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Fast horizon detection in maritime
images using region-of-interest
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Abstract
In this article, we propose a fast method for detecting the horizon line in maritime scenarios by combining a multi-scale
approach and region-of-interest detection. Recently, several methods that adopt a multi-scale approach have been pro-
posed, because edge detection at a single is insufficient to detect all edges of various sizes. However, these methods suf-
fer from high processing times, requiring tens of seconds to complete horizon detection. Moreover, the resolution of
images captured from cameras mounted on vessels is increasing, which reduces processing speed. Using the region-of-
interest is an efficient way of reducing the amount of processing information required. Thus, we explore a way to effi-
ciently use the region-of-interest for horizon detection. The proposed method first detects the region-of-interest using
a property of maritime scenes and then multi-scale edge detection is performed for edge extraction at each scale. The
results are then combined to produce a single edge map. Then, Hough transform and a least-square method are sequen-
tially used to estimate the horizon line accurately. We compared the performance of the proposed method with state-
of-the-art methods using two publicly available databases, namely, Singapore Marine Dataset and buoy dataset.
Experimental results show that the proposed method for region-of-interest detection reduces the processing time of
horizon detection, and the accuracy with which the proposed method can identify the horizon is superior to that of
state-of-the-art methods.
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Introduction

The interest in remote-controlled and autonomous
ships has been increasing in the fields of marine indus-
try and information technology. A key technology in
autonomous ships is the situational awareness equip-
ment required to safely operate and navigate. The radar
equipment comprises a primary sensor system, but it is
insensitive to small, non-metallic objects. Therefore,
complementary sensor systems are necessary.

Electro-optical (EO) sensors can capture images of
greater resolution than any sensor system. In addition,
the images acquired by EO sensors can be recognized
intuitively by crews or remote operators. Many video
analytic methods that automatically analyze image
frames to detect and identify the events have been

developed in the field of computer vision. Generally,
video analytics assume the existence of a fixed camera.
However, video analytics in maritime scenes need to
process a moving camera, because the camera is
mounted on a moving vessel. Therefore, the first step
of video analytics in maritime scenes is detecting the
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horizon, because the horizon is the important clue for
registering the consecutive frames and for compensat-
ing the motion of the moving platform.1 In addition,
the result of horizon detection can be used for estimat-
ing the distance between another ship and the EO sen-
sor2,3 and for increasing the processing speed by
reducing the search area in the maritime detection sys-
tem.2,4 Furthermore, a recent study5 pointed out that
horizon information can reduce the false positive rate
by 50% for a given detection rate of the maritime sur-
veillance system. Likewise, horizon detection is the first
step of video analytics, and the result of horizon detec-
tion greatly affects the performance of overall maritime
surveillance. Therefore, there is a need for a method to
accurately detect the horizon without burdening the
processing time of the entire system.

Typical approaches for horizon detection in mari-
time scenes assume that the horizon is a straight line
and include projection-based methods,5–9 intensity
analysis (including the vertical direction),10,11 and sta-
tistical analysis of the sea and sky regions.10,12 These
methods have relatively low complexity, but they have
a limitation on the accuracy of horizon detection.
Recently, hybrid methods,13,14 combining different
approaches, have been proposed to increase the accu-
racy of horizon detection. However, these methods
mainly extract edge information from a single-scale
image. Relatedly, the non-stability of edge detection is
a challenging issue. To solve the non-stability issue, sev-
eral methods,15–17 adopting a multi-scale approach,
have been proposed to mitigate sensitivity to para-
meters of edge detection and to reduce the effect of
noisy edges. Most previous works, using multi-scale
approach, performed the edge detection and horizon
estimation on each scale image, later finding the opti-
mal solution. Thus, these methods have a disadvantage
of being computationally costly. Extant methods
require processing time on the order of tens of seconds;
they are unsuitable for real-time processing during mar-
itime scene analysis. However, horizon detection should
be performed quickly and accurately because it is the
first step in maritime scene analysis. Thus, we devise a
method that reduces the computational time, while tak-
ing advantage of multi-scale edge detection.

