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Abstract—We consider a wireless network of n nodes that
communicate over a common wireless medium under some
interference constraints. Our work is motivated by the need
for an efficient and distributed algorithm to determine the n’
dimensional unicast capacity region of such a wireless network.
Equivalently, given a vector of end-to-end rates between various
source-destination pairs, we seek to determine if it can be
supported by the network through a combination of routing and
scheduling decisions.

This question is known to be NP-hard and hard to even
approximate within n'~°(!) factor for general graphs. In this
paper, we first show that the whole n> dimensional unicast
capacity region can be approximated to (1 + ¢) factor in
polynomial time, and in a distributed manner, whenever the Max
Weight Independent Set (MWIS) problem can be approximated
in a similar fashion for the corresponding topology. We then
consider wireless networks which are usually formed between
nodes that are placed in a geographic area and come endowed
with a certain geometry, and argue that such situations do
lead to approximations to the MWIS problem (in fact, in a
completely distributed manner, in a time that is essentially
linear in n). Consequently, this gives us a polynomial algorithm
to approximate the capacity of wireless networks to arbitrary
accuracy. This result hence, is in sharp contrast with previous
works that provide algorithms with at least a constant factor
loss. An important ingredient in establishing our result is the
transient analysis of the maximum weight scheduling algorithm,
which can be of interest in its own right.

I. INTRODUCTION

Wireless networks are becoming the architecture of choice
for designing many of the emerging communication networks
such as mesh networks to provide infrastructure in metro
areas, peer-to-peer networks, and to provide infrastructure free
interactions between handheld devices in popular locations
like shopping malls or movie theatres, mobile ad-hoc network
between vehicles for IVHS, etc. In all such settings, in essence
we have a wireless network of m nodes where nodes are
communicating over a common wireless medium using a
certain standard communication protocol (e.g. IEEE 802.11
standard). Under any such protocol, transmission between a
pair of nodes is successful iff none of the nearby or interfering
nodes are transmitting simultaneously. Any such interference
model is equivalent to an independent set interference model
over the graph of interfering communication links.

The work of R. Gummadi and R. Sreenivas was supported in parts by a
Vodafone Graduate Fellowship, NSF CNS-0437415, NSF ECCS-0426831 and
NSF CNS-0834409. The work of K. Jung and D. Shah was supported in parts
by NSF CAREER CNS-0546590 and NSF CCF-0728554

Devavrat Shah
devavrat@mit.edu

Ramavarapu Sreenivas
rsree@illinois.edu

A key operational question in any such network (e.g. a mesh
network in a metro area) is that of determining whether a given
set of end-to-end rates between various source destination
pairs is simultaneously supportable by the network. That is,
one wishes to determine the n? dimensional unicast capacity
region of such a wireless network of n nodes. An algorithm for
determining this feasibility must be distributed (i.e. operation
at a node utilizes only the information of the node’s neighbors)
and very efficient in order to be implementable.

However, an algorithm for determining feasibility of end-to-
end rates has to explore over exponentially large space of joint
routing and scheduling decisions under the wireless network
interference constraints. This makes the question of designing
such an efficient, distributed algorithm potentially very hard.
Indeed, this question is known to be NP-hard and hard to
approximation within n’ factor (for some § > 0) for general
graphs [12].

But since wireless networks are usually formed between
nodes that are placed in a geographic area, they possess a
natural geometry. Therefore, a natural question arises: is it
possible to design efficient algorithms for checking end-to-
end rate feasibility for a wireless network arising in practice
(i.e. possessing geometry)?

A. Our contributions

As the main contribution of this paper we provide an answer
to the above question by providing a polynomial algorithm
to determine feasibility. Next, we describe various challenges
faced, our approach and innovations.

From Single Hop to Multi hop Membership Oracles: In
a previous work [11], we designed algorithms for single-hop
feasibility for networks with geometry. In principle, a natural
approach would be to make use of these single hop feasibility
algorithm as an oracle repeatedly to derive an algorithm
for checking feasibility of end-to-end rates for a multihop
network. For the bounded density case, our algorithm provides
g-approximation in polynomial in n time and exponential in
1/e for any € € (0,1). To use this as an oracle for end to
end feasibility involves iterating over various routing choices
along with the corresponding ‘optimal” scheduling choices that
are implicitly determined by the single hop oracle. Firstly,
this would require an efficient algorithm to determine good
routing choices, given the scheduling choices (the other way
is implicitly given by the single hop rate feasibility algorithm),



which is very non trivial. Further, another issue while invoking
the single hop oracle multiple times is that it is a conditional
approximation on the feasibility vector. We do note however
that, in the case where nodes are restricted to one dimension
(slab problem) which has a polynomial LP characterization in
[11], as we show it trivially extends to solve the multi-hop
membership problem exactly. This is discussed in section V
towards the end.

