OBJECT-ORIENTED MEMORY MANAGEMENT IN DEVSiM++

Young C. Kim, Kyung S. Ham, and Tag G. Kim

Department of Electrical Engineering
Korea Advanced Institute of Science and Technology
373-1 Kusong-Dong, Yusong-Ku, Taejon 305-701, KOREA

ABSTRACT

DEVSIM++ is an object-oriented simulation environ-
ment which implements Zeigler’s modular, hierarchi-
cal DEVS formalism and associated abstract simulator
concepts in C++. Due to the object-oriented mod-
eling, size of simulation models in DEVSIM++ was
bounded to memory size. This paper deals with imple-
mentation of an object-oriented memory management
scheme as an extension of DEVSIM++. The scheme
is based on concepts of persistence data in database
management systems. Effectiveness and performance
for the extended DEVSIM++ environment will be ex-
amined.

1 INTRODUCTION

DEVSIM++ is an object-oriented simulation environ-
ment which implements Zeigler’s modular, hierarchi-
cal DEVS formalism and associated abstract simulator
concepts in C++ (Kim and Park, 1992). Since objects
are alive during simulation, size of simulation models
is bounded to memory size. Our experience of model-
ing simulation in DEVSIM++ showed that such size
limitation is a major obstacle to perform large-scale
simulation. To overcome the limitation, a memory
management scheme should be developed.

This paper deals with design and implementation
of an object-oriented memory management scheme in
DEVSIM++. The scheme is based on concepts of per-
sistence data in database management systems. We
develop a persistent, object-oriented environment as
an extension of C++4. Such environment supports
program-level data persistence which is transparent
to users. Specifically, the environment maintains per-
sistence of objects created in DEVSIM++ while leav-
ing classes defined in DEVSIM++ in memory. For
rapid prototyping, we decided to use the EXODUS
Storage Manager (Exodus Project 1991, 1992) to store
and manipulate persistent DEVSIM++ objects. The

storage system manages the allocation of storage for
persistent objects both on disk and in memory. It
also controls the transfer of objects between disk and
memory.

The paper is organized as follows. In section 2 we
introduce DEVS formalism and DEVSIM++. Section
3 describes an object-oriented memory management
scheme and persistency of models. Finally in section
4 we summarize implementation and experiments of
the extended DEVSIM++.

2 DEVS FORMALISM AND DEVSIM+4-+

A set-theoretic formalism, the DEVS formalism (Zei-
gler 1984, Concepcion 1988) provides the semantics
that specifies discrete event models in a hierarchical,
modular form. With the semantics, one must specify
1) the basic models, from which larger ones are built,
and 2) how these models are connected together in
hierarchical fashion. A basic model, called an atomic
model (or atomic DEVS), has specifications for the dy-
namics of the model. An atomic model M is specified
as:

M =< X,S, Y, 6int,6erh Ayta >

X : input events set;

S : sequential states set;

Y : output events set;

bint : S — S : internal transition function;

bezt : @ x X — S : external transition function;
Q= {(s,e) | s€S,0<e<ta(s)}:
total state of M;

A:S — Y : output function;

ta : S — Real : time advance function.

The second form of the model, called a coupled
model (or coupled DEVS), tells how to couple (con-
nect) several component models together to form a
new model. This latter model can be employed as a

Object-Oriented Memory Management in DEVSIM + + 671

component in a larger coupled model, thus giving rise
to the construction of complex models in a hierarchical
fashion. A coupled model DN is defined as:

DN =< D, {Mi}, {Ii}, {Z,"j}, SELECT >

D : component names set;
for each 7 in D,
M; : DEVS for component i in D;
I; : set of influencees of i;
for each j in I;,
Zij Y = X
i-to-j output translation function;
SELECT : subsets of D — D :
tie-breaking selector.

Detail descriptions for the definitions of the atomic
and coupled models within the DEVS semantics can
be found in Zeigler (1984, 1990).

DEVSIM++ is a realization of the DEVS formalism
and the associated simulation algorithms in C4++. It
also supports facilities for input and output data anal-
ysis. For modeling, DEVSIM++ provides the mod-
eler with facilities for the specification of atomic mod-
els and coupled models within the DEVS framework,
called Atomic.models and Coupled-models, respec-
tively. For atomic models, the modeler needs to spec-
ify transition functions, time advance functions, and
output functions: Components, coupling schemes, and
selection functions must be specified for coupled mod-
els. For simulation, DEVSIM++ implements hierar-
chical scheduling algorithms in the abstract simulators
of atomic and coupled models. Concepts and imple-
mentation of such simulators can be found in Zeigler
(1984).

