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Abstract— Recently, many vision-based navigation methods
have been introduced as an intelligent robot application.
However, many of these methods mainly focus on finding an
image in the database corresponding to a query image. Thus,
if the environment changes, for example, objects moving in
the environment, a robot is unlikely to find consistent corre-
sponding points with one of the database images. To handle
these problems, we propose a novel motion-based navigation
method in contrast with appearance-based approaches. This
algorithm is based on motion estimation by a camera to plan
the next movement of a robot and robust feature matching to
recognize home and destination locations. Experimental results
demonstrate the capability of the vision-based autonomous
navigation against environment changes.

I. INTRODUCTION

An autonomous mobile robot requires a relation between

the perception of the environment and a low-level robot

operation. Vision sensors are especially efficient for this task

in that they provide more information on scene interpretation

than range scanning sensors such as LRF and sonar sensors.

For this reason, many navigation methods adopt various

vision sensors.

Autonomous navigation necessitates spatial reasoning that

relies on some kind of internal environment representation.

In the model-based approach, the environment is repre-

sented by landmarks and descriptions of the corresponding

image features. One of possible solutions for autonomous

navigation involves map building using natural or artificial

landmarks [1].

The alternative appearance-based approach employs a

sensor-centered representation of the environment by sensor

readings. For vision-based navigation methods, the represen-

tation usually contains a set of key images that are acquired

during a learning state, and these images compose a graph.

In [2], Yagi et al. proposed a new iconic memory-based

navigation method that synthesized a corresponding image

pattern from an omnidirectional route panorama (ORP) that

can be acquired by arranging points on the horizontal plane

for environment representation. Gaspar et al. [3] proposed a

method for visual-based navigation of a mobile robot in in-

door environments using a single omnidirectional camera. In

this approach, a bird-eye view [4] was considered to simplify

the solution for navigation problems. Chen and Birchfield

[5] presented a simple algorithm for mobile robot navigation
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that only compares feature coordinates in the image se-

quence with those computed previously in the teaching step.

Booij et al. [6] proposed a navigation method that used the

appearance-based topological map and the estimated heading

direction by feature correspondences between a current im-

age and one of the database images in the topological map,

thereby assisting a robot to navigate the destination. Another

appearance-based navigation approach was proposed using

image collections and an efficient image matching scheme

by Fraundorfer [7]. In [8], Ŝegvić proposed a solution based

on a hierarchical environment representation with a graph of

key images at the top and local 3D reconstructions at the

bottom.

All of the previous approaches only consider a well-

organized environment that is not influenced by moving

objects or environment changes. Some previous studies that

cope with dynamic environments have been proposed in the

robotics community [9][10][11]. In this paper, we present

a novel vision-based autonomous navigation framework to

handle problems including environment changes and mov-

ing objects; this method requires significantly less database

images. We also adopt the teaching and replay strategy

in which a robot is manually led through the path once

during a teaching step; subsequently the robot follows the

path autonomously during the replay step. This is a relevant

technique for autonomous robot navigation.

This paper is organized as follows. As a prerequisite

step for autonomous navigation, the details of the visual

SLAM approach are described in Section II. In Section

III, we introduce a novel motion-based navigation strategy

and a robust feature matching method using the prediction-

optimization approach to recognize home and destination

locations. Section IV shows various experimental results

on vision-based navigation under environment changes and

moving objects to demonstrate feasibility of the proposed

method. Finally, Section V concludes this paper.

II. TEACHING STEP

A. Feature Extraction

In each frame, we detect corner features [12] in the left

image. Corner features have been found to give detections

that are relatively stable under small to moderate image

distortion and are identified by the intersection of two strong

edges. By using MMX programming, we observe that the

computational time for extracting corners from the 320×240

image is less than 5 ms.
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B. Stereo Matching

From stereo matching of detected feature points, we can

infer information on the 3-D structures and distances of

a scene. If we assume that stereo images are rectified,

then pairs of conjugate epipolar lines become collinear and

parallel to one of the image axes, and this eases the stereo

matching problem because it is reduced to a 1-D search on

a trivially indentified scanline.