Approach: In view of the above concerns, we take a
different approach to directly tackle the multi-hop problem,
which could be useful in a practical sense, provided the
network graph allows for an efficient approximation to the
MWIS problem. This approximate MWIS algorithm will be
used towards a joint scheduling and routing algorithm over
the interference communication network in a specific manner.
A well known result of Tassiulas and Ephremides [13], says
that if the given end-to-end rates are feasible, then a network
with i.i.d. arrivals of mean equal to these rates (and of bounded
second moment) under the maximum weight based combined
scheduling and routing policy will lead to a stable Markov
process of the queue lengths. This suggests the following
vaguely stated approach for a feasibility test of end to end
rates: Simulate a network with i.i.d. arrivals of means equal
to the given end-to-end rates using an approximate MWIS
algorithm. Hopefully, if the queues remain “stable” then the
rates are approximately feasible or else they are approximately
infeasible. This is the basic idea behind our approach. How-
ever, in order to make this approach ‘feasible’, we need to
deal with a host of non-trivial issues that are stated below:

o Firstly, even if one had an efficient exact MWIS algo-
rithm, its popular analysis (as in [14]) does not provide
explicit absolute bounds on the queue lengths at any
given time instant. This is because the bounds on queue-
sizes are are only known existentially by the notion of
stability and we need to characterize them explicitly in
order to be able to design an algorithm.

o The queue length bounds obtained by using the stan-
dard Foster’s criterion and moment bounds are only
statements on the equilibrium distribution. This means
that in order to establish an absolute bound, one might
need to estimate the rates of convergence and we would
have a polynomial algorithm if this convergence is quick
enough. We take somewhat novel approach where we
iterate analysis with the design along with the use of
real valued queue lengths with deterministic fractional
arrivals. By doing so, the queue-size vector does not
remain a Markov chain on integer state space but, our
direct analysis leads to bounds that are sufficient for
our purposes and leads to the approximate correctness
property of the algorithm that we propose.

o The MWIS is an NP-Hard problem even to approximate
within n!=°(") factor for general network topology.
However, a wireless networks formed by nodes placed in
a geographic area leads to a topology that has geometric
properties. For such geometric wireless networks, the

MWIS does have distributed and efficient approxima-
tion algorithms. We build upon such an approximate
MWIS algorithm to get an algorithm that remains a good
approximation for end-to-end rate problem.

B. Related work

In past decade or so, the emergence of wireless network
architectures have led various researchers to take two different
approaches to design efficient algorithms for checking feasi-
bility of end-to-end rates.

The first approach is inspired by the possibility of deriving
explicit simple bounds. Specifically, starting work by Gupta
and Kumar [3] significant effort has been put in to derive
simple scaling laws for large random wireless network for
random traffic demands. In essence, this result implies that
under such a random regular setup, per source supportable
rate scales like 1/y/n in the network of n nodes. Thus,
if such a random setting is a good approximation of the
network operating in practice, then one can utilize this 1/v/n
formula to determine approximate feasibility. The possible
effectiveness of such an approach has led to an extensive
study of a related notion of transport capacity, introduced in
[3], over the past decade. For example, see works by [2], [5],
[7] and many others. We also refer an interested reader to a
comprehensive survey by Xue and Kumar [15]. More recently,
a complete information theoretic characterization of random
traffic demand were obtained for random node placement by
Ozgur, Tse and Leveque [10] and for arbitrary node placement
by Niesen, Gupta and Shah [9].

The second approach is based on determining the exact or
approximate feasibility for a given arbitrary wireless network
operating under a specific interference model. The question
of determining feasibility of end-to-end rates is equivalent
to checking feasibility of a solution of a certain Linear
Program (LP). However, this LP is very high dimensional
(due to exponentially many routing and scheduling choices)
and hence exact solutions like simplex algorithm for this LP
are inefficient. Various authors have provided approaches to
design approximation algorithm with constant factor loss for
such an LP with the constant factor loss being a function of
the degree of nodes in the interference graph.

In general, given a specific network and a vector of end-to-
end rates between various source destination pairs, there are
no polynomial-time (approximation) algorithms to determine
their feasibility. Of course, this is not feasible for an arbitrary
graph as it is NP-hard. In [11], the problem of determining
feasibility of rates when sources wishes to send data to
their neighbors directly was considered, i.e. the problem of
feasibility of rates for a single hop network. A polynomial
time approximation was developed for this problem when the
network possesses geometry. As explained earlier, the single
hop rate feasibility algorithm does not lead to feasibility of
end-to-end rate feasibility primarily due to additional free-
dom of routing over exponentially many choices. It is also
important to note that the multi-hop routing version is not a
generalization of the single hop problem. This is because, even



if we consider all source destination pairs as 1-hop neighbors,
it is possible that the rates are feasible through a multi-hop
routing scheme while the trivial single hop routing itself is
infeasible. In that sense, the two problems, though related, are
in fact, not generalizations of one another.

C. Organization

The paper is organized as follows. In section II, we intro-
duce the basic notation and define the problem, and state our
basic result, which will be proved in section III by assuming
an approximate MWIS algorithm. We then go on to describe
the MWIS algorithm, and the restricted network graphs for
which this can become feasible. Finally, in section V, we
talk about network graphs where nodes are distributed in the
plane while bounded in one dimension (with arbitrary second
dimension), and extend the single hop rate feasibility to end
to end feasibility.

II. PROBLEM STATEMENT AND MAIN RESULT

Consider a wireless network on n nodes defined by a
directed graph G = (V, E) with |V| = n,|E| = L. For
any e € E, let a(e), B(e) denote respectively the origin and
destination vertices of the edge e. The edges denote potential
wireless links, and only the subsets of the edges that do not
interfere can be simultaneously active. From now on, bold font
indicates vectors or matrices. Let

S ={ec{0,1} : e is the adjacency vector
for a non-interfering subset of E'} @))

Note that S is the collection of the independent sets of E by
considering interference among e; € E and ey € E as the
edge between them. Given a graph G = (V, E) on n nodes
and node weights given by w = (wy,...,w,) € R, a subset
x of V is said to be an independent set if no two vertices of
x have common edge. let Z(G) be set of all independent sets
of G. A maximum weight independent set x* is defined by
x* = argmax {w”x :x € Z(G)}, where we consider w as
an element of {0,1}'V]. Given £ > 0, a subset w € {0, 1}!VI
is called an e-approximation of MWIS if X > (1 — e)wTx*.

