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Abstract 

In this paper, we present a novel local feature detector 
for the object recognition and robot navigation applica-
tions. The proposed algorithm extracts highly robust and 
repeatable features based on the key idea of tracking and 
grouping multi-scale interest points and selecting a unique 
representative structure with the strongest response in 
both spatial and scale domains. Weighted Zernike mo-
ments are used as the local descriptor for feature 
representation. The experimental results and performance 
evaluation show that our feature detector has high re-
peatability and invariance to large scale, viewpoint and 
illumination changes. The efficiency and usefulness of the 
proposed feature detection method are also confirmed by 
the excellent performance on object recognition and in-
door topological navigation. 

  

1 Introduction 
Recently, the use of local features in the context of ob-

ject recognition and vision-based robot localization and 
mapping has been successful due to their invariance and 
power to handle occlusions and background clutters. 

The breakthrough work on local features [1] addresses 
the use of local invariants for content based image re-
trieval by combining the advantages of model-based and 
appearance-based approaches, and this has proved to be a 
very efficient approach. Later, many researches have been 
done based on this approach or its generalizations. Linde-
berg has proposed an automatic scale selection mechanism 
which finds 3D maxima of Laplacian of Gaussian (LoG) 
filter in the scale space representation. Similarly, Lowe 
has presented an efficient feature detector – Scale Invari-
ant Feature Transform (SIFT) [3] by searching for the 3D 
maxima of Difference of Gaussian (DoG) filter in the 
pyramid scale space. Due to its computational efficiency, 
SIFT has been used in many vision applications such as 
object recognition, indexing and mobile robot localization. 
It has been refined to reduce the noise sensitivity and edge 
effect in [4]. Mikolajczyk and Schmid have proposed a 
Harris corner based scale invariant interest point detector. 
The detector searches for the maximum response of 
Laplacian over scales to estimate the characteristic scale. 
They later have generalized this algorithm to the affine 
invariance by an iterative method [6]. The difference from 
earlier works [7, 8] is that this method simultaneously 
adapts the location and scale instead of using fixed feature 
locations. The main drawback of these iterative ap-
proaches is high computational complexity. Slightly 
different techniques have been proposed in [9, 10] by di-

rectly extracting invariant regions based on local intensity 
information. Parallelogram or elliptical regions in [9] and 
maximally stable extremal regions in [10] are typical ex-
amples of this technique. But, for arbitrary scenes, the 
regions detected by these approaches are very inconsistent 
due to the large image intensity variations and only few of 
them can be matched. 

Although some of the above techniques have shown 
good results and wide applicability, the development of 
highly robust visual features is still a challenging problem. 
Our feature detector is aimed at detecting more robust and 
repeatable features. It first tracks interest points in the 
scale space to obtain structure-wise feature representation. 
Next, according to the information from each group of 
points, shape adapted local invariant regions are extracted. 
Finally, rotation invariant weighted Zernike moments [11] 
are calculated on the normalized local image patches for 
the local description. 

In Section II~III, we describe in the details the RIF1 
detector and descriptor. Section IV introduces the applica-
tion of the proposed feature detection algorithm to the 
object recognition and mobile robot navigation systems. 
Section V presents the experimental results and finally, in 
Section VI, we summarize the paper with conclusions and 
future works. 

2 RIF Detector 

2.1 Multi-scale interest points 
Given an input image, first, we incrementally smooth it 

with Gaussian kernel to construct the multi-scale image 
representation. Next, from this multi-scale representation, 
the second moment matrix is calculated at every pixel lo-
cation in each scale level image2. Then, the multi-scale 
interest points are localized at local peaks of the normal-
ized Harris measure in the image domains.  