We use the modified KLT feature tracker to obtain corre-

spondences between stereo images. Because the KLT tracker

[13] gives the sub pixel locations of matched points, we can

reconstruct more realistic structures, as shown in Fig. 1. To

reduce the original KLT feature tracker that involves a 2-D

search into a 1-D search along the horizontal line, we assume

that a point in the left image I moves to point x−dmin −dx

in the right image J, and we linearize J(x− dmin − dx) by

Taylor expansion, as given in (1)

I(x,y) = J(x−dmin,y)−gxdx (1)

Here, dmin is a minimum disparity threshold, and gx is an

intensity gradient along the horizontal axis. dx is the disparity

that minimizes the following dissimilarity defined by SSD in

(2).

ε =
∫ ∫

A
[h(x,y)−gxdx]

2wdA (2)

Here, h(x,y) = J(x−dmin,y)− I(x,y).
To find the disparity dx, we set the derivative to zero

∂ε

∂dx

=
∫ ∫

A
[−2h(x,y)gx +2g2

xdx]wdA = 0

Finally, dx is computed by (3)

dx =

∫ ∫

A h(x,y)gxwdA
∫ ∫

A g2
xwdA

(3)

C. Motion Estimation and Map Generation

As a prerequisite for autonomous navigation, visual SLAM

in the teaching step plays important roles including topolog-

ical place recognition and navigation strategy. Among many

vision-based SLAM approaches [14][15], Nister introduced

a method that estimates the movement of a stereo head or

a single camera in real time using only vision sensors [16].

The overall process based on Fig. 2 is as follows.

• Match feature points between left and right images of

the stereo pair and triangulate the matched points into

3D points after camera calibration. The 3D points are

stored in a local map as landmarks.

• Track features between the incoming left image and

landmarks in the local map using the KLT feature

tracker and estimate the robot pose using 3-point al-

gorithm followed by RANSAC [17] until it satisfies

the following criteria. In 3-point algorithm [18][19], the

images of three known world points provide the possible

camera poses of up to four solutions and more than three

points are required to obtain one solution automatically.

(a) Map building using NCC stereo match-
ing

(b) Map building using modified KLT stereo
matching

Fig. 1. Map building comparison

– The number of inliers after RANSAC is more than

the predefined number.

– The variance of tracked features on an incoming

image is above a variance threshold to ensure the

large field of view.

• If it does not satisfy the above criteria, store the current

left image in the database as a key-frame image used for

autonomous navigation. Subsequently, all the landmarks

in the local map are stored in the global map, and

generate a new local map from step 1.

Generate local map
by stereo matching

Find corresponding points
between local map and 
current image by KLT

Estimate motion by 3-point
algorithm and eliminate
outliers by RANSAC

If # of inliers < N
�
2 < T

Eliminate outliers 
in the map

Yes
No

Generate local map
by stereo matching

Find corresponding points
between local map and 
current image by KLT

Estimate motion by 3-point
algorithm and eliminate
outliers by RANSAC

If # of inliers < N
�
2 < T

Eliminate outliers 
in the map

Yes
No

Fig. 2. Flow chart of visual SLAM

The key-frame images are stored in a database according

to the number of corresponding corners between an incoming
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image and the previous key-frame image.

III. REPLAY STEP

A. Navigation Strategy

Two geometrical views, which are extracted from key-

frame images in the database and incoming images, provide

inference on the next movement of a robot to reach the

destination. For home to destination locations, the epipole

between two views can provide good reasoning, i.e., if a

camera faces a destination point, the epipole must be located

near a principal point in the image, as shown in Fig. 2.

Therefore, a robot automatically changes its operation based

on the epipole coordinates.

],[ cc tR
e

image plane

3D world point

],[ dd tR],[ cc tR
e

image plane

3D world point

],[ dd tR

Fig. 3. Epipole coordinate between two views

The fundamental matrix is the algebraic representation

of epipolar geometry [20]. Suppose we have two images

captured by camera with non-coincide centers, then the

fundamental matrix F is a unique 3 × 3 rank 2 homogenous

matrix that satisfies (4)

x′T Fx = 0 (4)

The epipole is the point of intersection of the line joining

the camera centers (the baseline) with the image plane.