The convex hull of S, denoted by co(S) in R% represents
the link rate feasibility region. Typically, the set co(S) is
complicated to describe (and exponential in size). Determining
membership in co(S) was a problem shown to be NP-hard
by [1] under general interference constraints. For restricted
(node exclusive) interference constraints, and general graphs,
[4] exhibits polynomial algorithms. For general interference
models, but some restricted networks, polynomial algorithms
were given in [11].

In this paper, we consider m distinct source destination
pairs, (s1,d1),...,(Sm,dn) and an end to end rate vector,
r=(ry,re,...,mm) € [0,1]™. We will usually use index j to
range over the S-D pairs in the following discourse.

Definition 1: The rate vector r = (r1,...,7y) € [0,1]™
corresponding to the S-D pairs (s1,d1), ..., (Sm,dn) is said
to be ‘feasible’, if there exist flows, (f', ..., f™) such that

o £/ routes a flow of at least 7; from s; to d; for 1 < j <m

o The net flow on the links induced, f= Z;n:l 4 belongs
to co(S), i.e. in other words, it can be scheduled under
the interference constraints with a schedule of at most
unit length.

The equations that specify the notion of “flows routing r” are
given later in (10) via (2) and (8). Let

F={re|0,1]" : ris ‘feasible’}

be the set of all feasible end to end rate vectors. Our primary
result is the following.

Theorem 1: Assume we have an 1 — - approximation
algorithm to determine the Max Weight independent set of
a class of wireless networks for 0 < € < 1/4. Then, there
exists a deterministic polynomial time algorithm to determine
the approximate rate feasibility of a given end to end rate
vector r in the following sense: If (1 + 2e)r € F, then the
algorithm outputs a ‘YES’. Conversely, if (1 — 2e)r ¢ F,
then the algorithm outputs a ‘NO’. Else, the answer could
be arbitrary.

We note that, the only restrictions on the graph structure as-
sumed arise from the requirements for MWIS approximation.
Hence, given any general network where the MWIS can be
approximated, the result can be exploited in that framework.

III. PROOF OF THEOREM 1

To prove Theorem 1, we describe the algorithm first with
some parameters the algorithm uses to compute its answer.
Let ¢ be an index ranging over integers, to be interpreted as
slotted time. Define ¢] () € Ry as the ‘packet mass’ at node
i destined for node d; at time ¢ (for 1 <7 <n,1 < j < m).
Define m ‘routing matrices’, each of dimension n x L with
the 7" matrix, R? defined as follows via its (4,)!" element (
1<i<n,and 1 <I<L):

-1 ifa(l)=i,d; #i
R, =41 ifB(l)=id;#i )
0 otherwise

Define a ‘weight matrix’ at time ¢, YW(t), of dimension L x
m via its (I,5)"" element (1 <1< L and 1 < j < m):

W () = @)y (1) = @) (1)- 3)
In vector notation', we have for 1 < 7 <m:
-WI ()" =’ ()R, &)

The weight vector of dimension L, W(¢), is then defined
with its [*" element (corresponding to link [,1 <1 < L) as

Wi(t) = max{Wy (£)}. )

Finally, let the Maximum weight of the non interfering set
of links be 2

'Omitting a subscript for a previously defined scalar represents the corre-
sponding column vector.
2a.b denotes the standard vector dot product of a and b.



M(t) = maxe W(t). (6)

ecS
Property 2: e— MWIS returns some €(t) € S with the
following property for each given t:

(). W(t) > (1 — e)M(t). )

The ‘link activation matrix’, £(t) € {0, 1}*™, of dimension
L x m, will now be defined using the vector &(t) obtained
above for a fixed ¢. The (I,7)"" element, E](f) = 1 is to
be interpreted as activating link [ to transfer a unit packet
mass corresponding to S-D pair j at the beginning of time
slot ¢+ 1. Note that the MWIS approximation algorithm itself
is oblivious to the various types of packets in the networks.
So, we need to convert the set €(¢) into specific information on
which class of S-D pair packets that it needs to serve, which
will be accomplished while defining the link activation matrix
below.

Definition 2 (Link Activation Matrix): We write E(t) =
[E!(t)...E™(t)], and define the columns, E’’s in what fol-
lows. For 1 < 5 < m, let:

S ={l:¢&(t) = 1,W;(t) = W/ (t) and
W7 () < Wi(t),¥5' < j}-

S3°s are all disjoint sets by definition and Ui * 1S9 is a subset
of E with adjacency vector &(t). E’(t) is then defined to be
the adjacency vector of some maximal subset of S/ that can
be activated, subject to the following constraint:

Property 3 (activation constraint): The total number of ac-
tivated links pointing out of node 7 in the activation set
represented by E7 () is at most ¢’ (¢) for 1 < i < n.