As the resolution of the images captured from con-
temporary cameras increases, the amount of informa-
tion to be processed to detect the horizon also
increases. Recent datasets1 for maritime scene analysis
consist of full high-definition resolution images.
Unfortunately, high resolution is a factor that
decreases the processing speed of horizon detection.
Using the region-of-interest (ROI) is an efficient way of
reducing the amount of information necessary for pro-
cessing. Thus, we explore a way to efficiently use ROI
detection for maritime scene analysis.

Therefore, in this article, we propose a fast method
for detecting the horizon line in maritime scenarios.
Our approach is based on three steps. First, ROI detec-
tion is performed to reduce the processing region, using
the characteristic that the color change is large around
the horizontal line in maritime images. Then, multi-
scale edge detection performs edge extraction at each
scale, combining the results to produce a single edge
map, which suppresses small noisy edges and retains
the prominent edges. The initial candidate line is esti-
mated by applying the Hough transform to combined
edge images, and median filtering is applied to remove
outliers. Finally, the least-square method is used to find
the optimal line, using the inliers.

In summary, this article contributes the following.
First, in a maritime scenario, we explore the effective-
ness of ROI recognition in a horizon detection task,
and we demonstrate that our proposed method of ROI
recognition can improve the processing speed without
sacrificing the accuracy of the horizon detection.
Second, we propose a fusion method to improve the
processing speed by effectively combining the edge
information of various scales and we develop a high-
accuracy, high-speed method for detecting the horizon.
Third, unlike previous works using their own dataset
for performance comparison, we use two publicly avail-
able databases for maritime scenarios, namely,
Singapore Marine Dataset (SMD)1 and buoy dataset,13

and compare the performance of the proposed method
and that of state-of-the-art methods.

The remainder of this article is organized as follows.
The ‘‘Related works’’ section briefly reviews related
works on horizon detection in maritime scenarios. The
‘‘Proposed method’’ section outlines the proposed hori-
zon detection method. The ‘‘Experimental results’’ sec-
tion discusses the various experiments conducted and
the results obtained. Finally, the ‘‘Conclusion’’ section
concludes this article.

Related works

Several approaches have been developed and reported
for detecting the horizon using EO sensors mounted on
vessels. A horizontal line is generally represented as a
straight line in a maritime scenario. Typical approaches
for horizon detection include projection-based meth-
ods,5–9 intensity analysis (including the vertical direc-
tion),10,11 and statistical analysis of the sea and sky
regions.10,12

In the projection-based methods, an edge detector is
first applied to generate an edge map. Then, the horizon
line is determined by projecting the edges to another
parametric space where the dominant line can easily be
detected. Hough transform and Radon transform are
the representative projection methods. These methods
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are most popular, because they are simple and mathe-
matically well-defined. However, they are sensitive to
prepossessing and frequently fail to detect the horizon
when the horizon is not the most dominant line.

Intensity variation analysis methods first calculate
the gradient map (including the vertical direction), after
which they identify the maximal edges in each column
of the image. Various optimization techniques, such as
the least-squares method and dynamic programming,
are used to calculate the optimal horizon line, using
maximal edges. These methods have relatively low com-
plexity, but their performance, in terms of accuracy,
decreases when there exists a boundary having larger
intensity change than the horizon, or the horizon lines
are occluded by vessels.

Statistical analysis methods identify the horizon line
by segmenting an image into regions containing the sea
and sky. These methods are more robust to preproces-
sing than the methods using the gradient information
at a pixel level, because they use the local statistics
information. In addition, they can detect the blurred
horizon. However, these methods must calculate the
statistical distribution of the regions. Thus, they require
more computation time.