Equivalently, the epipole is the image in one view of the

camera center of the other view. The epipole is a null vector

of the fundamental matrix F , as given in (5).

Fe = 0 (5)

When a camera is located at the destination location, the

centers of the two views coincide. Therefore, the epipole

cannot be computed by the fundamental matrix, and the

fundamental matrix requires minimal 8 true correspondences.

However, the epipole is simply a re-projected point of one

camera center into another image plane. Because we know

camera poses of two views, we compute the epipole in the

alternative way, as given in (6) [20].

e = K[Rc tc]Xd (6)

Here, Xd is the camera center of the destination location

and Rc and tc represent the current camera pose.

If the x-coordinate of the epipole eu is located at the right

side of the principal point f cx, then a robot turns right, as

shown in Fig. 4. We can summarize the navigation strategy,

destination location

current location

e image plane e e

Fig. 4. Navigation strategy based on epipole coordinate

as stated in (7) and (9). If a camera is not close to the

destination location, a robot moves according to (7).

i f eu > f cx +T : turn right

else i f eu < f cx −T : turn le f t

else : go straight

(7)

Here, T is a positive value.

To determine whether a robot reaches a destination loca-

tion, we compare the locations of the robot using (8).

d = |RT
d td −RT

c tc| (8)

Here, −RT
d td reprsents the destination location with respect

to the global coordinate and −RT
c tc is computed by the

current camera pose.

When a robot reaches the destination location, we

adjust the robot orientation by feature matching to satisfy

the relation given in (9). To find corresponding points

between a current image and a corresponding database

image, we use a feature matching method that utilizes a

camera pose and 3D structures introduced in the next section.

i f x̂c > x̂d +Ta : turn le f t

else i f x̂c +Ta < x̂d : turn right

else : stop

(9)

Here, Ta is a marginal angle and x̂d and x̂c are means of

x coordinates among correspondences from destination and

current images, respectively.

When a robot stops according to the conditions stated

in (9), we regard this operation as home to the destination

location and designate the next key image as the destination

image. To reduce the pose error, we recompute the camera

pose with 3D coordinates in the given map and their corre-

sponding images obtained by topological place recognition

using the 3-point algorithm.

B. Topological Place Recognition by Feature Matching

Topological place recognition is the task of deciding

whether a robot has returned to a previously visited area in

the teaching step. Invariant features such as SIFT [21] and

maximally stable regions [22] are designed for this purpose.

However, heavy computational complexity prevents them

from real-time applications and full invariance of descriptors

is futile, i.e, in that we can utilize a camera pose in the

replay step and 3D structures which were computed in the

teaching step. By using a camera pose and 3D locations of
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world points, we can predict possible corresponding points

that near true corresponding points from (10).

x̂ = K[Rc tc]X (10)

Here, x̂ = [up vp 1]T is a re-projected coordinate of 3D

world point X = [X Y Z 1]T according to the current pose,

Rc, tc.

Starting from the predicted points, the KLT feature tracker

provides robust corresponding points without distinctive fea-

tures and their descriptors.

I(up −dx,vp −dy) = I(up,vp)− [gx gy][dx dy]
T
. (11)

By using re-projected points, we considerably reduce dx

and dy , thus consequently, satisfy the approximation of first-

order Taylor expansion in (11).

ε =
∫ ∫

A
[h(x,y)−gxdx −gydy]

2wdA (12)

Here, h(x,y) = I(up,vp)− J(x,y)

gx and gy represent the intensity gradients along x and y

directions, respectively. In addition, I and J represent a key

image and a current image, respectively. From (14), we

finally compute displacements that minimize SSD (sum of

squared difference) defined in (12).

∂ε

∂dx

=
∫ ∫

A
[−2h(x,y)gx +2g2

xdx +2gxgydy]wdA = 0

∂ε

∂dy

=
∫ ∫

A
[−2h(x,y)gy +2g2

ydy +2gxgydx]wdA = 0 (13)

d = Z−1e (14)

Here e =

[
∫ ∫

A[h(x,y)gx]wdA
∫ ∫

A[h(x,y)gy]wdA

]

, d =

[

dx

dy

]

and

Z =

[ ∫ ∫

A g2
xwdA

∫ ∫

A gxgywdA
∫ ∫

A gxgywdA
∫ ∫

A g2
ywdA

]

Fig. 5 shows the feature matching results from the pro-

posed method under large image deformations as a role of

topological place recognition.