DEVSIM++ employs the NIH class library (NI-
HCL) (Gorlen et al. 1990). The class Object, the root
class of NIHCL, supports general facilities for oper-
ations and queries on objects, including class name,
class description, class comparison, and others. The
universal class in DEVSIM++ is the class Entities and
is defined as a subclass of the class Object. Figure 1
shows the class hierarchy in DEVSIM++, similar to
that of DEVS-Scheme (Zeigler 1990, Kim 1990, 1991).

Models and Processors, the main subclass of En-
tities in DEVSIM++, provide the basic constructs
needed for modeling and simulation. The class
Models is further specialized into the major classes
Atomic_.models and Coupled_models that realize
atomic models and coupled models in the DEVS for-
malism, respectively.

Atomic_models realize the atomic level of the
DEVS formalism. For that, four instance variables for

-[Atomic_models
Coupled_models

Simulators
Processors ‘E Root_coordinator

Coordinators

Models

Entities

Object

- Messages
— Couplings
- State_vars
- Elem_states
- Integer

|- Float

|- String

- User-defined class

Figure 1: Class Hierarchy in DEVSIM++.

the Atomic_models class, int_transfn, ext_transfn,
output fn, and time_advancefn, are provided to real-
ize the internal transition function, the external tran-
sition function, the output function, and the time ad-
vance function of an atomic DEVS model, respectively
(Kim 1992). Thus, the development of an atomic
DEVS model is to define the four DEVS functions fol-
lowed by assigning them to the corresponding instance
variables.

Coupled-models is the realization of the coupled
models definition in the DEVS formalism which em-
bodies the hierarchical construction of modular mod-
els. A subclass of Coupled-models, Digraph_models,
specifies a coupled DEVS model in a digraph form.
To do so, the class provides facilities for specifying
component models and their coupling scheme. Thus,
the development of a coupled DEVS model is to spec-
ify component models and their coupling scheme us-
ing facilities provided by the class. A coupled DEVS
model, so developed in a modular form, can be used
to construct a yet higher coupled model, resulting in
hierarchical construction of modular models.

The class Processors, which implements the ab-
stract simulator concepts associated with the DEVS
formalism, is a virtual device capable of interpret-
ing models’ dynamics. Processors has three special-
izations: Simulators for interpreting semantics for
Atomic_models; Cordinators for interpreting seman-
tics for Coupled-models; Root_co-ordinators for han-
dling overall simulation.

672 Kim, Ham, and Kim

{ Atomic_models

Models Coupled_models
!- Entities Simulators
Processors { Root_coordinator
Object — Coordinators
I~ Messages
~ Couplings
- State_vars
-~ Elem_states

Figure 2: Class Hierarchy in Extended DEVSIM++.

3 MEMORY MANAGEMENT SCHEME

The EXODUS Storage Manager provides basic man-
agement support for objects, files, and transactions
(Exodus Project 1992, 1993). A storage object is an
uninterpreted container of bytes which can range in
size from a few bytes to hundreds of megabytes. Stor-
age objects are referenced with object identifiers or
OIDs. Objects are allocated in a file, which is simply
a collection of related storage objects. Files are used
mainly for scans and for clustering related storage ob-
Jects. Transactions include concurrency control and
recovery.

There are “Integer”, “Float”, “String”, and user-
defined classes as classes for state variables for DEVS
atomic models. To provide the DEVS object-oriented
memory management facility, an abstract class “per-
sistent” is defined as a subclass of the root class “Ob-
Ject” in the DEVSIM++ class hierarchy. It would
manage almost all aspects of persistence for any de-
rived class such that that’s data member is an instance
of another class or that has virtual functions. But
currently the derived class can not have the following
members:

- A pointer to an object of classes for state variables.
- A reference to an object of classes for state variables.

So, we plan to develop the small-sized native storage
manager that can be more optimized in performance
and size for DEVSIM++ library than the EXODUS
Storage Manager. Using such new storage manager,
the above problems will be solved.