Remark 4: The above constraint is included to ensure that
the queue sizes do not become negative because of activating
too many links while having too less queue size at any given
node. Because of this, the MWIS algorithm is supplied with
positive weights, and the analysis below can assume that
ql(t) >0, Vt.

Let E(¢) be the net activation vector: E(t)
It has the following property:

Property 5: W(t).E(t) > (1 — ) M(t) — n3.
Proof: W(t).E(t) = W(t).e(t) — W(t).(e(t) — E(t)) >
(1 —e)M(t) —nL (the bound for the first term follows from
property 2, and for the second term since for any 1 <1 < L,
éi(t) — Ei(t) = 1 = Wi(¢t) < n based on the activation
constraint above.) |

=Y E(t).

We now describe the actual queue computations performed
by the algorithm. We would like to make the observation
that all these operations can be performed in a completely
distributed fashion with simple local updates. provided that
the MWIS can be implemented in a distributed manner, which
will be described later in section IV.

Queue computations done by the algorithm:

The algorithm simulates the following steps on the given
network model.

o Initialize all the mn queues, q‘z, 1<i1<n,1<j<mto
zero mass at t = 0. Subsequently, at each discrete time
slot, do the following:

(1) Add (a ‘packet mass’ of) 7 to q’fk

(2) Compute the weight matrix, W(¢) via equations 3, 5.

(3) Invoke the e—MWIS algorithm with weights W(¢), which
results in €(t) satisfying Property 2.

(4) Decide the link activation matrix, £(¢) € {0, 1}£™ using
the specification in definition 2 (such that it satisfies
Property 3)

(5) For each activated link, I, with Ej (t) = 1, move a unit
queue mass from ¢’ 2 to qﬁ( D In other words, make the

following updates:
Cayt+1) =g, t+1) -1

and ‘ A
qé(l)(t +1)= qé(l)(t) +1

We’ll now model the process specified above. Towards this,
define m ‘arrival vectors’, al for 1 < j < m, each of
dimension L as (corresponding to step 1):

ai _ ’I"j if i = '?j (8)
0  otherwise
The queue dynamics then follows:
¢ (t+1)=¢ (t) + RIE’(t) + a’. )

Let, the maximum queue size observed across the network
at time t be:

g™ (t) £ max ¢ (t)

(4.3)
We can then prove the following lemma:

Lemma 6: If (1+2¢)r € F, then ¢™**(t) < 2n7> for all
t>0and 0 <e<1/4.

Proof: Consider the standard quadratic potential function
Vi(t) =232, (¢} (t))?. Then,

AV(#)=V(t+1)-V(t)

= Z R'E/ (t) + a').(R7E’ (t) + a + 2¢7 (t))

_Z RIE (¢
—I-QZq

t)+a’).(R'E’(t) + a’)

RJEJ ) 4 aj)

<(m+1°m+2(> ¢ () RE(t

J

OEDICUORS

<2n* +2(A+ B)



where, we now bound the terms A and B, starting with A
first:

zm: TRJEJ — ZWJ TEJ
j=1
=S WOTE() (B £0= Wi =)
j=1
=—W().E(t) < —(1—e)M(t) + n®. ( from Prop 5)

Now we bound term B. Note that a ‘flow vector’, £/ € Ri
routes a flow r; for the S-D pair j, if the following holds:

a’ = —R/F for 1 < j < m. (10)

Let (f',...f™) ‘route’ r for the m S-D pairs. The net flow on
the links is given by:

m
. ij
=1

Claim 7: 1f (1 + 2e)r € F, then there exist flows
(f',...,f™) that route r such that for the net flow, f, the
following relation holds: (1 + 2¢)f € co(S).

Proof: Since, (1+2¢)r € F, there exist flows (g!,...g™)
that route (1 + 2¢)r with § € co(S). Define £/ = 1+126gj.
Since a’’s are linear in r (eq. 8), we see (from eq. 10)
that, if (g',...g") route (1 + 2¢)r, then (f',...f") =
ﬁ(gl, ...g™) route r. Also, from linearity of f in terms
of (f',...,f™), it follows that (1 + 2¢)f = g € co(S). [ |

Now, assuming that (1 + 2¢)r € F,
B = Z q’(t).a’
J

- Z(qj(t))Tijj ( where (1 + 2¢)f € co(S))

PR

—ZVW 1) < W(t)

J

Since (1 + 2¢)f € co(S), let
|S|

(1+ 25)f' = Z Ai¢; where each ¢; € S
i=1

Y

for some non negative \; such that Zi A; < 1. Then,

S|
1
< d AW(E).c;
B < 1T oe i:1)\1W(t)c
1
< M(t).

1+ 2

Therefore, we have the following bound on AV (¢):

ont + 2 <n3 + M<t)(1+;25 -(1- 5)))

3nt — gM(t) for0 <e<1/4.

AV (t)

IN

IN

Next note that we could assume without loss of generality
that the network graph is connected. If this is not the case,
we can always analyze the capacity regions of each connected
component separately. Upon this, we can get the simple bound
that:

V)

—_— >
= T35

To see the above bound, let (a,b) = argmax;, j)qj . Then

@ > \ V(t) and since the network is connected, on any path

from a to db (of length at most L), there exists at least one link,
. ) . v

I such that W} (t) = ¢, () = ¢}y (8) > 145 > +1/ 29,

which is clearly a lower bound for M(t).

Therefore, we have the following bound

1+ eV

which in turn implies that

7.5\ 2
100 .,
V(t) < 3n' + <9n€ ) < gnl" vt > 0.

