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Abstract—Finding line segments in an intensity image has been one of the most fundamental issues in the area
of computer vision. In complex scenes, it is hard to detect the locations of point features. Line features are more
robust in providing greater positional accuracy. In this paper we present a robust “line feature extraction”
algorithm which extracts line features in a single pass without using any assumptions and constraints. Our
algorithm consists of six steps: (1) edge extraction, (2) edge scanning, (3) edge normalization, (4) line-blob
extraction, (5) line-feature computation and (6) line linking. By using an edge scanning, the computational
complexity due to too many edge pixels is drastically reduced. Edge normalization improves the local
quantization error induced from the gradient space partitioning and minimizes perturbations on edge orientation.
We also analyze the effects of edge processing, and the least squares-based method and the principal axis-based
method on the computation of line orientation. We show its efficiency with some real images. {© 1997 Pattern

Recognition Society. Published by Elsevier Science Ltd.
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1. INTRODUCTION

Finding line segments in an intensity image has been
one of the most fundamental issues in the area of
computer vision. Although much work has been done
since the 1960s, the robust line segment extraction has
remained as a difficult and open problem in many areas
of computer vision. There are several methods to extract
line segments such as the Hough transform,”"~® poly-
gonal approximation,””'" arm method,” chain cod-
ing,*'? and ¢-s curve.” The well-known Hough
technique has some limitations such as low peaks for
short lines in Hough space and limited accuracy in line
parameter estimation caused by the quantization of
Hough space. Other methods also have several problems
such as the dependence on iteration, the inability to an
unconstrained complex scene, heuristic parameteriza-
tion, poor localization accuracy and long processing
time. Bimbo et al.'"’ divided the image into multiple
tiles and extracted line segments for each tile using the
Hough transform. They used a neural network to obtain
road boundary line using the extracted line segments.
This method is task-oriented and depends on prior knowl-
edge. Burns et al.'® proposed a line extraction algorithm
based on a gradient-based and region-based approach.
They effectively quantized the gradient orientation of
edge pixel. Kahn et al.'"¥ used a similar approach to
Burns et al.'® and improved the speed. Yuan and
Suen'?’ proposed an algorithm to determine the straight-
ness of a digital arc by chain coding in O(n) time. Pikaz
and Dinstein'? improved the general polygonal approx-
imation and Chung et al.’ discussed a polygonal ap-
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proximation using a competitive Hopfield neural
network. Breuel” introduced a variety of statistical error
models to extract the maxima of the probabilistic Hough
transform and the generalized Hough transform. Juli
etal.® optimized the general Hough transform algorithm
by reducing the complexity and memory requirements.

In this paper, we present a line extraction algorithm to
solve the problems of previous approaches. The first step
in the line segment extraction is extracting edge pixels.
We compute the magnitude and the direction of the
gradient for each pixel using the Deriche operator,"'
and remove edge pixels with a low gradient norm by non-
local maximum suppression''® and hysteresis threshold-
ing."® Deriche’s edge operator gives a comparatively
robust result in getting gradient orientation of an edge
pixel even under salient intensity variation or noise effect
compared to other gradient edge operators such as Sobel,
Prewitt, DOG filter, etc. According to the gradient space
partitioning scheme proposed by Burns er al.,"? we
coarsely quantize the gradient direction and assign a
gradient direction code to each edge pixel. The gradient
space partitioning, however, has the intrinsic ambiguity
problem in its codes due to a quantization error in the
boundary of the two partitioned sections. In addition to
this ambiguity, a salient intensity variation or noise effect
along the edge profile provides perturbations on the edge
orientation. An edge normalization method overcomes
the ambiguity and the random orientation along the edge
profile by using the maximum-likelihood decision cri-
terion."'” Edge operators generally produce incomplete
boundaries and false edges. Such segmentation defects
often require post-processing to link broken edges and to
remove short edges. Edge scanning, which provides the
connected edge chains, is used to increase the computa-
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tional efficiency, linking broken edges while removing
short edges. The connected edge pixels with an identical
gradient direction code are then grouped into a line-blob
using the blob-coloring technique.” Finally, we compute
the line features for each line-blob.