The methods above are complementary to each
other. Thus, several methods combining different
approaches have been proposed to increase the accu-
racy of horizon detection. Fefilatyev et al.13 proposed a
hybrid approach, combining a Hough transform and
statistical analysis. They first selected a limited number
of candidate lines, using the Hough transform, and cal-
culated the separation criteria to find the optimal line,
maximizing the difference between the regions contain-
ing the water and sky. The Gaussian model in RGB
color space was used to represent the color distribution
of each region, and the Bhattacharyya distance18 was
used to measure the similarity of color distributions.
Lipschutz et al.14 also proposed a method like that of
Fefilatyev et al. They used a morphological filter as the
pre-processing stage and calculated the histograms of
both the sky and sea regions to represent the color dis-
tribution of each. These methods require statistical
analysis because of the possibly large number of candi-
date lines. Thus, the computation time increases drasti-
cally. In addition, hybrid methods mainly extract edge
information from a single-scale image, in relation to
which, there is a challenging issue about the non-
stability of edge detection.

Recently, horizon detection methods,15,16 using
multi-scale edge detection, have been proposed to solve
the non-stability of edge detection issue. A new method,
multi-scale cross-modal linear feature (MSCM-LiFe)
was proposed by Prasad et al.15 MSCM-LiFe adopts
the multi-scale approach for detecting edges, and two
modalities (i.e. Hough transforms and intensity varia-
tion analysis) are used to estimate the candidate horizon

line for each scale image. The final solution is estimated
by analyzing the goodness score and geometric proxim-
ity for each candidate pair of two different methods. A
novel method, multi-scale consistence of weighted edge
Radon transform (MuSCoWERT), was proposed by
Prasad et al.16 MuSCoWERT first generates multi-scale
images by applying the median filter with different
sizes. Then, for each scale image, weighted edge map is
computed by analyzing the length of the edges. Radon
transform is applied to estimate the parameter of the
candidate line for each weighted edge map. Then, the
final solution is selected by voting on the estimated line
parameter from all scales. Whereas previous works
showed that using the multi-scale approach can
improve the accuracy of horizon detection, they require
processing times on the order of tens of seconds.
Therefore, we should to devise a way to reduce the pro-
cessing time while maintaining the accuracy of horizon
detection, because horizon detection is the first step and
an essential element in maritime scene analysis.

Proposed method

In this section, we present a fast method for detecting
the horizon line in maritime scenarios. A flowchart of
the proposed method is shown in Figure 1. First, ROI
detection, using the property of maritime scenes, is per-
formed on an input image. The proposed method effec-
tively reduces the processing time by restricting the
search region, because the processing time of horizon
detection method is proportional to the region to be
processed. Then, multi-scale edge detection is applied
to the ROI image, and the combined edge map is gen-
erated using edge images from various scales. Finally,
the Hough transform and a least-squares method are
sequentially used to find the optimal parameter of the
horizon line. Although the proposed method detects
the edges on each scale independently, as in previous
works, it can reduce the computation time by applying
the horizon parameter estimation to the combined edge
map at once.

ROI detection

As cameras capable of capturing high-resolution
images become popular, the amount of information to
be processed to detect the horizon rapidly increases.
Furthermore, the horizon detection methods that adopt
multi-scale edge detection require repetitive processing
for a high-resolution image, and therefore, the amount
of computation is increased. Thus, the ROI can help to
reduce the amount of information to be processed.
Many methods19–21 for detecting ROI, based on visual
saliency, have been proposed to identify the salient
regions. However, applying it to detect the horizon is
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inadequate because the horizon is not an attended area
in maritime scenes.

In maritime scenes, the sky and sea have homoge-
neous color regions, and the horizon is the apparent line
that divides the sky and sea. Thus, the region contain-
ing the horizon has a different mean color vector than
the mean color vector of sea and sky region, because it
includes both the color of sky and sea regions. Using
this property of maritime scenes, we propose a method
for ROI detection to effectively detect the horizon. As a
first step, an input image is resized smaller to reduce the
processing time and smooth the regions. Then, the pro-
posed method divides the resized image into N regions
horizontally with 50% overlapping. For each region,
the mean vectors and the covariance matrices of the
color distribution of the region are calculated. The dif-
ference between the color distributions of the two con-
secutive regions (including the vertical direction) is
calculated using the Bhattacharyya distance,18 as
follows

D(R1,R2)= (m1 � m2)
T (S1 � S2)

�1(m1 � m2) ð1Þ

where m and S are the mean vectors and the covariance
matrices of the color distribution of the region,
respectively.