(12)

Hence,

—0717‘5 Vi > 0.

Lemma 8: If (1 — 2¢e)r Z—it for all
t>0.

Proof: First, we begin by showing the following claim:

¢ F, then ¢™**(t) >

Claim 9: if (1 — 2¢)r ¢ F, then for any given m link rate
vectors, (g',...g™) with g := 3=, 8/ € co(S), there is j €
[m] such that the followings hold:

(a) The graph with edge capacities given by g/ has a maxi-
mum flow of value at most (1 —¢)r; from s; to d;.
(b) i > %

Proof: Suppose that Claim 9 is not true. Then, let
. : €
i={ie[m]r> E}

By the assumption, for all ¢ € i, there exists a flow of value
at least (1 — ¢)r; from s; to d; for edge capacities defined
according to g*. Now consider m link rate vectors, (h',...h™)
with h’ € Ri defined below. Let R; be some fixed arbitrary
path from s; to d;:



(1—¢e)gl ifieilekE
hj =< & ifi¢iand! € R; (13)
0 otherwise

That is, for i € i, h = (1 — ¢)g’ and otherwise, the value
of h’ on all the edges in the path R; is equal to —5, while the
value on any edge not in R; is defined to be 0. We will now
argue that the net link rate, h = 3 ; h/ € co(S) by producing
a schedule for h of unit length.

Note that for i € [m] Ni° h® can be scheduled under any
interference constraint using % X n amount of time, as there
are at most n links in the path R;. Thus, the link rate vector,
2icm)nic h' can be scheduled in at most m x -5 < ¢ time.

Next, Ziei h' = (1 —¢) Ziei g < (1-¢ Zie[m] g =
(1 —€)g. Since, g € co(S), this implies that >, . h* can be
scheduled in a total of (1 — ¢) time.

Hence, h = > ic(m] h' = dici h' + > ie[m)nic h’ can be
scheduled in (1 —€) + ¢, which is unit time and thus we have
h € co(S).

Now, consider the graph with edge capacities h’. If i € i,
the max flow from s; to d; is at least (1 —&)%r; > (1 — 2¢)r;
by the definition of h. Else, if i € [m] Ni‘, then the max
flow is again at least 5, which is bigger than (1 — 2¢)r; by
the definition of i. This implies that for each i € [m], there
exists a flow ¢* which routes at least (1—2¢)r; from s; to d;,
while satisfying (componentwise), ¢’ < h‘. Thus, the vector
of flows, (¢1,...,¢m) routes (1 — 2¢)r with the net flow,
qB <he co(S) Hence, (1 — 2¢)r € F, contradicting our
assumption and we obtain Claim 9. |

i€l

Now, for any ¢ > 0, define (g!'(t),...g™(¢)), as the link
rates for each packet type obtained by considering the actual
schedules. More precisely, For j € [m], define

() = St B(0) = 1})

Clearly, g(t) € co(S), and we can apply Claim 9 to it. Thus,
there exists j € [m] such that r; > 5 and the max flow from
sj to d; is at most (1 —¢)r; in the graph with edge capacities
g’ (t). Applying the max-flow min-cut theorem, observe that
there is a cut (5,T) of the vertex set V such that s; € S,
tj € T and ¢(S,T) = Yicpa@essoer 8 (1) is equal to
the max flow from s; to ¢;, which is at most (1 — &)r;.

From equation 14, observe that the total amount of packet
mass of type j that was moved from S to I’ during during the
t time slots is at most >, ., ()essyer t % & (t), which is
at most ¢ X (1 —¢)r;. Since the amount of packets of type j
that were added during these time slots is ¢ x r;, we have:

S d(t) =t —t(1—e)ry.

€S

(14)

Therefore,

: Sies @l (t)
max ¢’ (t) > &=ES L
(i,9) a1 = |S] -~ n Tt

|

Theorem 1 is now a consequence of Lemmas 6 and § since
since the max queue size grows at least linearly with time if
(1—2¢)r ¢ F and is polynomially bounded if (1+2¢)r € F,
so the two cases can be clearly distinguished in the worst
case before ¢ = gnn“r’ time slots of simulation. Note that
the Maximum queue size can be spread across the network
in a distributed manner easily. Further, the queue computation

updates are also essentially distributed computations.

A. Practical Implications for a Capacity membership Test

Combining the above lemmas, we have the following results
based on the Maximum queue size observed at each time upon
simulating the virtual queue computations using approximate
max weight scheduling and routing described.

Let event E; be defined as observing

10
qm " (t) > —n"> for some t > 0.
5

Similarly, define event Ey as observing

2
‘ €

g (t) < —;t for some ¢ > 0.
n

We run the algorithm till a time T where:
T = mtin{El or E5 occurs}.

Note that either F/; or Es has to occur eventually (in the worst
case, before t = 10n!!-5 by definition of Ey and E, so T is
clearly polynomial)

We can then declare the following 2e—approximate state-
ments (for arbitrarily small € > 0, ) on the membership of r
in F by observing ¢"*(T').

1) If Ey, then declare (1 + 2¢)r ¢ F

2) If Es, then declare (1 — 2¢e)r € F

The consistency of the above statements is a direct conse-
quence of the definitions of F;, F5 and T. Note that it is also
possible that both 7 and E5 hold simultaneously without any
contradiction, which just means that r is within an 142¢ factor
close to the boundary of the capacity region.

