralized and
distributed. Both environments allows modelers to use
existing simulators in different types, which can interoperate

during simulation either through process communication in
the centralized environment or through RTI in the distributed
one. Such interoperation is achieved through two types of
interfaces, an A/E converter for Analog-to-Event conversion
and an E/A converter for Event-to-Analog conversion.

An example of modeling and simulation for a mobile robot
hybrid system shows effectiveness of the proposed modeling
methodology and power of the developed environments.

References

[1] Panos J. Antsaklis, James A. Stiver and Michael D. Lemmon,
“Interface and Controller Design for Hybrid Control Systems”,
Hybrid Systems II, Springer, pp. 462-492, 1994,

[2] Bernard P. Zeigler, Herbert Prachofer and Tag Gon Kim, Theory
of Modeling and Simulation 2™ edition, Academic Press, 2000.

[3] Thomas A. Henzinger and Pei-Hsin Ho, “HYTech: The Cornell
Hybrid TECHnologyTool”, Hybrid Systems II, Springer,
pp-265-293, 1994.

[4] Seong Yong Lim, “Hybrid Systems Modeling and Simulation
Methodology based on DEVS formalism”, MS Thesis, KAIST,
2001.

[5] Zeigler B. P., Multifaceted Modeling and Discrete Event
Simulation, Academic Press, 1984.

[6] MathWorks, Using MATLAB Manual, 1998,
ftp:://ftp.mathworks.com.

[7] Tag Gon Kim, DEVSim++ User’s Manual, 1994,
ftp://sim.kaist.ac.kr/pub/

[8] DMSO, RTI 1.3-Next Generation Programmer’s Guide Version
3.2, 2000.

[9] Chong-Hui Kim, "Implementation of Distributed Mobile
Control Robot System using COTS Systems", MS Thesis,
KAIST, 2001.

Biography

Seong Yong Lim received the B. S. and M. S. degrees in Electrical
Engineering in 1999 and 2001, respectively, from the Korea
Advanced Institute of Science and Technology (KAIST), Daejeon,
Korea. His research interests include hybrid systems, network
router/switch systems and distributed simulation.

Tag Gon Kim is Professor of Electrical Engineering & Computer
Science, KAIST. His research interests include discrete event
systems, modeling methodology, and simulation environment. He is
a senior member of IEEE and SCS, and a member of ACM and Eta
Kappa Nu. He is a co-author (with B.P. Zeigler and H. Praechofer)
of Theory of Modeling and Simulation(2™ Edition.), Academic
Press, 2000. He is the Editor-in-Chief for the Methodology Section
of Simulation: Transactions of SCS, International.