The proposed method chooses a region having the
largest distance as the ROI for horizon detection. If the
horizon line exists at the boundary of the horizontally
divided region, it is difficult to determine to which of
the two consecutive regions the horizontal line belongs.
To mitigate the boundary effect, our proposed method
divides the region into overlapping segments. We define
ROI as a rectangle to improve the speed in subsequent
tasks. Whereas the ROI image is defined as a rectangle,
it does not contain the entire horizon, because of its
large gradient. The proposed method can accurately

identify the horizon using the partial line segments of
horizon in ROI images, because the horizon is repre-
sented as a straight line.

The resized image and the divided horizontal regions
are shown in Figure 2. In Figure 2(b), the red rectangle
indicates the ROI, confirming that the average color of
the region abruptly changes near the horizon.

Multi-scale edge detection

The scale in edge detection is related to the size of the
area where brightness changes are analyzed or to the
size of the smoothing filter applied before edge detec-
tion. Maritime scenes contain many edges generated by
wakes from ships, sunglint, and waves. Thus, small-
scale edge detection suffers from false positives. Large-
scale edge detection can identify reliable edges related
to the horizon, but it loses detailed structures. In addi-
tion, recent research22 pointed out that detecting edges
at multiple scales can reduce the inherent ambiguity of

Figure 1. Flowchart of proposed method.

Figure 2. (a) Resized image and (b) horizontally divided
regions and the mean color vector of each region.
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edge detection at a single scale. Therefore, several meth-
ods,15,16 adopting a multi-scale approach, have been
proposed to mitigate sensitivity to parameters of edge
detection and to reduce the effect of noisy edges.

Multi-scale edge detection is distinguishable by the
method of analyzing the information detected at differ-
ent scales.23 Previous works have independently pro-
cessed edge information detected on different scales, so
that horizon line estimation is applied to the number of
scales. This was one reason for increasing the process-
ing time of the horizon detection method, when adopt-
ing multi-scale edge detection. In addition,
MusCoWERT16 detected edges on different scales and
analyzed their length, because it suffers from processing
times requiring an order of tens of seconds. Therefore,
the proposed method adopts the different multi-scale
edge detection method, which is different from previous
methods.

The resized image is used in the ROI detection step
to reduce the processing time, but the ROI region of an
original input image is used in the multi-scale edge
detection step. The proposed method detects edges
from the images by applying a smoothing filter of vari-
ous sizes. Then, it synthesizes the edge images at differ-
ent scales to a single edge map. Detecting a horizon by
analyzing a combined edge map can reduce the inher-
ent ambiguity of edge detection using a single scale,
while increasing the processing speed of horizon detec-
tion. The proposed method uses the median filter as a
smoothing filter because the median filter can effec-
tively reduce noise, while preserving the prominent
edges. The median filters are applied to an input images
to generate the multi-scale images, as follows

Is(x, y)= fs � I(x, y)= median
i, j2½�5s, 5s�

I(x+ i, y+ j) ð2Þ

where � is the convolution operator, and s is the scale
of the median filter. The proposed method uses the
median filter with three different scales.

The Canny edge detector24 is applied to the multi-
scale images independently. Then, the weighted edge
map is synthesized using the edge maps to which the
Canny edge detector is applied, as follows

W (x, y)=
XN

s= 1

ws � Es(x, y) ð3Þ

where N is the number of median filters, vs is the weight
of the scale s, and Es is the edge maps of the scale s. In
the experiments conducted, we set the same weight for
all edge maps.

The edges related to the horizon were consistently
detected on edge maps at various scales because of the
strong brightness changes near the horizon. Thus, the
proposed method applies thresholding to the weighted

edge map to suppress noisy edges, while keeping the
edges associated with the horizon. The thresholding to
the weight edge maps is applied as follows

WT (x, y)=
255, if W (x, y) � t

0, if W (x, y)\t

�
ð4Þ

where t is the threshold for filtering the noisy edges; we
set the threshold to 170.