Alternately, one may not have any ¢ pre-specified to begin
with and the interest is simply in making the best possible
approximate statement after running the algorithm for a certain
amount of time. We also have such a possibility resulting from
the above analysis:

Towards this, define:

max 7.5
e(t) = 2min <n2 4 (t), 10n >
£ ()

Then, the above discussion implies that whenever €(t) <
1/2, one can correctly declare the feasibility of a rate vector
that is a 1 +£(¢) factor of the given vector. Further, given any
e > 0, we will have £(¢) < € for a polynomially bounded ¢.

B. Numerical Experiment

We simulated the algorithm on a directed cyclical network
of 10 nodes shown in Figure 1 with 2-hop interference con-



straints by using standard software for solving Integer Linear
Programs for the approximate MWIS. There were assumed to
be 4 flows in contention. We plot the maximum queue size
over time in Figure 2.

Fig. 1. An illustration of the cyclical network with 2-hop interference on
which the algorithm was run. 4 dimensional rate vectors with coordinates
corresponding to flows between nodes 1 — 5,5 — 1,4 — 8,8 — 4 were
considered
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Fig. 2. A plot of ¢"%*(t) versus ¢t on the network in Figure 1 for
6 different rate vectors given by 71 = [0.1 0.1 0.1 0.1],72 =
[0.5 0.5 0.5 0.5],73 =[0.1 0.2 0.3 0.4],r4 = [0.3 0.0 0.3 0.0],7r5 =
[0.5 0.0 0.0 0.5],7/6 = [0.2 0.0 0.2 0.0]. As we can see, ¢"%*
grows roughly linearly for 7o, 73,74, 75 Whereas it stabilizes fairly quickly
for r1 and rg. While our proofs give precise bounds and guarantees regarding
polynomial convergence, these experimental plots suggest that in practice they
are likely to be distinguished fairly quickly at least for simple topologies.

IV. £-APPROXIMATION OF MWIS

In this section, we will present the definition and some prop-
erties of polynomially growing graphs, and an e-approximation
of MWIS for polynomially growing graphs. Let dg be the
shortest path distance of G and let Bg(v,r) = {w €
Vidg(w,v) <7}

Definition 3: Given a graph G, if there are constants C' > 0
and p > 0 so that for any v € V and r € N,

IBg(v,r)| < C - 7P,

then we say G is polynomially growing. Smallest such p > 0
is called the growth rate of G.

Many classes of network graphs arising in practice, in-
cluding the following class of geometric network graph G =
(V, E), have polynomially growing property. Consider a wire-
less network of n nodes represented by V' = {1,...,n} placed
in a 2-dimensional geographic region in an arbitrary manner
(not necessarily random) inside a /7 x y/n square of area n.?
Let £ = {(i,7) : i can transmit to j} be the set of directed
links between nodes indicating which nodes can communicate.
We assume that the wireless network satisfies the following
simple assumptions. Let d(-,-) be the Euclidean distance.
Given a vertex v € V, let B(v,R) = {u € V : d(u,v) < R}.

e There is an R > 0 such that no two nodes having distance
larger than R can establish a communication link with
each other* where R is bound on transmission radius.

o Graph G has bounded density D > 0, i.e. for all v € V,
B(v,R)| <D

Rz ="
A geometric random graph obtained by placing n nodes in the
/1 x y/n square uniformly at random and connecting any two

nodes that are within distance r = O(y/logn) of each other
satisfies the previous assumptions with high probability [11].

Lemma 10: Any geometric graph G with bounded density
and bounded transmission radius R has growth rate 2.
Proof: First, note that in the Euclidean space, since
B(v, ) can be covered by © ((%)2) many balls of of radius
R, there is a constant D’ so that for all v € V and » > 0,

Bl < pr,
e <
For two vertices v,w € V, let v = vg,v1,02...,0¢ = W

be the shortest path in GG. Then, by the bounded transmission
radius property, for all ¢ = 0,1...,(¢—1), d(v;,vi+1) < R.
By the triangular inequality in the Euclidean metric,

‘
d('U,’LU) § Zd(vi,viﬂ) S RY.
i=0
So, d(v,w) < R¢ = Rdg(v, w). Hence, for any v € V and
r € N, Bg(v,r) C Bg(v, Rr), which implies that

Ba(v,r)| < B(v, Br)| < (D'R?) 2,

|

Lemma 11: If G is polynomially growing with growth rate

p, any subgraph G = (V,E) of G obtained by removing

some edges and vertices of GG is also polynomially growing
with growth rate at most p.

Proof: For any vertex v,w € V, note that dea(v,w) >
dg (v, w), since any path in G from v to w is also a path in
G. Hence, for any v € V and r € N, B (v,r) € Bg(v,7),
which shows the lemma from the definition 3. ]

3Placing the nodes in the specified square is for simple presentation. The
same result holds when the nodes are placed in any Euclidean rectangle, and
when the nodes are place in k-dimensional Euclidean space.

4It does not imply that nodes within distance R must communicate.



Given a graph G = (V, E), and a constant ¢ € N, ¢-depth

adjacency graph G = (V, E)) of G is defined as follows. Let
V = E, and for any &,é, € V, (&;,8) € E iff an end
point of é; and an end point of é; (as an edge of ) has
shortest distance at most (£ — 1) in G. Notice that in our
rate feasibility check algorithm, given a network graph G, we
run an e-approximate MWIS on a subgraph of the /-depth

adjacency graph of G.