Figure 1b shows an example result of the multi-scale 
interest point detection. Interestingly, we can note the fol-
lowing important facts: 1) Number of interest points 
decreases as scale increases and interest points exist in a 
range of scales, 2) Interest point location varies slightly 
over scales. The higher the scale level, the bigger the pos-
sible range of point locations, 3) Interest points can be 
locally structure-wise grouped so that each group repre-
sents a local structure. Additionally, we have verified from 
                                                  
1 For convenience, we name the proposed region detector as Robust 
Invariant Feature (RIF) detector and the features as RIFs. 
2 For computational efficiency, we use the 4th order recursive implemen-
tation of Gaussian filtering [11] in calculating multi-scale representation 
and second moment matrices, which accelerates the overall feature de-
tection process significantly. 
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many experimental tests that the locus of the interest 
points is very stable to the image rotation, scale, viewpoint 
and illumination changes. We define the evolution of the 
interest points in the scale space as the Local Corner Sig-
nature (LCS). With the scale increasing, interest points 
from different scale levels can be largely intersecting. It 
gives rise to a question that how to separate these points or 
how to assign them to each local structure. For solving this 
ambiguity, we propose the following tracking and group-
ing algorithm which automatically classifies interest 
points into each local structure or LCS. 

 

2.2 Tracking and grouping 
Consider a set of multi-scale interest points extracted 

from the input image, { }[ , ] | 1,... , 1,...l l l t
i i i lS P x y l L i N= = = = , 

where l
iP denotes the i th interest point in the l th scale 

level, L denotes total number of scale levels and lN  de-
notes the number of interest points in l th scale level.  

Our goal here is to track to group these interest points 
for the local structure-wise feature representation.  The 
tracking and grouping is done by the following incre-
mental linking algorithm (figure 2a):  

Pseudo code: 
i)  Initialize the current scale level as ( l L← ) and current  

 number of groups as ( 0k ← ). 
ii) For the current scale level ( l ),  

a) Assign a new group kG for every interest point 
without a link to the upper scale level and set 
( 1k k← + ).  

b) For each interest point l
iP  in this level, search the 

nearest neighbor link in the lower level ( 1l − ).        
If (the link exists within the range of uncertainty) 

       Assign this link to the group corresponding to l
iP . 

Else terminate the link at current level ( l ). 
iii) Go to the next scale level ( 1l l← − ) and iterate ii ~ iii, 

until all interest points are assigned to a group or cur-
rent level is the lowest one ( 0l = ). 

iv) Output the feature groups 1 2, ,... KG G G .  
 
 
 
 
 
 
           (a)                     (b) 
 
 

  
 
 
  

 
           (c)                     (d) 
Figure 1. Feature detection process (a) original image, (b) 
multi-scale interest point detection result (interest points 
detected from different scale levels are marked by differ-
ent color pixels), (c) grouping result (each yellow box 
represents a group of features), (d) scale adaptation result 
(each green circle represents a locally adapted feature with 
the strongest response of normalized Harris measure over 
scales). 

 
 
 

    
 
 
 
            (a)                     (b)  
Figure 2. Tracking and grouping (a) a sketch of interest 
points tracking, (b) LCSs (red square marks represent the 
interest points and blue curves represent the corner evolu-
tion routes.   

Table 1. Experimental test for parameter k  
k  0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Grouping 
Error (%)

10.4 4.8 1.2 2.5 3.9 5.2 7.3 9.6

 
The idea is to cluster those multi-scale interest points 

corresponding to the same local structure. The linking 
process is gradually propagating from the highest scale 
level to lower scale levels based on the principle of nearest 
neighbor searching within the ranges of uncertainty. The 
tracking of interest points continues until no correspond-
ing links within the allowed uncertainty ranges. The 
uncertainty range propagation is very important here, as it 
largely affects the grouping results. For example, when 
many textures existing in the image, the relative distances 
between local structures can be very small, hence many 
false groupings can be generated, which consequently 
decreases the number of correct estimations. We approxi-
mate the corner propagation rule as the following 
exponential model:  
                 ( , ) * lR s l k s=                (1)  
where ( , )R s l  is the radius of uncertainty regions, k is a 
constant factor, s is the parameter of the function and l is 
the scale level index. The parameter s is chosen as the 
same as the scale factorσ  between consecutive scale lev-
els. We have tested various values of k  with respect to 
the resulting grouping error (table 1). The best value is 
obtained at 5.0=k . Figure 2b and 1c show the example 
result of grouping with 5.0=k . 