The example images of the edge maps generated
from the multi-scale images and the weighted edge map
applying the thresholding are shown in Figure 3. To
improve the readability of the edge maps in Figure 3, a
dilation filter with a 5 3 5 rectangular structuring ele-
ment is first applied to the edge maps; then, image
inversion is applied. The dilation filter is used to
increase the visibility of the reader and does not affect
the edge detection results.

Figure 3 shows that the proposed multi-scale edge
detection can preserve the edges associated with the
horizon while suppressing the noisy edges. In Figure 3,
the proposed method reduces edges unrelated to the
horizon, but there still exist outlier edges. Therefore, a
method is necessary to reduce the effect of outlier edges
when estimating the horizon line.

Horizon line estimation

The representative methods for estimating the horizon
from the edge image are the Hough transform25 and
the least-squares method. The method using Hough
transform can robustly estimate the parameter of hori-
zon, even when there are small numbers of edges
related to the horizon or there are many noisy edges.

Figure 3. Multi-scale edge detection: (a) ROI image; (b) edges
images with different-sized median filters (s= 1, s= 2, s= 3);
and (c) weighted edge map with thresholding.
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Whereas the least-square method is highly affected by
outlier edges, it can more accurately estimate the hori-
zon when there are few outlier edges. A recent study
showed that the least-squares method better accurately
estimates the parameter of the horizon than the method
using the Hough transform.26 Therefore, the proposed
method applies the Hough transform and a least-
squares method, sequentially, to calculate the best
parameter for the horizon line.

The proposed method first applies the Hough trans-
form to the weighted edge map, applying thresholding
to find an initial candidate for the horizon. Then, it cal-
culates the residual between the candidate horizon line
and the edges for applying the median filtering. Finally,
the parameters of horizon line are calculated using the
least-squares method and the inlier edges. The proposed
method can accurately estimate the horizon because the
outlier edges are removed via median filtering.

The inlier edges and outlier edges classified by the
Hough Transform and median filtering are shown in
Figure 4(a). In addition, the result of horizon detection,
using the least-square method, is shown in Figure 4(b).
Figure 4 shows that Hough transform and median fil-
tering can effectively remove outlier edges, which helps
the least-squares method accurately estimate the
horizon.

Experimental results

Dataset

We conducted experiments on the SMD1 and buoy
dataset.13 SMD is the most recent database in maritime
scenarios, including 39 videos with 15,376 frames. SMD
consists of the onboard videos acquired by a camera
mounted on moving vessels and the onshore videos
acquired by a static camera installed onshore. All
frames in the SMD have a resolution of 1920 3 1080
pixels and contain various conditions of ships, wakes
from ships, sunglint, and waves. The buoy dataset con-
sists of the videos acquired by a camera mounted on a
floating buoy, and all frames in the buoy dataset have a

resolution of 800 3 600 pixels. The buoy dataset
includes a large motion change between adjacent
frames.

The ground truth annotation for the horizon line
and example images are shown in Figure 5. The ground
truth of horizon line is represented by the vertical posi-
tion, Y , and the gradient of the horizon line, a, at the
middle position of the image. The difference between
the estimated and ground truth parameter of horizon is
used to measure performance. In addition, the main
properties of the dataset are summarized in Table 1.

Performance of ROI detection

In this section, we demonstrate the extent to which the
proposed ROI detection method reduces the processing
time without loss of horizon detection accuracy. In the
experiment, the input image was resized to a quarter of
the original image. To find the optimal parameter for
ROI detection, the proposed method measured the pro-
cessing time and accuracy of horizon detection for vari-
ous N , the number of regions horizontally divided. We
implemented the proposed method using the Python
and executed it on an Intel E5-1680 CPU. I/O time was
excluded when measuring the processing time, and the
average of the positional errors for all frames was used
as an accuracy measure. When the ROI region did not
contain the horizon, we set a positional error to the
height of the images as a penalty.