Our proposed algorithm has several benefits: For any
unconstrained outdoor complex scene, the algorithm
extracts line features in a single pass, without any
assumptions and constraints, with the minimum use of
heuristic parameters.

‘We show the efficiency of the algorithm with some real
images.

2. EXTRACTING LINE SEGMENTS
The proposed line extraction algorithm is organized as
shown in Fig. 1.
2.1. Edge extraction

In edge processing, we obtain the magnitude and the
direction of the gradient for each pixel using the Deriche
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Fig. 1. Overall procedure of a line segment extraction.
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operator''® and remove the edge pixels with low gradient
norms by the non-local maximum suppression'® and the
hysteresis thresholding.!'® In order to check whether an
edge pixel is a local maximum of the gradient norm in the
direction of the gradient, we have to interpolate gradient
norms on both directions using the gradient values of the
neighboring pixels and compare the gradient norm of the
pixel to the interpolated gradient norms. The edge pixel is
not suppressed when the gradient norm of the pixel is
strictly greater than the interpolated values. In the hys-
teresis thresholding, we use two thresholds 7, and 7>
with T, < T;. If the gradient norm of an edge pixel is
greater than 7}, we do not remove the neighboring edge
pixels which have gradient norm greater than 7,. These
two processes deliver the effect of edge thinning and
reduce the computational complexity. They provide
better localization accuracy of an extracted line segment
by eliminating non-uniform thick parts of edges than an
edge thinning followed by a simple thresholding. Using
the gradient space partitioning, we assign a gradient
direction code to each edge pixel. The range of gradient
direction is quantized into eight sections depending on
the angle as shown in Fig. 2. We assign one of four
direction codes to each section.

2.2. Line-blob extraction and computation of line
features

2.2.1. Edge scanning. Prior to the computation of
line features, we have to solve several problems such as
the processing of a large amount of data due to
excessive edges, linking broken edges, removing short
edges and reducing the quantization error of the gradient
space partitioning. To solve these problems, we use the
edge scanning which produces connected edge chains.
For example, knowing the length of scanned edges, we
can remove short edges and control the maximum data
size in the line-blob extraction process. We also use the
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Fig. 2. Four-directional gradient space partitioning.
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contextual relationship of scanned edge pixels in the
edge normalization process. In the edge scanning
process, we traverse the connected edge chain through
the eight-directional chain coding'”® which generates
the direction code of each pixel on the connected edge
chain according to the predetermined numbering
scheme.

2.2.2. Edge normalization. Edge normalization
enhances edge orientation by reducing the random
phenomena of edge locality that may be introduced in
the edge gradient partitioning process. Here, the
examples of locality are shown in Fig. 3, marked as A
and B. This random gradient direction code occurs due
to a quantization error around the boundary of a
partitioned gradient space or due to a salient intensity
variation and noise effect. To solve this problem, edge
normalization is carried out. For successive two-edge
pixels, p, and p,,, on the scanned edge, we check
whether d, is different from d;,; which are the gradient
direction codes of p; and p, ., respectively. If d, is not
equal to dy, n pixels before p, and after p; ., are used
to compute a probability density function of P(z|m,) and
P(z|m,) defined by

Sickoat:

(2n+2)’

B { 1 ifdi=d;, i=k—n,....k+n+1, )
"o otherwise,

P(zlmi) =

— | SQ eddg

|

I

(a) Before normalization
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‘7 1o otherwise,

@

where mj;={gradient code of py,, =di} and mp=
{gradient code of pi,; = di.1} represent message
spaces for the decision rule.

If the likelihood ratio A(z) is defined as

P(z|m,)

P(zjm,)’ @

Az) =
then we decide the decision rule associated with message
spaces

Alz) ~ 1 (5)
i,

If message m, is decided, the gradient direction code dj .
changes to d. Figure 3 shows an example of edge
normalization.

Random localities occur at the positions marked A and
B in Fig. 3(a). While the dominant direction code of
scanned edges is 2 as shown in Fig. 3(a), the other
direction codes 1 and 3 are produced. By using the
likelihood ratio test of equation (5). we obtain the en-
hanced edge image as shown in Fig. 3(b). The gradient
direction codes of pixels indicated by A and B in

(b) After normalization

Fig. 3. Edge normalization.
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Fig. 3(a) are converted to the ones indicated by A’ and B’
in Fig. 3(b).