 

2.3 Scale Adaptation 
We use the normalized Harris measure for scale selec-

tion. This measure naturally fits the unified framework of 
searching for the strongest response in both spatial and 
scale domains. In addition, by the use of tracking and 
grouping algorithm, the ambiguity and inaccuracy in scale 
selection can be reduced maximally. We observe the trace 
of normalized Harris measure responses along the LCSs 
and search for the local peaks in the trace. Then, we select 
a unique representative scale at the strongest peak point so 
that the corresponding region appears the most corner-like 
structure (figure 1d). We can further estimate the exact 
scale by fitting parabola to each selected peak NR .  

                                 
                                            (2) 

  
The initial feature points are re-localized based on the 

estimated scale *s and the sub-pixel accuracy in localiza-
tion is obtained by weighted average of contributions from 
eight neighboring points. 
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3 RIF Descriptor 

For description, we first normalize the extracted 
patches to the canonical 1010× circles. We assume the 
conventional gray-level linear illumination change model. 
Based on this simple model, we normalize the image 
patches by linearly shifting its mean and variance to fixed 
values. In this way, the scale and the offset can be elimi-
nated to get the illumination normalized patch. For the 
description, weighted Zernike moments are used [11]. 
Zernike moments have superior properties in terms of im-
age content representation, information redundancy and 
noise characteristics [14] so they can be reliably used in 
the recognition problem. It is defined over a set of com-
plex polynomials which form a complete orthogonal set 
over the unit disk. Zernike moments are calculated by 
projecting the image intensity onto these orthogonal basis 
functions. Gaussian window is used to weight the image 
patch before calculating the descriptors. Moreover, since 
the individual components are uncorrelated, Euclidean 
distance can be used as the similarity measure for match-
ing. The weighted Zernike moments are calculated as:                                            
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where ),( yxVnm is orthogonal basis function, ),( yxRnm is 
radial polynomial, ),( yxf  is image function and 

),( yxW is the Gaussian weight. We use the fast imple-
mentation [15] to calculate Zernike moments. 

4 Applications 

The object recognition system consists of on-line and 
off-line parts. In the off-line learning stage, RIFs are de-
tected from the model images and the resulting descriptors 
are stored in the database. In the on-line recognition stage, 
features detected from the input and model images are 
pushed into the searching engine to find the most similar 
match. The Euclidean distance is used to evaluate the 
similarity between descriptors. We use Approximate 
Nearest Neighbors (ANN) search algorithm and probabil-
istic voting technique for efficient DB indexing. Final 
verification stage ensures the recognition result to be cor-
rect by estimating the optimal homography and counting 
inliers and outliers. Consequently, the relative image im-
age/object pose can be optimally estimated. 

The key to the navigation is the estimated image/object 
pose information. We first manually drive the robot in its 
workspace and capture images at representative locations 
that the robot is expected to do critical motion. Then, the 
group of RIFs are extracted from these model images and 
stored as the scene landmarks. Finally, through our recog-
nition and relative pose estimation system, the robot 
motion is planned to iteratively correct its motion and 
converges to the optimal pose matching with database 
pose. The iterative pose converging is based on the esti-
mated landmark ID, verified optimal homography and 
estimated affine transformation. The robot motion is con-

trolled by translation t and optimal affine transformation 
*A as indicated above.                  
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5 Experimental Results 

5.1 Performance Evaluation of RIF Detector 
We have tested the performance of the proposed feature 

detector under various image variations. The Hangul im-
age set is selected as the experimental samples. Figure 3 
shows some of the detection results. It shows that the RIFs 
are very consistent to large scale and illumination changes. 
For the viewpoint variation sequence, features are robust 
in a range of viewing angles ( 40 40θ− < < ). 