Lemma 12: 1f G is polynomially growing with growth rate
p, then for any constant ¢ € N, its ¢-depth adjacency graph is
polynomially growing with growth rate 2p.

Proof: Fix ¢y € V and r > 0. Let v;,v, € V be the
two end points of & in G. Then, for all € € Bx(ég, ), the
two end points of & must belong to Bg(v1, ér) UBg (v, fr).
Hence, we obtain that

B (er)| ('BG<U17fT)UBG<v2,€r>>

(20(5 T)p> <2(4C’2€2p) 2,

From Lemma 11 and Lemma 12, if the network graph G itself
is polynomially growing, then edge interference graph of G is
also polynomially growing.

In [6], Jung and Shah presented an e-approximation algo-
rithm for MWIS for any graph with polynomial growth p,
which runs in time O(n) for any constant e > 0 and p > 0. We
present the algorithm for completeness. The algorithm consists
of the following steps.

1) Obtain a graph decomposition of G into small compo-
nents by removing some vertices of G.

2) Compute optimal solutions locally in each of these
components.

3) Produce a global solution by merging the local solutions.

To explain the first step, given € > 0 and a constant A > 0,
we first define the notion of (e, A)-decomposition for a graph
G=(V,E).

Definition 4: We call a random subset of vertices B C V
as (&, A)-decomposition of G if the followings hold:

1) Forany v € V, P(v € B) <e.

2) Let S1,...,S be the connected components of graph
G = (V',E') where V! = V\B and E' = {(u,v) €
E : uv € V/} Then, maxi<ip<K |Sk| < A with
probability 1.

Now we describe a graph decomposition algorithm for any
€ > 0 and an operational parameter K. The algorithm outputs
(e, A)-decomposition where A will depend on K and p [6].

Given ¢ and K, define random variable Q over {1,..., K}
as
—g)7t if1<i<K
ifi=K )

Set 24 48
K= 4 log (p) .
€ €

Decomposition Algorithm (g, K)

(1) Initially, set W=V, B=0 and R = 0.
(2) Repeat the following till YW # {):
(a) Choose an element u € VW uniformly at random.
(b) Draw a random number () independently according
to the distribution Q.
(c) Update
(i) B~ Bu{w|dg(u,w)=Q and w € W},
(i) R —RU{w|de(u,w) < Q and w € W},
(i) W< Wn(BUR)".
(3) Output B.

Now, the following randomized algorithm outputs a solution
which is an e-approximation of MWIS in expectation for any
graph with constant doubling dimension p whenever its graph
decomposition subroutine achieves (e, A)-decomposition for
some constant A > 0 [6]. It runs in O(n) time for any constant
p and e.

MWIS Approximation (¢, K)

(1) For the given graph G, use the decomposition algorithm
with parameters (e, K') to obtain decomposition of G.
(a) Let B be the output of the decomposition algorithm.
(b) The V — B is divided into connected components
with vertex sets Rq,...,Rr (L is some integer).
(c) Let Gy = (R1,E1),...,G, = (Rp,FEL) be the
corresponding disjoint subgraphs of G.
(d) Let Z(Gy),...,Z(GyL) be set of independent sets of
G1,...,G L respectively.
(2) For/=1,...,L find
x*(Gy) € argmax {w'x : x € I(Gy)} .
(a) The above computation can be done by dynamic
programming in O(2!%¢l) operations for graph G.

(3) Output X = U} ,x*(G/) as the candidate for approxi-
mate maximum weight independent set of G.

A deterministic algorithm that always outputs e-
approximation of MWIS can be obtained by derandomization
of the MWIS Approximation [6].

V. NODES IN A PLANE BOUNDED IN ONE DIMENSION

In [11], we presented a strong polynomial time algorithm
that decides the membership of an arbitrary link demand vector
in the feasible region of a wireless network where the hosts are
confined to a fixed-width slab. One motivation for considering
such a scenario is IVHS applications, where the nodes are
constrained to a road of bounded width but infinite length.
In this section we extend that to get a polynomial algorithm
for the end to end demand vector in the feasible region of
this class of wireless networks. This contrasts with the other



sections because in this case it is an exact algorithm, not an
approximation.

The locations of the nodes on the fixed-width slab are
identified by the point-set V C {(x,y) € R? | 0 <y < w} for
some constant w > 0. Two nodes, p,q € V that are separated
by a distance less than or equal to ¢ have an edge, | € E.
Links Iy, Iy interfere iff (a) «(l1), a(l2), 8(11), B(l2) are not all
distinct or (b) d(a(ly),B(l2)) < rr or d(a(lz),B(l1)) < rp,
where r; > r¢ is the interference radius. Consider the adjoint
graph, G = (Q,E), whose vertex set, (), corresponds to the
wireless links, E. For each | € E, we have a correspond-
ing ¢ € @ with its location at the midpoint of «(l),3(1).
q1,q2 € @ have an edge between them iff the corresponding
links in E interfere. (@ has the following property [11]: For
any q1,¢2 € Q, d(q1,q2) < dpin = (q1,q2) € £ and
d(qlan) > dmaz = (Q1afJ2) ¢ E where dpin = 11 — rc
and dyor =171 +7C .