2.2.3. Line-blob extraction and computation of line
features. The connected edge pixels with an identical
gradient direction code are grouped into a line-blob
using the blob-coloring technique.”” While the previous
blob-coloring algorithm deals with only binary images
to extract a blob, the algorithm used in this paper
handles quintuple images which are four quantized
gradient direction codes and a background. For each
extracted line-blob, we compute line features such as the
mid-point, the intercept of y-axis, the orientation, end
points and the length.

Unconstrained complex scenes produce too many edge
elements, which result in too many line-blobs to be
managed all together. Therefore, we control the data size
through edge scanning. In addition, we do not know how
many edge pixels belong to a line-blob. Accordingly, a
proper data structuring for a line-blob extraction is
required to save memory and to reduce processing time.
An efficient linked-list-type data structure'® well ac-
commodates this purpose. In Appendix A, we present the
computation of line features based on the extracted line-
blobs.

2.3. Line linking

For a cluttered scene, the current approaches to line
extraction generally produce broken segments even for a
single scene line. In order to link broken line segments,
we give three definitions.

Definition 1 (co-linearity). For any two lines L; and L,
as shown in Fig. 4, the two lines are collinear if

max(ll,lz) <71, 6)

where /| and [, are lengths from the mid-point P, of L, to
L, and from the mid-point P, of L, to L,, respectively.

Definition 2 (overlappedness). In Fig. 4, line Lj,
which is orthogonal to line L,, passes through P,, and
intersects the line L, at P3. If P53 belongs to the MBR
which stands for a minimum building rectangle encom-
passing L, two lines L, and L, are assumed to be
overlapped.

L
L A(x,) "

1 \-
IER A
/ i

P,(x,¥) : mid point of L,
P,(x,y) : mid point of L,
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Definition 3 (adjacency). If the minimum distance
between end points of two lines is smaller than a preset
threshold 7», these two lines are adjacent. In Fig. 4, if
I3 < 7, two lines L, and L, are adjacent.

If any two lines are collinear, not overlapped, and
adjacent, we merge them to make a single line.

3. ANALYSIS OF THE EFFECTS OF EDGE PROCESSING AND
LINE ORIENTATION COMPUTATION METHODS

In this section, we analyze the effects of edge proces-
sing and line orientation computation methods such as
the least-squares based method and the principal-axis
based method to the line orientation. To do this, we use a
real image as shown in Fig. 5. In most cases, simple edge
thresholding leads to large localization errors and many
multiple detections of a single edge as shown in
Fig. 5(b). Therefore, the thresholding is often combined
with the detection of local maxima of the edge elements
in some suitably chosen direction in the image
plane.(l("lg) Non-local maximum suppression and
hysteresis thresholding can efficiently implement an
edge thinning as shown in Fig. 5(e). However, edge
thinning followed by the simple thresholding does not
take into account the gradient norm of each edge pixel
and thus often produces segmentation defects such as
broken smaller chains and inaccurate edge localization as
shown in Fig. 5(d). On the other hand, edges obtained by
non-local maximum suppression and hysteresis thresh-
olding do not show such effects as shown in Fig. 5(e). We
applied the same values for hysteresis thresholding and
obtained edges shown in Figs 5(b) and (e).

In Fig. 5(c), which shows the extended edge image
encompassed by the rectangle indicated by B in
Fig. 5(b), we note that pixels in the region marked by
A and A’ have great intensity changes. Therefore, more
edge pixels are left and dominate the line orientation. In
Fig. 5(c), for example, lines (@) and (3) are obtained by
the principal axis of all pixels in the line-blob. Lines (2)
and @) are the least-squares estimate obtained by using
the pixels within the line-blob. Lines @ and @ show
better localization accuracy than lines (Z) and @). We note
that the least-squares based method is more sensitive to
the region indicated by A and A’ than the principal
axis-based method. Lines (D) and (@), however, do not

MBR of L,

Fig. 4. Line linking.
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(d)
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Fig. 5. Analysis of effects of edge processing and line orientation generation methods using a real image: (a)

original image, (b) edges from hysteresis thresholding, (c) extended edges of rectangle indicated by B in (b)

and line fitting results, (d) thinned edges from edges of (b), (e) edges from non-local maximum suppression
and hysteresis thresholding and (f) extracted line segments using edges of (e).

satisfy the localization well. In Fig. 5(f), lines 8 and
(® are also obtained by the principal axis-based method.
These lines show better localization than lines () and
@). In conclusion, the principal axis to an edge from
the non-local maximum suppression and hysteresis
thresholding gives good results of localization for a line
extraction.