Experimental results on SMD are shown in Figure 6.
The ROI detection clearly reduced the processing time
without loss of horizon detection accuracy. When com-
paring results using the entire frame and those using
less than a quarter of the images area, the processing
speed was four times faster, but the accuracy remained
the same. Therefore, the proposed method divided the
image into nine horizontal regions with 50% overlap to
select the ROI.

Figure 7 shows the ROI detection results using the
proposed method. Thus, it is possible to improve the

Table 1. Details of datasets.27

SMD Buoy

Onboard Onshore

No. of videos 11 28 10
No. of frames 2772 12,604 996
Min(Y 2 mean(Y)) (pixels) 2436.30 213.54 2281.68
Max(Y 2 mean(Y)) (pixels) 467.86 9.95 307.82
Standard deviation
of Y (pixels)

145.10 1.52 107.98

Min(a 2 mean(a)) (�) 226.34 29.99 215.72
Max(a 2 mean(a)) (�) 12.99 0.51 20.72
Standard deviation of a (�) 1.11 0.04 4.40

SMD: Singapore Marine Dataset.

Figure 4. (a) Edges classified by the result of Hough transform
and median filtering. Red dots show the outlier edges, and green
dots show the inlier edges; (b) horizon detection result (yellow
line) from applying the least-square method to inlier edges.
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processing speed by reducing the area to be processed
and to improve the accuracy of horizon detection by
reducing the influence on the edges generated by wakes
from ships, sunglint, and waves.

Horizon detection performance

In this section, we compare the performance of the pro-
posed method and that of state-of-the-art methods,
including MusCoWERT,16 MSCM-Life,15 the method
of Fefilatyev et al. (FGSL),13 and the method of
Lipschutz et al., (LHSL).14 The method using Hough
transform (Hough)10 and the method based on inten-
sity variation analysis (IntV)10 were considered for per-
formance comparison.

Hough. This method applied the median filter to
smooth the input image.10 Then, it extracted the edge

Figure 5. (a) Ground truth annotation; (b) sample frame of onboard videos; (c) sample frame of onshore videos; and (d) sample
frame of buoy videos.

Figure 6. Processing time and accuracy of horizon detection
according to the ROI area on SMD.

Figure 7. Sample frames of ROI detection (red rectangle) using the proposed method: (a) ROI detection from onboard frames; (b)
ROI detection from onshore frames; and (c) ROI detection from buoy frames.

Jeong et al. 7



image using the Canny edge detector. Then, the Hough
transform was used to find the optimal parameter of
horizon line from the edge map.

IntV. This method first performed the median filter-
ing.10 Then, it searched the points having the maximum
edge magnitude in each column of the smoothed image.
Then, the least-square method was applied to maximal
edges to find the optimal line.

FGSL. This method selected N candidate horizon lines
by performing the Hough transform on the edge
image.13 Gaussian distribution was then used to model
the color information of two regions separated by the
candidate line. The similarity between the color distri-
bution of the sea and the sky regions was measured
using the Bhattacharyya distance. The candidate hori-
zon line having the lowest similarity was determined to
be the final solution. The number of candidate lines
greatly affected the processing speed of the system.
Thus, 10 candidate lines were selected for the computa-
tional efficiency.

LHSL. This method also selected N candidate horizon
lines, like the FGSL method.14 However, the different
color model (e.g. color histogram) was used to model
the color distribution of the regions. The optimal line
was then selected by calculating the distance between
the two histograms. In the experiment, the number of
candidate lines equal to the FGSL method was selected.

MSCM-LiFe. 10 vertical median filters having different
sizes were used to generate the multi-scale image.15 For
each scale image, Canny edge detection and the Hough
transform were used to find the 10 candidate horizon
lines. For each scale, the mean multi-scale images were
generated by accumulating the scale image. Then, the
method found the points having the maximum intensity
variation in each column of the mean multi-scale
images. The optimal horizon line was then selected by

analyzing the goodness score and geometric proximity
of pairs consisting of the candidate line of the Hough
transform and the candidate line of the intensity varia-
tion approach.