If @ C Q, let:
min{Q} := min { LdfazJ | z € @} and
B(Q) : {@ cQ| Q is an independent set of G,

and Vz € Q, LZCUJ = min{Q}}.

Then, the auxiliary graph is defined as a directed graph with
a vertex set {s,t} UB(Q), with edge set, A(Q) given by:

{(5:Q) |VQ € B@Q}U{(@Q.1) | YQ € BQ)} U
{(s,)} U{(Q, Q) € B(Q) x B(Q) | min{Q} < min{Q},
and Q U @ is an independent set of @} (15)

Paralleling a result from Matsui [8], stated originally in the
context of unit-disk graphs (and extended to (dnin, dmaz)
graphs in [11]), the cardinality of the set 5(Q) is polynomial
in terms of n(= |V|) when elements of @ are distributed
within a fixed-width slab. A link demand vector ¥, indexed by
elements of (), is feasible iff the optimum value of the below
polynomial LP is at most 1 [11].

min Ze€5+(s) Te
subject to:
Zfeé*('u) Tp = 0,Vv € B(Q)
cest(v) Te 2 Tg, Vg € Q
x >0,

Zeéé*(v) Te — (16)

Zve{ﬁeB@nqeﬁ}

where % (v) (57 (v)) denotes the set of edges with vertex v
as its origin (terminus) in the auxiliary graph.

The link demand variable T, in equation (16) can now be
decomposed into components that satisfy each of the m S-D
pairs as T, = Z;”:l fJ. The constraints of equation (16) are
then augmented with appropriate flow requirements to ensure
the link demand vectors, fg support the end-to-end demand
vectors for each S-D pair to get the overall LP stated below.

Theorem 13: For a given end-to-end rate vector r € R'",

we get the following polynomial LP:

min Zeea+(s) Le
subject to:
Zfe(;_(v) zp =0,Yv € B(Q)

Zee§+(v) Te — ‘
e€dt(v) ‘r? > Zi:l é»Vq S Q

ve{PeB(Q)|qeP}

Z(SJvP)EE f(JS,j7p) o E(pvsj)EE f(jp;sj') = 1;,V sources s;
Z(p,dj)EE 'f(prdj) — Z(d%p)eE f(de’p) =r;,V sinks d;
2(pver f(]pw) =2 (v.p)eE f(vap)vv # {s5,d;},7 € [m]

fi>0 VYgeQ,je[m]
x. >0 Ve e AQ)
a7
The end-to-end rate vector r is feasible iff the optimum value
above is at most 1.

VI. CONCLUSION

Since determining the feasibility of a rate vector is a
fundamental question in Cross layer design and optimization,
we believe that the insights derived from our work on the n%—
dimensional unicast capacity could have impact on the design
of wireless mesh networks in the future.

REFERENCES
[1]

E. Arikan. Some complexity results about packet radio networks. /EEE
Trans. on Information Theory, 30:681-685, July 1984.

M. Franceschetti, O. Dousse, D. Tse, and P. Thiran. Closing the gap in
the capacity of wireless networks via percolation theory. IEEE Trans.
on Information Theory, 53:1009-1018, March 2007.

P. Gupta and P. R. Kumar. The capacity of wireless networks.
Transactions on Information Theory, 46:388—404, March 2000.
B. Hajek and G. Sasaki. Link scheduling in polynomial time. [EEE
Trans. on Information Theory, 34:910-917, September 1988.

A. Jovicic, P. Viswanath, and S. Kulkarni. A network information theory
for wireless communication: Scaling laws and optimal operation. /[EEE
Trans. on Information Theory, 50:2555-2565, November 2004.

K.Jung and D.Shah. Algorithmically efficient networks. Submitted,
2008.

L.Xie and PR.Kumar. A network information theory for wireless
communication: Scaling laws and optimal operation. [EEE Trans. on
Information Theory, 50:748-767, May 2004.

T. Matsui. Approximation algorithms for maximum independent set
problems and fractional coloring problems on unit disk graphs. Lecture
Notes in Computer Science: Discrete and Computational Geometry,
1763:194-200, 2000.

U. Niesen, P. Gupta, and D. Shah. On capacity scaling in arbitrary wire-
less networks. submitted to IEEE Transactions on Information Theory,
November 2007. Available online at http://arxiv.org/abs/0711.2745.

A. Ozgiir, O. Lévéque, and D. N. C. Tse. Hierarchical cooperation
achieves optimal capacity scaling in ad hoc networks. IEEE Transactions
on Information Theory, 53(10):3549-3572, October 2007.
R.Gummadi, K.Jung, D.Shah, and R. Sreenivas. Feasible rate allocation
in wireless networks. Proc. of IEEE INFOCOM, April 2008.

D. Shah, D. Tse, and J. N. Tsitsiklis. On hardness of scheduling in
wireless networks. personal communication, under preparation, 2008.
L. Tassiulas and A. Ephremides. Jointly optimal routing and scheduling
in packet radio networks. IEEE Trans. on Information Theory, 38:165—
168, January 1992.

L. Tassiulas and A. Ephremides. Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks. IEEE Trans. on Automatic Control, 37:1936—
1948, December 1992.

F. Xue and P. R. Kumar. Scaling laws for ad-hoc wireless networks: An
information theoretic approach. Foundation and Trends in Networking,
1(2), 2006.

[2]

[3] IEEE

[4]
[5]

[6]
[7]

[8]

[9]

[10]

(1]
[12]

[13]

[14]

[15]