C. Topological Place Recognition by Motion Estimation

Topological place recognition is likely to fail when an en-

vironment changes or when objects move in an environment

because a robot has difficulty in deciding whether it reaches

the destination location by feature matching. If an estimated

pose has a large difference in the location of a destination

node due to false matches or if we cannot find sufficient

correspondences with a key-frame image, we recognize a

topological node by comparing a current pose and a key-

frame node. This signifies that we compare not only the

heading directions of a locally estimated pose and a key-

frame pose (θg,θl in Fig. 6) but also their locations, as

defined in (8).

Fig. 5. Feature tracking for topological node recognition

gθ

lθ

key-frame pose

current pose

Fig. 6. Node recognition by motion

IV. EXPERIMENTAL RESULTS

The proposed algorithm was implemented on a laptop (1.6

GHz CPU and 1GB RAM) that controlled a Pioneer 2 mobile

robot mounted with a Bumblebee stereo camera.

A. Navigation Under Normal Environment

Fig. 7 shows the visual SLAM result in real time ap-

proximately 10 frames/s after a robot moved approximately

20 m in an indoor environment, as a prerequisite for an

autonomous mobile robot navigation.

Here, black points represent the map at the top-down

view and blue circles represent the locations of a camera

where key images were obtained. 39 key-frame images

were automatically selected among 2500 frames. If there

exist abundant visual features, two consecutive key-frame

images might have large image deformations and narrow

or homogenous regions have more key-frame images, as

shown in Fig. 7. Some approaches require many key-frame

images that have significantly overlapped regions and less

image variations to find the correspondences with incoming

images. However, for the proposed approach, only a few key-

frame images are required because we can compute corre-

spondences using a robot pose under large image variations.
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Fig. 7. Visual SLAM result

Fig. 8 reveals the navigation path computed in the re-

play step. Comparing with key-frame locations, a robot can

autonomously follow the path that it followed during the

teaching step. Fig. 9 shows some figures of autonomous

navigation.

Fig. 8. Navigation path in a static environment

B. Navigation Under Environment Changes and Dynamic

Environment

To evaluate the efficiency of the proposed method, a

robot was manually driven in an environment during the

teaching step when there were no people. After a few hours,

when some people arrived at the office environment and

some objects were moved, the robot autonomously navigated

through the environment.

Fig. 10 shows some of the key-frame images automatically

stored from the office environment in the teaching step, and

fig. 12 shows the generated global map and key-frame loca-

tions. Fig. 13 depicts the navigation path under environment

changes.

When a camera is disturbed by moving objects, some parts

of the images are occluded; a robot is unlikely to have ro-

bust correspondences between an incoming image and some

database images. However, from the proposed method, in

spite of visual occlusion, a robot can estimate its pose by fast

motion estimation, approximately 10 frames/s, introduced in

section II, and the robot determines its operation based on

its pose when it cannot match with the database images.

Fig. 9. Some figures in a video

Fig. 11 shows the navigation results when there exist

moving objects and environment changes.

Fig. 10. Key-frame images obtained when there are no people

Fig. 11. Navigation under environment changes and moving objects

C. Long-distance Navigation

Fig. 15 depicts the path from long-distance navigation of

approximately 60 m in the first floor of the EE building in

KAIST and some image sequences are shown in Fig. 14.

V. CONCLUSIONS

We have presented a robust navigation strategy under

environment changes and moving objects. In this paper, we
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Fig. 12. Key-frame locations overlapped with the map

Fig. 13. Navigation path in a dynamic environment

have proposed an autonomous navigation method combined

with visual SLAM and a motion-based navigation strategy

to overcome the failure of image matching. Compared to

appearance-based navigation methods, this proposed ap-

proach is more robust to environment variations and moving

objects. We demonstrate the feasibility of the proposed

method through the various navigation experiments.
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