MuSCoWERT. The multi-scale image was generated by
applying median filters of various sizes.16 For each scale
image, edge detection was performed to generate the
edge map. Then, lengths were calculated for all edges to
consider their weight. Then, the Radon transform was
applied to each weighted edge map to select N candi-
date horizon parameters. The optimal horizon line was
then determined by voting on the candidate horizon
parameters of each scale.

We measured the difference between the estimated
and ground-truth parameter of horizon to compare the
performance of horizon detection. The positional error
of the horizon has defined as the difference between the
vertical position of estimated line, Y , and that of the
ground truth, YGT . In addition, the angular error of the
horizon was used to compute the difference between the
gradient of the estimated line, a, and that of the ground
truth, aGT .

We implemented the comparison methods, except
for MuSCoWERT, and calculated the horizon para-
meters, Y and a, to measure performance. The statisti-
cal results from errors in parameters Y and a on the
SMD are listed in Tables 2 and 3, where the data of
MuSCoWERT were taken from their results.16 The
experimental results show that the proposed method
outperformed the other methods for both scenarios.
The proposed method had a median positional error of
less than 2 pixels from the center of the horizon and a
median angular error of approximately 0.1�.
Particularly, the 95th percentile error of the proposed
method, as listed in Table 2, was relatively small, com-
pared to the other methods.

The statistical results from errors in parameters Y

and a on the buoy dataset are listed in Table 4. The
proposed method had a median positional error of less
than 1 pixels from the center of the horizon and a

Table 2. Horizon detection, using different methods, on onboard videos from the SMD.

jY � YGT j (pixels) ja� aGT j (8)

25th percentile 50th percentile 95th percentile 25th percentile 50th percentile 95th percentile

Proposed 0.51 1.23 3.99 0.05 0.12 0.39
MuSCoWERT16 0.54 1.49 8.17 0.06 0.25 0.88
MSCM-LiFe15 1.16 2.84 505.78 0.17 0.38 5.50
LHSL14 13.78 25.65 507.92 0.88 1.37 6.52
FGSL13 5.28 10.85 581.44 0.67 1.00 3.88
IntV10 13.36 24.89 498.17 0.87 1.35 6.12
Hough10 2.27 221.67 520.34 0.25 1.00 4.57

MuSCoWERT: multi-scale consistence of weighted edge Radon transform; MSCM-LiFe: multi-scale cross-modal linear feature.
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median angular error of approximately 0.15�.
Furthermore, the 95th percentile error of the proposed
method, as listed in Table 4, was relatively small, com-
pared to the other methods. This implies that the pro-
posed method could robustly detect ROI regions and
accurately identify the horizon on a moving platform.

When comparing methods using multi-scale edge
detection (e.g. MuSCoWERT, MSCM-LiFe, and the
proposed method), to those using single scale edge
detection, experimental results on SMD show that
multi-scale edge detection helps increase the accuracy
of the horizon detection by mitigating the instability of
edge detection.

Sample horizon detection frames from the SMD and
buoy dataset are displayed in Figure 8, showing that
the proposed method accurately detects the horizon in
maritime scenes containing great diversity. The pro-
posed method is more robust to noisy edges, owing to
wakes from ships, sunglint, and waves, because the
ROI region can effectively reduce the noisy edges occur-
ring away from the horizon. Although the proposed
method has shown the reliable performance for horizon
detection, the performance of the proposed method was
degraded when the boundary of the horizon changed
gradually. Thus, the edge could not be detected. In
addition, the proposed method could not correctly
identify the horizon when the number of edges

constituting the horizontal line was relatively small,
because the proposed method basically uses edge
information.