We use the repeatability criterion [13] to evaluate the 
performance of the RIF detector. The sequences used in 
the experiment are selected from INRIA image database. 
Figure 4a shows that our proposed detector obtained 
higher repeatability rates than SIFT and Harris-Laplace 
(H-L) detector over the scale range of 1 to 4. The evalua-
tion under viewpoint change shows that our detector has a 
slightly better repeatability rates than Harris-Laplace de-
tector (figure 4b). Although our detector shows a high 
repeatability and robustness, it is still very sensitive to the 
large viewing angle changes. Our current work is focusing 
on the affine generalization in order to cover the limitation 
to large viewpoint changes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. RIF detection results under scale, viewpoint and 
illumination changes.  
 
 
 
 
 
 
 
 
 
 

(a) (b) 
Figure 4. Repeatability comparison of the proposed detec-
tor to SIFT and H-L detector under (a) scale changes, (b) 
viewpoint changes. 
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5.2 Results for recognition and robot navigation  
 

We have tested the recognition performance for 483 
images of 20 different objects (figure 5a) from KAIST 
Recognition DB. Figure 5b and 5c show examples for 
recognition under large image variations. The quantitative 
performance is evaluated for all the database images and 
the recognition rate (%) is compared with other two fea-
ture-based approaches (table 2). As the result, our detector 
shows the best recognition performance under scale 
changes, illumination changes and occlusions. But, for the 
viewpoint change sequences, our detector shows slightly 
lower recognition rate 95.8%. This is because the features 
are currently adapting shapes only to the uniform scales. 

We have used KASIRI-IV robot as the experimental 
platform (figure 6a) which is a wireless commanded net-
work based robot with single USB camera. Our 
experiment is performed in the indoor lab environment. 
Figure 6b, 6c shows the robot navigation path, environ-
ment and the topological node distribution. Our current 
navigation algorithm uses 16 different images as the 
landmark images. Some of those images are shown in fig-
ure 7a. Figure 7b shows the scene recognition and pose 
estimation results. We can see the system correctly recog-
nizes landmarks even in the cases of the severe occlusion 
and scale change. In navigation experiment, the robot cor-
rectly achieved its goal to the final destination with 90% 
success rate among over 20 trials.   

  
       (a)             (b)            (c)  
Figure 5. Recognition results (a) model images, (b) for 
large scale change, (c) for large viewpoint change.  

Table 2. Experimental test for parameter k . 

  

     
       (a)          (b)              (c) 
Figure 6. Experimental setting (a) KASIRI-IV Robot, (b) 
navigation environment and path, (c) topological nodes.    

  
          (a)               (b)  
Figure 7. Navigation results (a) landmarks, (b) examples 
of landmark recognition and pose estimation. 

6 Conclusion and Future Works 

We have developed a new feature detector and shown 
its application to object recognition and mobile robot 
navigation. Our detector, from the scale space interest 
point propagation to tracking and scale adaptation, basi-
cally models the fundamental knowledge on visual corner 
perception. Various experimental results have shown that 
our detector can generate highly robust and reliable fea-
tures which can be efficiently used in the recognition. Our 
further application to the mobile robot navigation also 
proved its practical usefulness. Although our proposed 
feature detector showed a good performance, it can not 
handle well large viewpoint changes due to the large dis-
tortion of scale invariant circular regions. We are currently 
generalizing the proposed detector to the affine invariant 
feature which can handle large viewpoint changes.  
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Recognition 
Rate (%) 

Scale 
changes  

   Viewpoint  
   changes 

Illumination 
changes Occlusions

RIF 63/63 
(100%) 

115/120   
(95.8%) 

80/80 
  (100%) 

60/60 
  (100%)

Multi-scale 
Harris 

61/63 
 (96.8%)  

116/120  
  (96.7%)   

80/80 
  (100%)  

60/60  
  (100%) 

SIFT 63/63 
 (100%) 

100/120 
 (83.3%) 

76/80 
  (95%) 

56/60 
  (93.3%)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