For simulation, DEVSIM ++ implements hierarchi-
cal scheduling algorithms in abstract simulators of

MP

PEL

GEN BUF | PROC SINK

Figure 3: Block Diagram of an Example.

co_ordinator C:MP
coupled model MP

co_ordinator C:MP TR

DISK PAGE #1

Assumption : The size of one page = 32 bytes

Figure 4: A Simulation Tree and Objects Clustering
for the Previous Example.

atomic and coupled models defined by the modelers.
In other word, the simulation instances of models are
constructed into a tree structure. The leaf nodes of
such a simulation tree are instances of atomic models
and the internal nodes are coupled models. To over-
come the limitation of memory size, all state variables
of atomic models are stored in disk as storage objects
of the EXODUS Storage Manger. To obtain good per-
formance, it is closely related to how to cluster objects.
In current implementation state variables are stored
into disk in the depth-first-search oder. This means
almost all of atomic models that have the same par-
ent coupled model can be clustered into the same disk
page. Figures 3 and 4 shows an example.

Objects needed for simulation are cached into mem-
ory by dereferencing through their OIDs. The replace-
ment policy of the unpinned pages is performed using
the LRU scheme.

In the side effect of the object-oriented memory
management, all states of simulation models are stored
as persistent objects if states of coupled models are
saved as persistent objects. So, we modified the ab-

Object-Oriented Memory Management in DEVSIM + + 673

stract simulator of DEVSIM++ library to save those
of coupled models. After the termination of any sim-
ulation due to system failure, user interrupt, or user
modeling etc, the simulation can be restarted at the
valid state just before the last termination without
resimulating from its initial state. This feature can be
used for inci mental simulation of large-scale system.

4 IMPLEMENTATION AND
MENTS

EXPERI-

Implementation of the memory management scheme
described in section 3 is underway. Simulation ex-
periments will be performed for validation and per-
formance measurement for the extended DEVSIM++
environment. First, we will validate persistency for
simulation models within the environment. Next, we
will measure performance of the environment. Persis-
tency is very useful for large-scale simulation to save
the system state from failures and resume the saved
state to restart simulation from the point just before
such failures occurred. System failure will be simu-
lated by keyboard interrupts and power offs during
simulation. When restarting simulation, we will check
if the system state before and after such failures be
the same. Performance of the extended DEVSIM++
will depend on the ratio of model objects size to mem-
ory size. We shall measure overall simulation time for
a given size of model objects with the memory buffer
size varied. We shall also measure overall simulation
time for a given memory buffer size with the model
objects size varied.

REFERENCES

A.L Concepcion and B.P. Zeigler, 1988, “DEVS for-
malism: A framework for hierarchical model de-
velopment”, IEEE Trans. on Software Eng., Vol.
14, No. 2, pp 228-241.

Exodus Project, 1991, “EXODUS Storage Manager
Architectural Overview”.

Exodus Project, 1992, “Using the EXODUS Storage
Manager V 2.2”.

Keith E. Gorlen, Sanford M. Orlow and Perry S.
Plexico, 1990, “Data Abstraction and Object-
Oriented Programming in C++”, John Wiley &
Sons, Ltd.

Tag G. Kim and B.P. Zeigler, 1990, “The DEVS-
Scheme Simulation and Modelling Environment”,
Chapter 2 in Knowledge Based Simulation:

Methodology and Application (eds: Paul A. Fish-
wick and Richard B. Modjeski) Springer Verlag.,
Inc., pp. 20-35.

Tag G. Kim, 1991, “Hierarchical Development of
Model Classes in The DEVS-Scheme Simulation
Environment”, Ezpert Systems with Applications,
Vol. 3, No. 3, pp. 343-351.

Tag G. Kim and Sung B. Park, 1992, “The DEVS
Formalism: Hierarchical Modular Systems Spec-
ification in C++", Proc. of the 1992 FEuropean
Stmulation Multiconference, pp. 152-156.

B.P. Zeigler, 1984, Multifacetted Modeling and Dis-
crete Event Simulation: Academic Press, Or-
lando, FL.

B.P. Zeigler, 1990, Object-Oriented Simulation With
Hierarchical, Modular Models : Intelligent Agents
and Endomorphic Systems Academic Press, Inc.