The average processing time-per-frame for each
method is provided in Table 5. To fairly measure the
time of the horizon detection methods, all methods
except MuSCoWERT were implemented using Python.
All methods were executed on an Intel E5-1680 CPU,
and the average processing time-per-frame used the
mean values from a run time of 10 measured times.
The results of MuSCoWERT were taken from Prasad
et al.,16 which was implemented using MATLAB 2015b
and was executed on an Intel i7-3770 CPU.
Conventional methods, such as IntV and Hough, had
relatively fast processing times, but they had a low
accuracy of horizon detection. The methods using the
multi-scale approach had high computational cost, in
the tens of seconds, but they showed reliable accuracy
of horizon detection. In Table 5, experimental results
showed that the proposed method is the only way to
accurately detect the horizon at high speed.

Conclusion

In this article, we proposed a novel approach that
enables a seafaring vessel to quickly detect the horizon
using a multi-scale approach with ROI detection. The

Table 3. Horizon detection, using different methods, with onshore videos from the SMD.

jY � YGT j (pixels) ja� aGT j (8)

25th percentile 50th percentile 95th percentile 25th percentile 50th percentile 95th percentile

Proposed 0.99 2.09 12.87 0.04 0.10 0.67
MuSCoWERT16 1.14 2.63 11.41 0.14 0.21 1.07
MSCM-LiFe15 1.63 3.88 81.59 0.11 0.18 1.14
LHSL14 14.96 27.92 109.00 0.75 1.03 3.86
FGSL13 5.88 11.53 64.70 0.75 1.00 2.87
IntV10 2.08 5.82 39.89 0.14 0.52 5.37
Hough10 3.12 165.02 460.24 0.14 0.36 3.80

SMD: Singapore Marine Dataset; MuSCoWERT: multi-scale consistence of weighted edge Radon transform; MSCM-LiFe: multi-scale cross-modal

linear feature.

Table 4. Horizon detection, using different methods, with buoy videos.

jY � YGT j (pixels) ja� aGT j (8)

25th percentile 50th percentile 95th percentile 25th percentile 50th percentile 95th percentile

Proposed 0.53 1.07 2.98 0.07 0.15 0.45
MSCM-LiFe15 1.54 2.97 11.56 0.33 0.57 11.56
LHSL14 0.66 1.50 3.73 0.17 0.33 0.67
FGSL13 0.60 1.35 3.84 0.18 0.36 0.79
IntV10 0.84 1.91 55.06 0.14 0.32 13.24
Hough10 0.77 1.76 4.46 0.18 0.37 0.89

MSCM-LiFe: multi-scale cross-modal linear feature.

Jeong et al. 9



ROI detection method was used to restrict the search
region and to reduce the computational time using the
characteristics of maritime images. In addition, unlike
previous works about processing multi-scale images
independently, an approach, using edge information
from different scales, was combined to improve the
processing speed, while taking advantage of the multi-
scale approach. We conducted experiments on the
SMD and buoy dataset, which are publicly available
databases of maritime scenarios. The results from our
experiments showed that the proposed method for ROI
detection can reduce the processing time by restricting
the search region without degrading the accuracy of
horizon detection. In addition, we compared the per-
formance of the proposed method with that of state-of-
the-art methods, and the experimental results showed
that the proposed method outperforms the other tested
methods in terms of accuracy of horizon detection and
processing speed. The proposed method can process a

high-definition image at about 15 fps, has a median
positional error of less than 2 pixels from the center of
the horizon, and has a median angular error of approx-
imately 0.15�. These results demonstrate that the pro-
posed method is the only way to accurately detect the
horizon at high speed.

Whereas the proposed method showed reliable per-
formance for horizon detection, its performance
degraded when the edges related to the horizon could
not be detected. The two reasons why the edges associ-
ated with the horizon could not be detected are as fol-
lows: (1) the maritime images acquired by a camera
mounted on moving vessels were blurred by the motion
of the vessels. To compensate for the motion of vessels,
more sophisticated filtering methods, such as mean cur-
vature motion filtering, are necessary; and (2) the
boundary between the sky and sea region changed
smoothly. This is because the proposed method
depended on the edge information. Thus, in the future,
we plan to develop a way to detect horizons without
edge information using a scene segmentation method.
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