N

(a) Laboratory image

(b) Extracted edges

4. EXPERIMENTAL RESULTS

The proposed algorithm for extracting line segments
has been examined on a large number of real 512 x 512
(or 480 x 640) images which are composed of a
laboratory image, a corridor image, two types of road
images and an industrial welding panel image. In these
experiments, we used Deriche’s operator

U9 to compute

(c) Extracted line segments

Fig. 6. Laboratory image, its extracted edges and line segments. (a) Laboratory image. (b) Extracted edges.
(c) Extracted line segments.
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(a) Corridor image

(b) Extracted edges
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(c) Extracted line segments

Fig. 7. Corridor image, its extracted edges and line segments for mobile robot navigation. (a) Corridor
image. (b) Extracted edges. (¢) Extracted line segments.

(a) Road image

(b) Extracted edges

(c) Extracted line segments

Fig. 8. Road image, its extracted edges and line segments for a car following system. (a) Road image. (b)
Extracted edges. (c) Extracted line segments.

(a) Road image

(b) Extracted
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(c) Extracted line segments

edges

Fig. 9. Road image, its extracted edges and line segments for a lane tracking system. (a) Road image. (b)
Extracted edges. (c¢) Extracted line segments.

the gradient norm and the gradient direction of an
edge pixel and then applied the non-local maximum
suppression and hysteresis thresholding to the edge
pixels.

At first, we took an example of our laboratory image as
shown in Fig. 6(a). Fig. 6(b) shows the extracted edges.
Fig. 6(c) shows the extracted line segments composed of
471 segments. Before line linking, 520 line segments
were extracted.

The following example is a corridor scene in which
line segments are one of the most prominent geometric
features. Fig. 7(a) shows an image of a corridor scene.
Figures 7(b) and (c) show the extracted edges and the
extracted line segments, respectively.

Figures 8 and 9 show the line segment extraction for
outdoor road scenes.

Figure 10(a) shows an image of a welding panel in the
subassembly process of a shipbuilding factory. Figures
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(a) Welding panel image

(b) Extracted edges
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(c) Extracted line segments

Fig. 10. Welding panel image, its extracted edges and line segments for a panel recognition system in the
subassembly process of a shipbuilding factory. (a) Welding panel image. (b) Extracted edges. (c) Extracted
line segments.

(20)

(c) Extracted edges

(d) Extracted line segments by the proposed method

Fig. 11. Original image, its extracted edges and line segments. (a) Yacht image. (b) Line segments by
Heijden."*’ (c) Extracted edges. (d) Extracted line segments by the proposed method.

10(b) and (c) show the extracted edges the extracted line
segments, respectively.

Figure 11(a) shows an image of a yacht. Figure 11(b)
shows a line map derived from a rotational invariant edge
feature extraction and the resulting log-likelihood ratio,
provided by the courtesy of Heijden."® His method
emphasized local multiple step edges. Figures 11(c)

and (d) show the extracted edges and line segments
according to the proposed algorithm in this paper. Since
these two methods use different approach to extract edge
elements, it is very difficult to compare directly. The
careful inspection reveals that the proposed algorithm
produces line segments well in the regions where in-
tensity discontinuities occurs strongly.
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(a) Extracted edges
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(b) Extracted line segments

Fig. 12. Extracted edges and line segments of a road image. (a) Extracted edges. (b) Extracted line
segments.

Deriche’s edge operator''™ basically has two aspects:
while it provides a comparatively robust result in getting
edge gradient direction to salient intensity variation or
noise effect it needs a lot of memory. As mentioned in
the paper, we overcome the quantization error from
gradient space partitioning and randomness due to a
salient intensity variation and noise effect by using
edge normalization. Therefore, we can freely select
the edge operator according to the user’s desire. For
example, when the problem to acquire enough memory
is severe it will be better to use the conventional
derivative edge operators. Figure 12 shows an example
of line extraction using Sobel edge operator for the same
image shown in Fig. 5.

5. CONCLUSION

In this paper, we proposed a robust line segment
extraction algorithm. Our algorithm extracts line
features in a single pass, without any assumptions and
constraints, with the minimum use of heuristic para-
meters. The algorithm has been implemented on an
IBM PC or its compatible with a C30-based image
processing board. By using edge scanning, blob-coloring
and proper data structuring, the computational efficiency

was highly improved. We minimized the local quantiza-
tion errors induced from the gradient space partitioning
and the occurrence of a random orientation involved in
the detected edge profile due to a salient intensity
variation or noise by edge normalization. We also ana-
lyzed the effects of edge processing and line orientation
computation methods on line orientation. Even though it
is scarcely occurred, if the gradient directions of con-
nected edge pixels change too frequently we cannot
guarantee the good quality of extracted line features.
Experimental results with some real scenes showed that
the proposed algorithm works well in any complex real
environment.

APPENDIX A. COMPUTING LINE FEATURES

In presenting line features computation, we first in-
troduce the data structure for representing a line-blob as
shown in Fig. 13. “BLOB” is a structure-type array to
represent attributes of a line-blob and “NODE” is also a
structure-type variable to record the coordinates of an
edge pixel of the line-blob. In “BLOB”, dir and size
represent the edge pixel’s gradient direction code and the
number of edge pixels in a line-blob, respectively,
min_row, max_row, min_col, and max_col are used to

BLOB

dir ‘size | min_row| max_row min_col'max_col select

|

| | J

_,,,ﬁ/A/\J\\\\\]\/\/~
1

NODE NODE
*ptr col } row‘*ptr |~ 000 COl ‘ row‘*ptr
- - i
N - s
no. of size

Fig. 13. Data structure for line-blobs.
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represent the coordinates of the minimum rectangle
encompassing a line-blob, select represents whether
the blob label is used or not, and “pzr points to the first
“NODE” of the edge pixel belonging to the line-blob. In
“NODE”, col and row represent the pixel’s coordinates,
and “ptr points to the “NODE” following the current
node.

Second, we introduce the computation of line
features such as the end points, the mid-point, the
orientation, the intercept of the y-axis, and its length.
The computation is based on the information recorded
in “BLOB”.

1. Mid-point. It corresponds to the center of the line-
blob as defined by

BLOB.size
Di-1 X

BLOB size
¢ Z

=1 y"), (A1)

(X, v) -

BLOB.size ° BLOB.size

where x; and y; are column and row on the image plane,
recorded in “NODE” expressed as a linked-list.

2. Orientation. It corresponds to the principal axis as
defined by

1 2
0, =~ tan”" il

—_— (A.2)
2 120 — o2

where 111, o, and pg; are second order central mo-
ments® which are obtained using

Hpg = ZZ(Xi ‘X)P(Yi *y)qv

Xi Yi

i=1,...,BLOB.sizep,q=0,1,2,..., (A.3)

where x;, y; are column and row on the image
plane, recorded in the “NODE”. Special cases of 8,
are

e 07 when 1 =pn=0, uxn # 0,
e 90° when p1=p20=0, pgx # 0, and
e 45° when |u11|=|p0| = [po2].

3. Intercept of y-axis.

o =y — tan 6,x. (A4)

4. End points. Let coordinates of the minimum rec-
tangle of a line-blob as (xg,yo), (xo.y1), (xX1.y0), (X1.¥1),
where x and y, represent minimum column and row and
x1 and y| represent maximum column and row. Then, end
points (x,,y;) and (x.,y.) are computed by:

(@ when line |tan 6| > tan™'[(y; — yo)/(x; — x0)],

(1 — )
Xe = ————— Ys = Y0, Ye = VI

tan g,
(A.5)

()’0 -~ Oé)
tan 6,

s

® w hen
|tan 0| < tan~'[(yy — yo)/(x1 — x0)],
Xs = Xp, Xo = X1, ¥y =tanb,xg + o, y, = tanf, x| + o.
(A.6)
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